Skip to main content

Abstract

Paxillus involutus is currently among the ectomycorrhizal (ECM) fungi used most frequently in experimental work in the laboratory. Between 1988 and 1997 more that 270 research articles containing information on this species were published. Most of these papers concern the mycorrhizal characteristics of this fungus. This situation is in striking contrast to that existing a few decades ago, as reflected in the quote by Laiho (1970): “Paxillus involutus has, indeed, been almost ignored by scientists working with mycorrhiza”. Thus, almost all information about this fungus and its mycorrhizal status has been gathered during the last 25 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch Betula pendula Roth. infected with different mycorrhizal fungi. New Phytol 112: 55–60

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103: 495–506

    Article  CAS  Google Scholar 

  • Agerer R (1991) Characterisation of ectomycorrhizae. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 25–73

    Google Scholar 

  • Andersson S, Jensen P, Söderström B (1996) Effects of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat. New Phytol 133: 695–704

    Article  CAS  Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15

    Article  CAS  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa L. Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124: 231–242

    Article  Google Scholar 

  • Arnolds EJM (1988) The changing macromycete flora in the Netherlands. Trans Br Mycol Soc 90: 391–406

    Article  Google Scholar 

  • Baar J, Comini B, Elferink MO, Kuyper TW (1997) Performance of four ectomycorrhizal fungi on organic and inorganic nitrogen sources. Mycol Res 101: 523–529

    Article  Google Scholar 

  • Baxter R, Emes J, Lee LA (1992) Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex Hoffm. from differently polluted areas. New Phytol 120: 265–274

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 401–409

    Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus ( Fr.) Fr. New Phytol 130: 411–417

    Google Scholar 

  • Blaudez D, Chalot M, Dizengremel P, Button B (1998) Structure and function of the ectomycorrhizal association between Paxillus involutus and Betula pendula. New Phytol 138: 543–552

    Article  CAS  Google Scholar 

  • Boyle CD, Hellenbrand KE (1991) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69: 1764–1771

    Article  Google Scholar 

  • Branzanti B, Zambonelli A (1989) Synthesis of mycorrhizas on Quercus ruber using Hebeloma sinapizans and Paxillus involutus. Agric Ecosyst Environ 28: 35–40

    Article  Google Scholar 

  • Branzanti MB, Rocca E, Zambonelli A (1994) Effects of ectomycorrhizal fungi on Phytophthora cambivora and Phytophthora cinnamomi. Micoe Ital 23: 47–52

    Google Scholar 

  • Bresinsky A (1996) On Leccinum subcinnamomeum, Rhizopogon pumilionus, Paxillus filamentosus, Paxillus rubicundulus. Z Mykol 62: 61–68

    Google Scholar 

  • Brown MT, Wilkins DA (1985a) Zinc tolerance of Amanita and Paxillus. Trans Br Mycol Soc 84: 367–369

    Article  Google Scholar 

  • Brown MT, Wilkins DA (1985b) Zinc tolerance of mycorrhizal Betula. New Phytol 99: 101–106

    Article  CAS  Google Scholar 

  • Brun A, Chalot M, Finlay RD, Söderström B (1995) Structure and function of the ctomycorrhizal association between Paxillus involutus (Batsch) Fr. and Betula pendula Roth. I. Dynamics of mycorrhiza formation. New Phytol 129: 487–493

    Google Scholar 

  • Brunner IL, Brunner F, Miller OK (1990) Ectomycorrhizal synthesis with Alaskan Alnus tenuifolia. Can J Bot 68: 761–767

    Article  Google Scholar 

  • Buscot F, Weber G, Oberwinkler F (1992) Interactions between Cylindrocarpon destructans and ectomycorrhizas of Picea abies with Laccaria laccata and Paxillus involutus. Trees 6: 83–90

    Article  Google Scholar 

  • Cairney JWG, Smith SE (1993) Efflux of phosphate from the ectomycorrhizal basidiomycete Pisolithus tinctorius: general characteristics and the influence of intracellular phosphorus concentration. Mycol Res 97: 1261–1266

    Article  CAS  Google Scholar 

  • Chakravarty F., Hwang SF (1991) Effect of an ectomycorrhizal fungus Laccaria laccata on Fusarium damping-off in Pinus banksiana seedlings. Eur J For Pathol 21: 97–106

    Article  Google Scholar 

  • Chakravarty P, Peterson RL, Ellis BE (1990) Integrated control of Fusarium damping-off in red pine seedlings with the ectomycorrhizal fungus Paxillus involutus and fungicides. Can J For Res 20: 1283–1288

    Article  CAS  Google Scholar 

  • Chalot M, Brun A, Finlay RD, Söderström B (1994a) Respiration of (“C) alanine by the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol Lett 121: 87–91

    Article  PubMed  CAS  Google Scholar 

  • Chalot M,,Brun A, Finlay RD, Söderström B (1994b) Metabolism of (“C) glutamate and (”C) glutamine by the ectomycorrhizal fungus Paxillus involutus. Microbiol 140: 1641–1649

    Article  CAS  Google Scholar 

  • Chalot M, Kytoviita MM, Brun A, Finlay RD, Söderström B (1995) Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol Res 99: 1131–1138

    Article  CAS  Google Scholar 

  • Chalot M, Brun A, Botton B, Söderström B (1996) Kinetics, energetics and specificity of a general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiol 142: 1749–1756

    Article  CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201–211

    Article  CAS  Google Scholar 

  • Colpaert JV, van Tichelen KK (1996) Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol 134: 123–132

    Article  Google Scholar 

  • Colpaert JV, van Assche JA, Luijtens K (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol 120: 127–135

    Article  Google Scholar 

  • Cumming JR (1996) Phosphate-limitation physiology in ectomycorrhizal pitch. pine (Pinus rigida) seedlings. Tree Physiol 16: 977–983

    Article  PubMed  Google Scholar 

  • Denny HJ, Wilkins DA (1987a) Zinc tolerance in Betula spp. III. Variation in response to zinc among ectomycorrhizal associates. New Phytol 106: 535–544

    Google Scholar 

  • Denny HJ, Wilkins DA (1987b) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106: 545–554

    Google Scholar 

  • Dighton J (1983) Phosphatase production by mycorrhizal fungi. Plant Soil 71:455–462:

    Google Scholar 

  • Dighton J, Poskitt JM, Brown TK (1993) P influx into ectomycorrhizal and saprotrophic fungal hyphae in relation to P supply. Mycol Res 97: 355–358

    Article  Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of ageing of spruce Picea sitchensis Bong. Carr. ectomycorrhizas. II. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa Burt. Donk and Paxillus involutus ( Batsch ex Fr.) Fr. New Phytol 122: 141–152

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988a) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66: 558–562

    Article  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988b) Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol 108: 471–476

    Article  CAS  Google Scholar 

  • Duchesne LC, Ellis BE, Peterson RL (1989a) Disease suppression by the ectomycorrhizal fungus Paxillus involutus contribution of oxalic acid. Can J Bot 67: 2726–2730

    Article  CAS  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1989b) The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111: 693–698

    Article  Google Scholar 

  • Duddridge JA (1987) Specificity and recognition in ectomycorrhizal associations. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 25–44

    Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135: 133–142

    Article  CAS  Google Scholar 

  • Ek H, Andersson S, Arnebrant K, Söderström B (1994a) Growth and assimilation of NH, and NO3 by Paxillus involutus in association with Betula pendula and Picea abies as affected by substrate pH. New Phytol 128: 629–637

    Article  CAS  Google Scholar 

  • Ek H, Sjögren M, Arnebrant K, Söderström B (1994b) Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl Soil Ecol 1: 155–169

    Article  Google Scholar 

  • Ekblad A, Huss Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytol 131: 453–459

    Article  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, Huss Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131: 443–451

    Article  Google Scholar 

  • Ekblad A, Wallander H, Näsholm T (1998) Chitin and ergosterol combined to measure total and living biomass in ectomycorrhizae. New Phytol 138: 143–149

    Article  CAS  Google Scholar 

  • Erland S, Finlay RD (1992) Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize Pinus sylvestris roots. Mycol Res 96: 270–272

    Article  Google Scholar 

  • Erland S, Söderström B (1991) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. III. Saprophytic growth and host plant infection at different pH values by some ectomycorrhizal fungi in unsterile humus. New Phytol 117: 405–411

    Google Scholar 

  • Falandysz J, Chwir A (1997) The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wislana sand-bar, northern Poland. Sci Total Environ 203: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Farquhar ML, Peterson RL (1990) Early effects of the ectomycorrhizal fungus Paxillus involutus on the root rot organism Fusarium associated with Pinus resinosa. Can J Bot 68: 1589–1596

    Article  Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from nitrogen-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113: 47–56

    Article  CAS  Google Scholar 

  • Finlay RD, Frostegârd A, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120: 105–115

    Article  Google Scholar 

  • Fischer M (1995) On the order Boletales: isolation and characterization of DNA from fruiting bodies and mycelia. Z Mykol 61: 245–260

    Google Scholar 

  • Fox FM (1986a) Groupings of ectomycorrhizal fungi of birch and pine based on establishment of mycorrhizas on seedlings from spores in unsterile soils. Trans Br Mycol Soc 87: 371–380

    Article  Google Scholar 

  • Fox FM (1986b) Ultrastructure and infectivity of sclerotia of the ectomycorrhizal fungus Paxillus involutus on birch (Betula spp.). Trans Br Mycol Soc 87: 627–631

    Article  Google Scholar 

  • Fries N (1985) Intersterility groups in Paxillus involutus. Mycotaxon 24: 403–410

    Google Scholar 

  • Gale W (1977) Formation of mycorrhiza from cuttings application to Salix repens associated with Paxillus involutus and Pisolithus arhizus. Bull lard Bot Nate Belg 47: 91–98

    Article  Google Scholar 

  • Garbaye J, Churin JL (1997) Growth stimulation of young oak plantations inoculated with the ectomycorrhizal fungus Paxillus involutus with special reference to summer drought. For Ecol Manage 98: 221–228

    Article  Google Scholar 

  • Gea L, Normand L, Vian B, Gay G (1994) Structural aspects of ectomycorrhiza of Pinus pinaster (Ait.) Sol. formed by an IAA-overproducer mutant of Hebeloma cylindrosporum Romagnesi. New Phytol 128: 659–670

    Article  Google Scholar 

  • Grellier B, Strullu DG, Letouze R (1984) Micropropagation of birch (Betula pendula) and mycorrhizal formation in vitro. New Phytol 97: 591–600

    Article  Google Scholar 

  • Grellier B, Strullu DG, Martin F, Renaudin S (1989) Synthesis in-vitro, microanalysis and phosphorus-31 NMR study of metachromatic granules in birch mycorrhizas. New Phytol 112: 49–54

    Article  CAS  Google Scholar 

  • Grenville DJ, Peterson RL, Piché Y (1985) The development, structure and histochemistry of sclerotia of ectomycorrhizal fungi. II. Paxillus involutus. Can J Bot 63: 1412–1417

    Article  Google Scholar 

  • Hahn C (1996) Studies in the genus Paxillus. I. Paxillus gymnopus. A new Paxillus from the Pacific rainforests of Columbia. Z Mykol 62: 43–60

    Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92: 591–600

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Hentschel E, Godbold DL, Marschner P, Schlegel H, Jentschke G (1993) The effect of Paxillus involutus Fr. on aluminum sensitivity of Norway spruce seedlings. Tree Physiol 12: 379–390

    Article  PubMed  CAS  Google Scholar 

  • Heslin MC, Douglas GC (1986) Synthesis of poplar mycorrhizas. Trans Br Mycol Soc 86: 117–122

    Article  Google Scholar 

  • Hilbert JL, Costa G, Martin F (1991) Ectomycorrhizin synthesis and polypeptide changes during the early stage of eucalypt mycorrhiza development. Plant Physiol 97: 977–984

    Article  PubMed  CAS  Google Scholar 

  • Hilger AB, Krause HH (1989) Growth characteristics of Laccaria laccata and Paxillus involutus in liquid culture media with inorganic and organic phosphorus sources. Can J Bot 67: 1782–1789

    Article  CAS  Google Scholar 

  • Hintikka V (1988) High aluminum tolerance among ectomycorrhizal fungi. Karstenia 28:41–44 Ho I (1989) Acid phosphatase alkaline phosphatase and nitrate reductase activity of selected ectomycorrhizal fungi. Can J Bot 67: 750–753

    Google Scholar 

  • Hodge A, Alexander IJ, Gooday GW (1995) Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi. Mycol Res 99: 935–941

    Article  CAS  Google Scholar 

  • Hodge A, Alexander IJ, Gooday GW, Killham K (1996a) Carbon allocation patterns in fungi in the presence of chitin in the external medium. Mycol Res 100: 1428–1430

    Article  CAS  Google Scholar 

  • Hodge A, Gooday GW, Alexander IJ (1996b) Inhibition of chitinolytic activities from tree species and associated fungi. Phytochemistry 41: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Hodson MJ, Wilkins DA (1991) Localization of aluminum in the roots of Norway spruce Picea abies L. Karst. inoculated with Paxillus involutus Fr. New Phytol 118: 273–278

    Article  CAS  Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism, the key to ectomycorrhizal formation. New Phytol 116: 297–302

    Article  CAS  Google Scholar 

  • Hughes E, Mitchell DT (1995) Utilization of sucrose by Hymenoscyphus ericae (an ericoid endomycorrhizal fungus) and ectomycorrhizal fungi. Mycol Res 99: 1233–1238

    Article  CAS  Google Scholar 

  • Hutchison LJ (1992) The taxonomic significance of extracellular deoxyribonuclease activity among species of ectomycorrhizal fungi. Mycotaxon 45: 63–69

    Google Scholar 

  • Hwang SH, Chakravarty P, Chang KF (1995) The effect of two ectomycorrhizal fungi, Paxillus involutus and Suillus tomentosus, and of Bacillus subtilis on Fusarium damping-off in jack pine seedlings. Phytoprotection 76: 57–66

    Article  Google Scholar 

  • Jansen AE, de Vries FW (1990) Mycorrhizas on Douglas fir in the Netherlands. Agric Ecosyst Environ 28: 197–200

    Article  Google Scholar 

  • Jentschke G, Fritz E, Godbold D (1991) Distribution of lead in mycorrhizal and non-mycorrhizal Norway spruce seedlings. Physiol Plant 81: 417–422

    Article  CAS  Google Scholar 

  • Jentschke G, Fritz E, Marschner P, Rapp C, Wolters V, Godbold DL (1997) Mycorrhizal colonization and lead distribution in root tissues of Norway spruce seedlings. Z Pflanzen Boden 160: 317–321

    Article  CAS  Google Scholar 

  • Keller G (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res 100: 989–998

    Article  CAS  Google Scholar 

  • Kieliszewska-Rokicka B (1992) Acid phosphatase activity in mycorrhizal and non-mycorrhizal Scots pine seedlings in relation to nitrogen and phosphorus nutrition. Acta Soc Bot Pol 61: 253–264

    CAS  Google Scholar 

  • Kieliszewska-Rokicka B, Rudawska M, Leski T (1995) Effects of acid rain and aluminium on ectomycorrhizal symbiosis: alterations of IAA-synthesizing activity in ectomycorrhizal fungi. Bulg J Plant Physiol 21: 111–119

    CAS  Google Scholar 

  • Kytoviita MM, Sarjala T (1997) Effects of defoliation and symbiosis on polyamine levels in pine and birch. Mycorrhiza 7: 107–111

    Article  Google Scholar 

  • Laiho 0 (1970) Paxillus involutus as a mycorrhizal symbiont of forest trees. Acta For Fenn 106:5–72

    Google Scholar 

  • Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant Soil 110: 3–8

    Article  CAS  Google Scholar 

  • Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus ( Batsch ex Fr.) Fr. New Phytol 106: 139–146

    Google Scholar 

  • Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in-vitro. Can J Bot 69: 342–346

    Article  CAS  Google Scholar 

  • Lehto T (1992a) Effect of drought on Picea sitchensis seedlings inoculated with mycorrhizal fungi. Scand J For Res 7: 177–182

    Article  Google Scholar 

  • Lehto T (1992b) Mycorrhizas and drought resistance of Picea sitchensis Bong. Carr. I. In conditions of nutrient deficiency. New Phytol 122: 661–668

    Google Scholar 

  • Lehto T (1992c) Mycorrhizas and drought resistance of Picea sitchensis Bong. Carr. II. In conditions of adequate nutrition. New Phytol 122: 669–673

    Google Scholar 

  • Lehto TH (1990) Effects of mycorrhiza and drought on photosynthesis and water relations of Sitka spruce. Agric Ecosyst Environ 28: 299–304

    Article  Google Scholar 

  • Lei J, Dexheimer J (1987) Preliminary results concerning the controlled mycorrhization of oak (Quercus robur L.) vitroplants. Ann Sci For 44: 315–324

    Article  Google Scholar 

  • Maijala P, Fagerstedt KV, Raudaskoski M (1991) Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum Fr. Bref. New Phytol 117: 643–648

    Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. I. Mycorrhizal formation in model systems. New Phytol 114: 627–631

    Google Scholar 

  • Marschner P, Godbold DL (1995) Mycorrhizal infection and ageing affect element localization in short roots of Norway spruce (Picea abies ( L.) Karst.). Mycorrhiza 5: 417–422

    Google Scholar 

  • Marschner P, Godbold DL, Jentschke G (1996) Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies ( L.) Karst). Plant Soil 178: 239–245

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic ectomycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology 59: 153–163

    Google Scholar 

  • McElhinney C, Mitchell DT (1993) Phosphatase activity of four ectomycorrhizal fungi found in a Sitka spruce-Japanese larch plantation in Ireland. Mycol Res 97: 725–732

    Article  CAS  Google Scholar 

  • McElhinney C, Mitchell DT (1995) Influence of ectomycorrhizal fungi on the response of Sitka spruce and Japanese larch to forms of phosphorus. Mycorrhiza 5: 409–415

    Google Scholar 

  • Melville LH, Massicotte HB, Peterson RL (1987) Morphological variations in developing ectomycorrhizae of Dryas integrifolia and five fungal species. Scanning Microsc 1: 1455–1464

    Google Scholar 

  • Miller SL, Koo CD, Molina R (1991) Characterization of red alder ectomycorrhizae, a preface to monitoring belowground ecological responses. Can J Bot 69: 516–531

    Article  Google Scholar 

  • Molina R (1979) Pure culture synthesis and host specificity of red alder (Alnus rubra) mycorrhizae. Can J Bot 57: 1223–1228

    Article  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59: 325–334

    Article  Google Scholar 

  • Molina R, Trappe J (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For Sci 28: 1223–1228

    Google Scholar 

  • Murphy JF, Miller OK (1994) Mycorrhizal syntheses with Alnus serrulata ( Ait.) Willd. Castanea 59: 156–166

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Bogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392: 914–916

    Article  Google Scholar 

  • Nilsson MC, Högberg P, Zackrisson 0, Wang F (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Can J Bot 71: 620–628

    Article  Google Scholar 

  • Nurmiaho Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43: 1017–1035

    Article  Google Scholar 

  • Ohenoja E (1978) Mushrooms and mushroom yield in fertilized forests. Ann Bot Fenn 15: 38–46

    Google Scholar 

  • Olsson PA, Wallander H (1999) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27: 195–205

    Article  Google Scholar 

  • Olsson PA, Chalot M, Bääth E, Finlay RD, Söderström B (1996) Ectomycorrhizal mycelia reduce bacterial activity in sandy soil. FEMS Microbiol Ecol 21: 77–86

    Article  CAS  Google Scholar 

  • Pargney JC, Gourp V (1991) Contribution to the study of mycorrhiza in Pinus pinaster and ultrastructure of the associations obtained with two basidiomycetes Hebeloma cylindrosporum Romagn. and Paxillus involutus Fr. Phytomorphology 41: 1992

    Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K’ and Mgt+ deficiency on phyllosilicate evolution. Plant Soil 177: 191–201

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant Soil 179: 141–150

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego Pera J, Alvarez IF (1995) Ectomycorrhizal fungi of Pinus pinaster. Mycorrhiza 5: 193–200

    Google Scholar 

  • Piché Y, Fortin JA (1982) Development of mycorrhizae extramatrical mycelium and sclerotia on Pinus strobus seedlings. New Phytol 91: 211–220

    Article  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–304

    Google Scholar 

  • Rudawska ML, Kieliszewska-Rokicka B (1997) Mycorrhizal formation by Paxillus involutus strains in relation to their IAA-synthesizing activity. New Phytol 137: 509–517

    Article  CAS  Google Scholar 

  • Rudawska M, Kieliszewska-Rokicka B, Debaud JC, Lewndowski A, Gay G (1994) Enzymes of ammonium metabolism in ectoendomycorrhizal and ectomycorrhizal symbionts of pine. Physiol Plant 92: 279–285

