Advertisement

Interpolation

  • Josef Stoer
Part of the Heidelberger Taschenbücher book series (HTB, volume 105)

Zusammenfassung

Gegeben sei eine Funktion
$$ \Phi \left( {x;{a_0},...,{a_n}} \right) $$
die von n + 1 Parametern a 0, ..., a n abhängt. Ein Interpolationsproblem für Φ liegt dann vor, wenn die Parameter a i so bestimmt werden sollen, daß für n + 1 gegebene Paare von reellen oder komplexen Zahlen (x i , f i ), i = 0, ..., n, x i x k für ik, gilt
$$ \Phi \left( {{x_i};{a_0},...,{a_n}} \right) = {f_i},i = 0,...,n. $$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 2

  1. [1]
    Achieser, N. I.: Vorlesungen tiber Approximationstheorie. Berlin: Akademie-Verlag 1953.Google Scholar
  2. [2]
    Ahlberg, J., Nilson E., Walsh, J.: The theory of splines and their applications. New York-London: Academic Press 1967.zbMATHGoogle Scholar
  3. [3]
    Bulirsch, R., Rutishauser, H.: Interpolation und genäherte Quadratur. In: [15].Google Scholar
  4. [4]
    Bulirsch, R., Stoer, J.: Darstellung iron Funktionen in Rechenautomaten. In: [15].Google Scholar
  5. [5]
    Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Davis, P. J.: Interpolation and approximation. New York: Blaisdell 1963.zbMATHGoogle Scholar
  7. [7]
    Gautschi, W.: Attenuation factors in practical Fourier analysis. Num. Math. 18, 373–400 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Gentleman, W. M., Sande, G.: Fast Fourier transforms—for fun and profit. Proc. AFIPS 1966 Fall Joint Computer Conference, Vol. 29,503–578. Washington D.C.: Spartan Books.Google Scholar
  9. [9]
    Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Monthly 65 (1958).Google Scholar
  10. [10]
    Greville, T. N. E.: Introduction to spline functions. In: Theory and applications of spline functions. Edited by T. N. E. Greville, New York: Academic Press, 1–35 (1969).Google Scholar
  11. [11]
    Herriot, J. G., Reinsch, C.: Algol 60 procedures for the calculation of interpolating natural spline functions. Technical Report No. STAN-CS-71–200 (1971), Computer Science Department, Stanford University California.Google Scholar
  12. [12]
    Kuntzmann, J.: Méthodes Numériques, Interpolation-Dérivées. Paris: Dunod 1959.zbMATHGoogle Scholar
  13. [13]
    Milne-Thomson, L. M.: The calculus of finite differences. London: Macmillan and Co. 1951Google Scholar
  14. [14]
    Reinsch, C.: Unveröffentlichtes Manuskript (Die Methode von Reinsch ist auch in [4] beschrieben).Google Scholar
  15. [15]
    Sauer, R., Szabo, I. (eds.): Mathematische Hilfsmittel des Ingenieurs, Teil III. BerlinHeidelberg-New York: Springer 1968.Google Scholar
  16. [16]
    Singleton, R. C.: On computing the fast Fourier transform. Comm. ACM 10, 647654 (1967).Google Scholar
  17. [17]
    Algorithm 338: Algol procedures for the fast Fourier transform. Algorithm 339: An Algol procedure for the fast Fourier transform with arbitrary factors. Comm. ACM 11, 773–779 (1968).Google Scholar
  18. [18]
    De Boor, C.: Subroutine Package for Calculating with B-Splines. Los Alamos Scientific Laboratory Report LA 4728-MS, 1971.Google Scholar
  19. [19]
    On calculating with B-splines. J. Approximation Theory, 6, 50–62 (1972).Google Scholar
  20. [20]
    Böhmer, K.: Spline-Funktionen. Stuttgart: Teubner 1974.Google Scholar
  21. [21]
    Bloomfield, P.: Fourier analysis of time series. New York: Wiley 1976zbMATHGoogle Scholar
  22. [22]
    Brigham, E.O.: The fast Fourier transform. Englewood Cliffs, N.J.: Prentice Hall 1974.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Josef Stoer
    • 1
  1. 1.Institut für Angewandte Mathematik und StatistikUniversität WürzburgWürzburgDeutschland

Personalised recommendations