Einführung in die Numerische Mathematik I pp 224-292 | Cite as
Nullstellenbestimmung durch Iterationsverfahren. Minimierungsverfahren
Chapter
- 66 Downloads
Zusammenfassung
Ein wichtiges Problem ist die Bestimmung der Nullstellen ξ einer gegebenen Funktion f : f (ξ) = 0. Man denke dabei nicht nur an das Problem, die Nullstellen eines Polynoms
zu finden. Je nach Definition der Funktion f : E → F und der Mengen E und F kann man sehr allgemeine Probleme als eine Aufgabe der Nullstellenbestimmung auffassen. Ist z. B. E = F = ℝ n so wird eine Abbildung f : ℝ n → ℝ n durch n reelle Funktionen f i (x 1, ..., x n ) von n reellen Variablen x 1, ..., x n beschrieben1:
$$p(x) = {a_0} + {a_1}x + \cdots + {a_n}{x^n}$$
$$f(x) = \left[ {\begin{array}{*{20}{c}} {{{f}_{1}}({{x}^{1}}, \ldots ,{{x}^{n}})} \\ \vdots \\ {{{f}_{n}}({{x}^{1}}, \ldots ,{{x}^{n}})} \\ \end{array} } \right],{{x}^{T}} = ({{x}^{1}}, \ldots ,{{x}^{n}}).$$
Preview
Unable to display preview. Download preview PDF.
Literatur zu Kapitel 5
- [1]Bauer, F. L.: Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer Akad. Wiss. Math. Nat. KI. S.B. 163–203 (1956).Google Scholar
- [2]Collatz, L.: Funktionalanalysis und numerische Mathematik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 120. Berlin-HeidelbergNew York: Springer 1968.Google Scholar
- [3]Householder, A. S.: The Numerical treatment of a single non-linear equation. New York: McGraw-Hill 1970.Google Scholar
- [4]Jenkins, M. A., Traub, J. F.: A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Num. Math. 14, 252–263 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
- [5]Nickel, K.: Die numerische Berechnung der Wurzeln eines Polynoms. Num Math. 9, 80–98 (1966)Google Scholar
- [6]Marden, M.: Geometry of polynomials. Providence, Rhode Island: Amer. Math. Soc. 1966.Google Scholar
- [7]Ortega, J M, Rheinbold, W. C.: Iterative solution of non-linear equations in several variables. Computer science and applied mathematics. New York-London: Academic Press 1970.Google Scholar
- [8]Ostrowski, A. M.: Solution of equations in Euclidean and Banach spaces. New York-London: Academic Press 1973.zbMATHGoogle Scholar
- [9]Peters, G., Wilkinson, J. H.: Eigenvalues of Ax = λBx with band symmetric A and B. Comput. J. 12, 398–404 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
- [10]Peters, G., Wilkinson, J. H.: Practical problems arising in the solution of polynomial equations. J. Inst. Math. Appl. 8, 16–35 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
- [11]Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, N.J.: Prentice Hall 1964.zbMATHGoogle Scholar
- [12]Wilkinson, J. H.: Rundungsfehler, Deutsche Übersetzung: Heidelberger Taschenbücher, Bd. 44. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
- [13]Blum, E., Oettli, W.: Mathematische Optimierung. Berlin-Heidelberg-New York: Springer 1975.zbMATHCrossRefGoogle Scholar
- [14]Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
- [15]Broyden, C. G.: Quasi-Newton-methods and their application to function minimization. Math. Comp. 21, 368–381 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
- [16]Broyden, C. G.: The convergence of a class of double rank minimization algorithms 2. The new algorithm. J. Inst. Maths. Applics. 6, 222–231 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
- [17]Broyden, C. G., Dennis, J. E., Moré, J. J.: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Maths. Applics. 12, 223–245 (1973).zbMATHCrossRefGoogle Scholar
- [18]Collatz, L., Wetterling, W.: Optimierungsaufgaben. Berlin-Heidelberg-New York: Springer 1971.zbMATHCrossRefGoogle Scholar
- [19]Davidon, W. C.: Variable metric methods for minimization. Argonne National Laboratory Report ANL-5990 (1959).Google Scholar
- [20]Davidon, W. C.: Optimally conditioned optimization algorithms without line searches. Math. Programming 9, 1–30 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
- [21]Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289–315 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
- [22]Dixon, L. C. W.: The choice of step length, a crucial factor in the performance of variable metric algorithms. In: Numerical methods for nonlinear optimization (F. A. Lootsma, ed.), 149–170. New York: Academic Press 1971.Google Scholar
- [23]Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. Comp. J. 6, 163–168 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
- [24] Oren, S. S., Luenberger, D. G.: Self-scaling variable metric (SSVM)algorithms I: Criteria and sufficient conditions for scaling a class of algorithms. Man. Sci. 20, 845–862 (1974).CrossRefGoogle Scholar
- [25]Oren, S. S., Spedicato,E.: Optimal conditioning of self-scaling variable metric algorithms. Dept. of Engineering Economic Systems Report ARG-MR 74–5, Stanford University 1974.Google Scholar
- [26]Powell, M. J. D.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Proc. AMS Symposium on Nonlinear Programming, New York 1975.Google Scholar
- [27]Stoer, J.: On the convergence rate of imperfect minimization algorithms in Broyden’s ß-class. Math. Programming 9, 313–335 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
- [28]Stoer, J.: On the relation between quadratic termination and convergence properties of minimization algorithms. Computer Sci. Dept. Report Stan-CS-75–516, Stanford, 1975.Google Scholar
- [29]Brent, R. P.: Algorithms for minimization without derivatives. Englewood Cliffs, N. J.: Prentice Hall 1973.zbMATHGoogle Scholar
- [30]Henrici, P.: Applied and computational complex analysis, Vol. 1. New York: Wiley 1974.zbMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 1983