    Article  CAS  Google Scholar 

  • Sarjala T (1990) Effect of nitrate and ammonium concentration on nitrate reductase activity in five species of mycorrhizal fungi. Physiol Plant 79: 65–70

    Article  CAS  Google Scholar 

  • Sarjala T (1991) Effect of mycorrhiza and nitrate nutrition on nitrate reductase activity in Scots pine seedlings. Physiol Plant 81: 89–94

    Article  CAS  Google Scholar 

  • Sasa M, Krogstrup P (1991) Ectomycorrhizal formation in plantlets derived from somatic embryos of Sitka spruce. Scand J For Res 6: 129–136

    Article  Google Scholar 

  • Semerdzieva M, Vobecky M, Tamchynova J, Tethal T (1992) Activity of caesium-137 and caesium-134 in several mushrooms of two different sites of Central Bohemia in 1986–1990. Ceska Mykol 46: 67–74

    Google Scholar 

  • Shaw TM, Dighton J, Sanders FE (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99: 159–165

    Article  Google Scholar 

  • Simoneau P, Viemont JD, Moreau JC, Strullu DG (1993) Symbiosis-related polypeptides associated with the early stages of ectomycorrhiza organogenesis in birch (Betula pendula Roth.). New Phytol 124: 495–504

    Article  CAS  Google Scholar 

  • Slankis V (1973) Hormonal relationships in mycorrhizal development. In: Marks GC, Kozlowski TT (eds) Ectomycorhizae. Academic Press, New York, pp 231–298

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Strullu DG, Grellier B, Marciniak D, Letouze R (1986) Micropropagation of chestnut and conditions of mycorrhizal syntheses in vitro. New Phytol 102: 95–102

    Article  Google Scholar 

  • Theodorou C, Reddell P (1991) In vitro synthesis of ectomycorrhizas on Casuarinaceae with a range of mycorrhizal fungi. New Phytol 118: 279–288

    Article  Google Scholar 

  • Timonen S, Söderström B, Raudaskoski M (1996a) Dynamics of cytoskeletal proteins in developing pine ectomycorrhiza. Mycorrhiza 6: 423–429

    Article  CAS  Google Scholar 

  • Timonen S, Finlay RD, Olsson S, Söderström B (1996b) Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a beta-scanner. FEMS Microbiol Ecol 19: 171–180

    CAS  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28: 538–606

    Article  Google Scholar 

  • Tsvetnova OB, Shcheglov AI (1994) Cs-137 content in the mushrooms of radioactive contaminated zones of the European part of the CIS. Sci Total Environ 155: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Paxillus involutus-Pinus sylvestris mycorrhizae from a heavily polluted forest. I. Element localization using electron energy loss spectroscopy and imaging. Bot Acta 106: 213–219

    Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1994) Paxillus involutus-Pinus sylvestris mycorrhizae from heavily polluted forest. II. Ultrastructural and cytochemical observations. Bot Acta 107: 73–80

    Google Scholar 

  • Villeneuve N, Le Tacon F, Bouchard D (1991) Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas-fir seedlings. Plant Soil 135: 95–108

    Article  Google Scholar 

  • Wallander H, Nylund JE, Sundberg B (1994) The influence of IAA, carbohydrate and mineral concentration in host tissue on ectomycorrhizal development on Pinus sylvestris L. in relation to nutrient supply. New Phytol 127: 521–528

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196: 123–131

    Article  CAS  Google Scholar 

  • Wallander H, Dahlberg A, Arnebrant K (1999) Relationship between fungal uptake of ammonium and fungal growth in ectomycorrhizal Pinus sylvestris seedlings grown at high and low nitrogen availability. Mycorrhiza 8: 215–223

    Article  CAS  Google Scholar 

  • Wallander H, Wichman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus Sylvestris seedlings. Mycorrhiza 9: 25–32

    Article  CAS  Google Scholar 

  • Wilkins DA, Hodson J (1989) The effects of aluminum and Paxillus involutus Fr. on the growth of Norway spruce Picea abies (L.) Karst. New Phytol 113:225–232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallander, H., Söderström, B. (1999). Paxillus. In: Cairney, J.W.G., Chambers, S.M. (eds) Ectomycorrhizal Fungi Key Genera in Profile. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06827-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08490-4

  • Online ISBN: 978-3-662-06827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics