Skip to main content

Part of the book series: Heidelberger Taschenbücher ((HTB,volume 105))

  • 115 Accesses

Zusammenfassung

Gegeben sei eine Funktion

$$ \Phi \left( {x;{a_0},...,{a_n}} \right) $$

die von n + 1 Parametern a 0, ..., a n abhängt. Ein Interpolationsproblem für Φ liegt dann vor, wenn die Parameter a i so bestimmt werden sollen, daß für n + 1 gegebene Paare von reellen oder komplexen Zahlen (x i , f i ), i = 0, ..., n, x i x k für ik, gilt

$$ \Phi \left( {{x_i};{a_0},...,{a_n}} \right) = {f_i},i = 0,...,n. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 2

  1. Achieser, N. I.: Vorlesungen tiber Approximationstheorie. Berlin: Akademie-Verlag 1953.

    Google Scholar 

  2. Ahlberg, J., Nilson E., Walsh, J.: The theory of splines and their applications. New York-London: Academic Press 1967.

    MATH  Google Scholar 

  3. Bulirsch, R., Rutishauser, H.: Interpolation und genäherte Quadratur. In: [15].

    Google Scholar 

  4. Bulirsch, R., Stoer, J.: Darstellung iron Funktionen in Rechenautomaten. In: [15].

    Google Scholar 

  5. Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, P. J.: Interpolation and approximation. New York: Blaisdell 1963.

    MATH  Google Scholar 

  7. Gautschi, W.: Attenuation factors in practical Fourier analysis. Num. Math. 18, 373–400 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  8. Gentleman, W. M., Sande, G.: Fast Fourier transforms—for fun and profit. Proc. AFIPS 1966 Fall Joint Computer Conference, Vol. 29,503–578. Washington D.C.: Spartan Books.

    Google Scholar 

  9. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Monthly 65 (1958).

    Google Scholar 

  10. Greville, T. N. E.: Introduction to spline functions. In: Theory and applications of spline functions. Edited by T. N. E. Greville, New York: Academic Press, 1–35 (1969).

    Google Scholar 

  11. Herriot, J. G., Reinsch, C.: Algol 60 procedures for the calculation of interpolating natural spline functions. Technical Report No. STAN-CS-71–200 (1971), Computer Science Department, Stanford University California.

    Google Scholar 

  12. Kuntzmann, J.: Méthodes Numériques, Interpolation-Dérivées. Paris: Dunod 1959.

    MATH  Google Scholar 

  13. Milne-Thomson, L. M.: The calculus of finite differences. London: Macmillan and Co. 1951

    Google Scholar 

  14. Reinsch, C.: Unveröffentlichtes Manuskript (Die Methode von Reinsch ist auch in [4] beschrieben).

    Google Scholar 

  15. Sauer, R., Szabo, I. (eds.): Mathematische Hilfsmittel des Ingenieurs, Teil III. BerlinHeidelberg-New York: Springer 1968.

    Google Scholar 

  16. Singleton, R. C.: On computing the fast Fourier transform. Comm. ACM 10, 647654 (1967).

    Google Scholar 

  17. Algorithm 338: Algol procedures for the fast Fourier transform. Algorithm 339: An Algol procedure for the fast Fourier transform with arbitrary factors. Comm. ACM 11, 773–779 (1968).

    Google Scholar 

  18. De Boor, C.: Subroutine Package for Calculating with B-Splines. Los Alamos Scientific Laboratory Report LA 4728-MS, 1971.

    Google Scholar 

  19. On calculating with B-splines. J. Approximation Theory, 6, 50–62 (1972).

    Google Scholar 

  20. Böhmer, K.: Spline-Funktionen. Stuttgart: Teubner 1974.

    Google Scholar 

  21. Bloomfield, P.: Fourier analysis of time series. New York: Wiley 1976

    MATH  Google Scholar 

  22. Brigham, E.O.: The fast Fourier transform. Englewood Cliffs, N.J.: Prentice Hall 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoer, J. (1979). Interpolation. In: Einführung in die Numerische Mathematik I. Heidelberger Taschenbücher, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06863-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06863-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09346-6

  • Online ISBN: 978-3-662-06863-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics