Skip to main content

Abstract

Rhizopogon is the largest genus of hypogeous Basidiomycota, with worldwide distribution among Pinaceae. Several Rhizopogon species are important members of ectomycorrhizal (ECM) fungal communities, contributing significantly to sporocarp productivity and ECM dominance. They occur in young and old forest stands alike and in diverse habitats. This ecological amplitude was recognized early in the twentieth century when Rhizopogon species were observed as dominant ECM fungi on Pinus in exotic plantations. Consequently, Rhizopogon has been the focus of considerable application research in forestry. The ease of culturing from sporocarps, manipulation of pure cultures of Rhizopogon and practical use of spore inoculation has made Rhizopogon a model genus to explore morphological, physiological, ecological, and symbiotic mutualisms of ECM. Nearly 200 papers have been published on Rhizopogon taxonomy, host range and specificity, ECM morphology, distribution, ecology, physiology, and applications in forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493

    Google Scholar 

  • Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of protein by mycorrhizal plants of Pin us contorta. New Phytol 103: 495–506

    Article  CAS  Google Scholar 

  • Adams AJS (1951) A forest nursery for Pinus radiata at Mt Burr in the southeast of South Australia. Aust For 15: 47–56

    Google Scholar 

  • Agerer R (1990) Studies on ectomycorrhizae XXIV. Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50: 1–63

    Google Scholar 

  • Agerer R (1991) Studies on ectomycorrhizae XXXIV. Mycorrhizae of Gomphidius glutinosus and of G. roseus with some remarks on Gomphidiaceae (Basidiomycetes). Nova Hedwigia 53: 127–170

    Google Scholar 

  • Agerer R, Müller WR, Bahnweg G (1996) Ectomycorrhizae of Rhizopogon subcaerulescens on Tsuga heterophylla. Nova Hedwigia 63: 397–415

    Google Scholar 

  • Albertini IB, Schweiniz LD (1805) Conspectus fungorum in Lusatiae superioris. Sumtibus Kummerianis, Leipzig, Germany

    Google Scholar 

  • Allen MF, Trappe JM, Horton TR (1999) Nats truffle and truffle-like fungi 8: Rhizopogon mengei sp. nov. (Boletaceae, Basidiomycota). Mycotaxon (in press)

    Google Scholar 

  • Alvarez IF, Linderman RG (1983) Effects of ethylene and fungicide dips during cold storage on root regeneration and survival of western conifers and their mycorrhizal fungi. Can J For Res 13: 962–971

    Article  CAS  Google Scholar 

  • Alvarez IF, Parladé J, Trappe JM, Castellano MA (1993) Hypogeous mycorrhizal fungi of Spain. Mycotaxon 47: 201–217

    Google Scholar 

  • Amaranthus MP, Perry DA (1989) Interaction effects of vegetation type and Pacific madrone soil inocula on survival, growth, and mycorrhiza formation of Douglas-fir. Can J For Res 19: 550–556

    Article  Google Scholar 

  • Baxter DV (1928) Mycorrhiza and Scotch pine in the University of Michigan forest nursery. Mich Acad Arts Sci Lett Pap 9: 509–516

    Google Scholar 

  • Birch TTC (1937) A synopsis of forest fungi of significance in New Zealand. N Z J For 4: 109–125

    Google Scholar 

  • Björkman E (1942) Ãœber die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte. Symb Bot Ups 6: 1–190

    Google Scholar 

  • Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwestern Oregon clearcuts. Can J For Res 20: 712–721

    Article  Google Scholar 

  • Bowen GD (1968) Phosphate uptake by mycorrhizas and uninfected roots of Pinus radiata in relation to root distribution. Trans 9th Congr Soil Sci 2: 219–228

    CAS  Google Scholar 

  • Bowen GD, Theodorou C (1967) Studies on phosphate uptake by mycorrhizas. 14th IUFRO Congr (Munich) 5: 116–138

    Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11: 119–126

    Article  Google Scholar 

  • Brownlee CJ, Duddridge A, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71: 433–443

    Article  Google Scholar 

  • Bruns TD, Szaro TM (1992) Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol Biol Evol 9: 836–855

    PubMed  CAS  Google Scholar 

  • Bruns TD, Fogel RD, White TJ, Palmer J (1989) Accelerated evolution of a false truffle from a mushroom ancestor. Nature 339: 140–142

    Article  PubMed  CAS  Google Scholar 

  • Castellano MA (1985) Basidiospores of Rhizopogon vinicolor and Rhizopogon colossus as ectomycorrhizal inoculum. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 11 pp

    Google Scholar 

  • Castellano MA (1987) Ectomycorrhizal inoculum production and utilization in the Pacific Northwestern US–a glimpse at the past, a look to the future. In: Sylvia DM, Hung LL, Graham JH (eds) 7th North American Conf on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainsville, pp 290–291

    Google Scholar 

  • Castellano MA (1996) Outplanting performance of mycorrhizal inoculated seedlings. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Dordrecht, pp 223–301

    Google Scholar 

  • Castellano MA, Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 5, Agric Handb 674. US Department of Agriculture, Forest Service, Washington, DC, pp 101–167

    Google Scholar 

  • Castellano MA, Trappe JM (1985) Ectomycorrhizal formation and plantation performance of P. menziesii nursery stock inoculated with Rhizopogon spores. Can J For Res 15: 613–617

    Article  Google Scholar 

  • Castellano MA, Trappe JM, Molina R (1985) Inoculation of container-grown P. menziesii seedlings with basidiospores of Rhizopogon vinicolor and R. colossus: effects of fertility and spore application rate. Can J For Res 15: 10–13

    Article  Google Scholar 

  • Cdzares E, Garcia J, Castillo J, Trappe JM (1992) Hypogeous fungi from northern Mexico. Mycologia 84: 341–359

    Article  Google Scholar 

  • Câzares E, Luoma DL, Amaranthus MP, Chambers CL, Lehmkuhl JF (1999) Interaction of fungal sporocarp production with small mammal abundance and diet in Douglas-fir stands of the southern Cascade Range. Northwest Sci 73: 64–76

    Google Scholar 

  • Chilvers GA (1973) Host range of some eucalypt mycorrhizal fungi. Aust J Bot 21: 103–111

    Article  Google Scholar 

  • Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biol Biochem 11: 557–562

    Article  Google Scholar 

  • Chu-Chou M (1985) Effect of different mycorrhizal fungi on Pinus radiata seedling growth. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 208 pp

    Google Scholar 

  • Chu-Chou M, Grace LJ (1981) Mycorrhizal fungi of Pseudotsuga menziesii in the North Island of New Zealand. Soil Biol Biochem 13: 247–249

    Article  Google Scholar 

  • Chu-Chou M, Grace LJ (1983a) Characterization and identification of mycorrhizas of Douglas-fir in New Zealand. Eur J For Pathol 13: 251–260

    Article  Google Scholar 

  • Chu-Chou M, Grace LJ (1983b) Characterization and identification of mycorrhizas of radiata pine in New Zealand. Aust For Res 13: 121–132

    Google Scholar 

  • Chu-Chou M, Grace LJ (1983c) Hypogeous fungi associated with some forest trees in New Zealand. N Z J Bot 21: 183–190

    Article  Google Scholar 

  • Chu-Chou M, Grace LJ (1984) Cultural characteristics of Rhizopogon spp. associated with Pinus radiata seedlings. N Z J Bot 22: 35–41

    Article  Google Scholar 

  • Chu-Chou M, Grace LJ (1985) Comparative efficiency of the mycorrhizal fungi Laccaria laccata, Hebeloma crustuliniforme, and Rhizopogon species on growth of radiata pine seedlings. N Z J Bot 23: 417–424

    Article  Google Scholar 

  • Cline ML, Reid PP (1982) Seed source and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. For Sci 28: 237–250

    Google Scholar 

  • Coker WC, Couch JN (1928) The Gasteromycetes of the eastern United States and Canada. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Colgan W III (1997) Diversity, productivity, and mycophagy of hypogeous mycorrhizal fungi in a variably thinned Douglas-fir forest. PhD Thesis, Oregon State University, Corvallis

    Google Scholar 

  • Crafts CB, Miller CO (1974) Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol 54: 586–588

    Article  PubMed  CAS  Google Scholar 

  • Croghan CG (1984) Survey for mycorrhizal fungi in lake states tree nurseries. Mycologia 76: 951–953

    Article  Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379: 63–66

    Article  CAS  Google Scholar 

  • Donald DGM (1975) Mycorrhizal inoculation for pines. S Afr For J 92: 27–29

    Google Scholar 

  • Dosskey M, Boersma L, Linderman RG (1990) Role for photosynthate demand by ectomycorrhizas in the response of Douglas-fir seedlings to drying soil. New Phytol 117: 327–324

    Article  Google Scholar 

  • Duddridge JA (1986a) The development and ultrastructure of ectomycorrhizas. III. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol 103: 457–464

    Article  CAS  Google Scholar 

  • Duddridge JA (1986b) The development and ultrastructure of ectomycorrhizas. IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103: 465–471

    Article  CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836

    Article  Google Scholar 

  • Durall DM, Todd AW, Trappe JM (1994) Decomposition of “C-labeled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytol 127: 725–729

    Article  CAS  Google Scholar 

  • Ekwebelam SA (1980) Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var bahamensis seedlings. East Afr Agric For J 45: 290–295

    Google Scholar 

  • Ekwebelam SA, Odeyinde MA (1985) Field response of Pinus species inoculated with ectomycorrhizal fungi in Nigeria. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 220 pp

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Soderstrom B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labeled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110: 59–66

    Article  Google Scholar 

  • Fogel R (1976) Ecological studies of hypogeous fungi. II. Sporocarp phenology in a western Oregon Douglas fir stand. Can J Bot 54: 1152–1162

    Article  Google Scholar 

  • Fogel R (1980) Additions to the hypogeous mycoflora of the Canary Islands and Madeira. Contrib Univ Mich Herb 14: 75–82

    Google Scholar 

  • Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52: 1–31

    Google Scholar 

  • Fontana A, Centrella E (1967) Ectomicorrize prodotte da funghi ipogei. Allionia 13:149–176 Ford VL, Torbert JL, Burger JA, Miller OK (1985) Comparative effects of four mycorrhizal fungi

    Google Scholar 

  • on loblolly pine seedlings growing in a greenhouse in a Piedmont soil. Plant Soil 83:215–221 Fries EM (1823) Systema mycologicum vol II. Greifswald, Lund

    Google Scholar 

  • Froidevaux PL, Amiet R (1975) Synthèse en culture pure de l’association mycorrhizienne Pinus silvestris L. + Rhizopogon rubescens Tul. Eur J For Pathol 5: 53–57

    Article  Google Scholar 

  • Garrido N (1986) Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. Nova Hedwigia 43: 423–442

    Google Scholar 

  • Goodman DM, Trofymow JA (1998) Comparison of communities of ectomycorrhizal fungi in old-growth and mature stands of Douglas-fir at two sites on southern Vancouver Island. Can J For Res 28: 574–581

    Article  Google Scholar 

  • Goodman DM, Durral DM, Trofymow JA, Berch SM (eds) (1996) A manual of concise descriptions of North American ectomycorrhizae. Mycologue Publications, Sydney, British Columbia, Canada

    Google Scholar 

  • Gross G, Runge A, Winterhoff W (1980) Bauchpilze ( Gasteromycetes S L) in der Bundesrepublik Deutschland and Westberlin. Z Mykol Beih 2: 1–220

    Google Scholar 

  • Grubisha L (1998) Systematics of the genus Rhizopogon inferred from nuclear ribosomal DNA large subunit and internal transcribed spacer sequences. Masters Thesis, Oregon State University, Corvallis

    Google Scholar 

  • Hacskaylo E (1973) Carbohydrate physiology of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 207–230

    Google Scholar 

  • Hacskaylo E, Palmer JG, Vozzo JA (1965) Effect of temperature on growth and respiration of ectotrophic mycorrhizal fungi. Mycologia 57: 748–756

    Article  Google Scholar 

  • Harrison KA, Smith AH (1968) Some new species and distribution records of Rhizopogon in North America. Can J Bot 46: 881–889

    Article  Google Scholar 

  • Haselwandter K, Ortwin B, Read DJ (1990) Degradation of “C-labeled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153: 352–354

    Article  CAS  Google Scholar 

  • Henderson GS, Stone EL (1970) Growth of mycorrhizal Monterey pine supplied with phosphorus fixed on perlite. In: Youngberg CT, Davey DB (eds) Tree growth and forest soils. Oregon State University Press, Corvallis, pp 171–180

    Google Scholar 

  • Ho I, Trappe JM (1980) Nitrate reductase activity of nonmycorrhizal Douglas-fir rootlets and of some associated mycorrhizal fungi. Plant Soil 54: 395–398

    Article  CAS  Google Scholar 

  • Ho I, Trappe JM (1987) Enzymes and growth substances of Rhizopogon species in relation to mycorrhizal hosts and infrageneric taxonomy. Mycologia 79: 553–558

    Article  CAS  Google Scholar 

  • Ho I, Zak B (1979) Acid phosphatase activity of six ectomycorrhizal fungi. Can J Bot 57: 1203–1205

    Article  CAS  Google Scholar 

  • Hodgson TJ (1979) Basidiospore inoculation of soil: the effect of application timing on Pinus elliottii seedling development. S Afr For J 108: 10–15

    Google Scholar 

  • Horton TR, Cazares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of Bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8: 11–18

    Article  Google Scholar 

  • Hosford DR (1972) Rhizopogon of the northwestern United States. PhD Thesis, University of Washington, Seattle

    Google Scholar 

  • Hosford DR (1975) Taxonomic studies on the genus Rhizopogon. I. Two new species from the Pacific Northwest. Beih Nova Hedwigia Kryptogamenkd 6: 163–169

    Google Scholar 

  • Hosford DR, Trappe JM (1980) Taxonomic studies on the genus Rhizopogon. II. Notes and new records of species from Mexico and Caribbean countries. Bol Soc Mex Micol 14: 3–15

    Google Scholar 

  • Hosford DR, Trappe JM (1988) A preliminary survey of Japanese species of Rhizopogon. Trans Mycol Soc Jpn 29: 63–72

    Google Scholar 

  • Hung LL, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75: 234–241

    Article  Google Scholar 

  • Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65: 438–445

    Article  Google Scholar 

  • Hyppel A (1968) Antagonistic effects of some soil fungi on Fomes annosus in laboratory experiments. Stud For Suec 64: 1–18

    Google Scholar 

  • Ivory MH (1980) Ectomycorrhizal fungi of lowland tropical pines in natural forests and exotic plantations. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, New York, pp 110–117

    Google Scholar 

  • Ivory MH, Munga FM (1983) Growth and survival of container-grown Pinus caribaea infected with various ectomycorrhizal fungi. Plant Soil 71: 339–344

    Article  Google Scholar 

  • Jansen AE, de Vries FW (1989) Mycorrhizas on Douglas fir in the Netherlands. Agric Ecosyst Environ 28: 197–200

    Article  Google Scholar 

  • Jones MD, Browning MHR, Hutchinson TC (1986) The influence of mycorrhizal associations on paper birch and jack pine seedlings when exposed to elevated copper, nickel or aluminum. Water Air Soil Pollut 31: 441–448

    Article  CAS  Google Scholar 

  • Kessel SL (1927) Soil organisms. The dependence of certain pine species on a biological soil factor. Emp For J 6: 70–74

    Google Scholar 

  • Kretzer A, Li Y, Szaro T, Bruns TD (1996) Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 88: 776–785

    Article  CAS  Google Scholar 

  • Laloue M, Hall RH (1973) Cytokinins in Rhizopogon roseolus: secretion of N-[9-(B-Dribofuranosyl-9H) purin-6-ylcarbamoyl]threonin into the culture medium. Plant Physiol 51: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Lamb RJ (1974) Effect of D-glucose on utilization of single carbon sources by ectomycorrhizal fungi. Trans Br Mycol Soc 63: 295–306

    Article  Google Scholar 

  • Lamb RJ (1979) Factors responsible for the distribution of mycorrhizal fungi of Pinus in eastern Australia. Aust For Res 9: 25–34

    Google Scholar 

  • Lamb RJ, Richards BN (1971) Effect of mycorrhizal fungi on the growth and nutrient status of slash and radiata pine seedlings. Aust For 35: 1–7

    CAS  Google Scholar 

  • Lamb RJ, Richards BN (1974a) Inoculation of pines with mycorrhizal fungi in natural soils. I. Effects of density and time of application of inoculum and phosphorus amendments on mycorrhizal infection. Soil Biol Biochem 6: 167–171

    Google Scholar 

  • Lamb RJ, Richards BN (1974b) Inoculation of pines with mycorrhizal fungi in natural soils. II. Effects of density and time of application of inoculum and phosphorus amendment on seedling yield. Soil Biol Biochem 6: 173–177

    Google Scholar 

  • Lamb RJ, Richards BN (1974c) Survival potential of sexual and asexual spores of ectomycorrhizal fungi. Trans Br Mycol Soc 62: 181–191

    Article  Google Scholar 

  • Lamb RJ, Richards BN (1978) Inoculation of pines with mycorrhizal fungi in natural soils. III. Effects of soil fumigation on rate of infection and response to inoculum density. Soil Biol Biochem 10: 273–276

    Google Scholar 

  • Levisohn I (1956) Growth stimulation of forest tree seedlings by the activity of free living mycorrhizal mycelia. Forestry 29: 53–59

    Article  Google Scholar 

  • Levisohn I (1965) Nutritional problems in forest nurseries–mycorrhizal investigations. G B For Comm Bull 37: 228–235

    Google Scholar 

  • Li CY, Massicote HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhiza. Plant Soil 140: 35–40

    Article  CAS  Google Scholar 

  • Liu B (1985) New species and new records of hypogeous fungi from China. Acta Mycol Sin 4: 84–89

    Google Scholar 

  • Lundeberg G (1970) Utilisation of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud For Suec 79: 1–95

    Google Scholar 

  • Luoma DL (1988) Biomass and community structure of sporocarps formed by hypogeous ectomycorrhizal fungi within selected forest habitats of the HJ Andrews Experimental Forest, Oregon. PhD Thesis, Oregon State University, Corvallis

    Google Scholar 

  • Luoma DL, Frenkel RE, Trappe JM (1991) Fruiting of hypogeous fungi in Oregon Douglas-fir forests: seasonal and habitat variation. Mycologia 83: 335–353

    Article  Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482

    Article  Google Scholar 

  • Martin MP (1996) The genus Rhizopogon in Europe. Societat Catalana de Micologia, Barcelona Martin MP, Högberg N (1996) Molecular analysis confirms morphological reclassification of the genus Rhizopogon. Br Mycol Soc Centenary Symp (Abstr)

    Google Scholar 

  • Martin MP, Sanchez A (1996) Thin layer chromatography patterns of Rhizopogon species and their possible use as a taxonomic criterion. Rev Catalan Micol 19: 91–98

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi and soil bacteria. Phytopathology 59: 153–163

    Google Scholar 

  • Marx DH (1980) Ectomycorrhizal fungus inoculations: a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Clarendon Press, Oxford, pp 11–71

    Google Scholar 

  • Marx DH, Daniel WJ (1976) Maintaining cultures of ectomycorrhizal and plant pathogenic fungi in sterile water cold storage. Can J Microbiol 22: 338–341

    Article  PubMed  CAS  Google Scholar 

  • Maser C, Maser Z (1987) Notes on mycophagy in four species of mice in the genus Peromyscus. Great Basin Nat 47: 308–313

    Google Scholar 

  • Maser C, Maser Z (1988) Interactions among squirrels, mycorrhizal fungi, and coniferous forests in Oregon. Great Basin Nat 48: 358–369

    Google Scholar 

  • Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59: 799–809

    Article  Google Scholar 

  • Maser Z, Maser C (1987) Notes on mycophagy of the yellow-pine chipmunk (Eutamias amoenus) in northeastern Oregon. Murrelet 68: 24–27

    Article  Google Scholar 

  • Maser Z, Maser C, Trappe JM (1985) Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can J Zool 63: 1084–1088

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Li CY, Peterson RL (1992) Structural aspects of Douglas- fir [Pseudotsuga menziesii ( Mirb.) Franco] tuberculate ectomycorrhizae. Trees 6: 137–146

    Google Scholar 

  • Massicotte HB, Molina R, Luoma DL, Smith JE (1994) Biology of the ectomycorrhizal genus Rhizopogon. II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in mono-and dual cultures. New Phytol 126: 677–690

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Molina R (1999) Biology of the ectomycorrhizal genus Rhizopogon. IV. Comparative morphology and anatomy of ectomycorrhizas synthesized between several Rhizopogon species on ponderosa pine (Pinus ponderosa). New Phytol (In press)

    Google Scholar 

  • Melin E, Nilsson H (1957) Transport of C“–labeled photosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:1–166–186

    Google Scholar 

  • Melin E, Nilsson H, Hacskaylo E (1958) Translocation of cations to seedlings of Pinus virginiana through mycorrhizal mycelium. Bot Gaz 119: 243–246

    Article  CAS  Google Scholar 

  • Miller OK (1983) Ectomycorrhizae in the Agaricales and Gasteromycetes. Can J Bot 61:909–916 Miller SL (1986) Hypogeous fungi from the southeastern United States. I. The genus Rhizopogon. Mycotaxon 27: 193–218

    Google Scholar 

  • Miller SL, Koo CD, Molina R (1992) Early colonization of red alder and Douglas-fir by ectomycorrhizal fungi and Frankia in soils from the Oregon Coast Range. Mycorrhiza 2: 53–61

    Article  Google Scholar 

  • Miller SL, Torres P, McClean TM (1993) Basidiospore viability and germination in ectomycorrhizal and saprotrophic basidiomycetes. Mycol Res 97: 141–149

    Article  Google Scholar 

  • Miller SL, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86: 89–95

    Article  Google Scholar 

  • Miura G, Hall RH (1973) trans-Ribosylzeatin: its biosynthesis in Zea mays endosperm and the mycorrhizal fungus, Rhizopogon roseolus. Plant Physiol 51: 563–569

    Google Scholar 

  • Modess O (1941) Zur Kenntnis der Mycorrhizabildner von Kiefer und Fichte. Symb Bot Ups 1: 1–146

    Google Scholar 

  • Mohan V, Natarajan K, Ingleby K (1993) Anatomical studies on ectomycorrhizas. III. The ectomycorrhizas produced by Rhizopogon luteolus and Scleroderma citrinum on Pinus patula. Mycorrhiza 3: 51–56

    Article  Google Scholar 

  • Molina R (1980a) Ectomycorrhizal inoculation of containerized western conifer seedlings. Research Note PNW-357, Pacific Northwest Forest and Range Experiment Station, US Department of Agriculture, Forest Service, Corvallis

    Google Scholar 

  • Molina R (1980b) Patterns of ectomycorrhizal host-fungus specificity in the Pacific Northwest. PhD Thesis, Oregon State University, Corvallis

    Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Press, St Paul, pp 115–129

    Google Scholar 

  • Molina R, Trappe JM (1982a) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90: 495–509

    Article  Google Scholar 

  • Molina R, Trappe JM (1982b) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For Sci 28: 423–458

    Google Scholar 

  • Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol 125: 653–675

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Molina R, Smith JE, McKay D, Melville LH (1997) Biology of the ectomycorrhizal genus, Rhizopogon. III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137: 519–528

    Article  Google Scholar 

  • Momoh ZO (1976) Synthesis of mycorrhiza on Pinus oocarpa. Ann Appl Biol 82:221–226 North M, Trappe J, Franklin J (1997) Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests. Ecology 78: 1543–1554

    Google Scholar 

  • Odeyinde MA, Ekwebelam SA (1974) In search of a suitable pine mycorrhiza fungus in the high forest zones of Nigeria. Nig J For 4: 93–97

    Google Scholar 

  • Pachlewski R, Pachlewska J (1968) Rhizopogon luteolus Fr. in a synthesis with pine (Pinus silvestris L.) in pure culture in agar. Inst Bad Lesn 346: 77–95

    Google Scholar 

  • Pachlewski R, Pachlewska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus silves tris L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. Forest Research Institute, Warsaw, Poland

    Google Scholar 

  • Pacioni G (1984a) Champignons hypogés nouveaux pour l’Afrique du Nord. Bul Soc Mycol Fr 100: 111–124

    Google Scholar 

  • Pacioni G (1984b) Un nuovo fungo ipogeo raccolto in Sardegna: Rhizopogon sardöus nov. sp. Micol Ital 2: 45–47

    Google Scholar 

  • Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95: 83–95

    Article  Google Scholar 

  • Parladé J, Alvarez IF (1993) Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 3: 93–96

    Article  Google Scholar 

  • Parladé J, Pera J, Alvarez IF (1996) Inoculation of containerized Pseudotsuga menziesii and Pinus pin aster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6: 236–245

    Google Scholar 

  • Pilz P, Perry DA (1983) Impact of clearcutting and slash burning on ectomycorrhizal associations of Douglas-fir seedlings. Can J For Res 14: 94–100

    Article  Google Scholar 

  • Purnell H (1957) Notes on fungi found in Victorian plantations. III. The mycorrhizal fungi. Plantat Tech Pap For Comm Victoria 3: 9–13

    Google Scholar 

  • Rayner MC (1938) The use of soil or humus inocula in nurseries and plantations. Emp For J 17: 236–243

    Google Scholar 

  • Read DJ (1984) The structure and function of vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) Ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Roddy L (eds) Water, fungi, and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DA, Usher MB (eds) Ecological interactions in soil. Blackwell, Palo Alto, pp 193–217

    Google Scholar 

  • Roth AL, Berch SM (1992) Ectomycorrhizae of Douglas-fir and western hemlock seedlings outplanted on eastern Vancouver Island. Can J For Res 22: 1646–1655

    Article  Google Scholar 

  • Rudawska M (1982) Effect of various organic sources of nitrogen on the growth of mycelium and content of auxin and cytokinin in cultures of some mycorrhizal fungi. Acta Physiol Plant 4: 11–20

    CAS  Google Scholar 

  • Rudawska M (1983) The effect of nitrogen and phosphorus on auxin and cytokinin production by mycorrhizal fungi. Arbor Kornickie 28: 219–236

    Google Scholar 

  • Sands R, Theodorou C (1978) Water uptake by mycorrhizal roots of radiata pine seedlings. Aust J Plant Physiol 5: 301–309

    Article  Google Scholar 

  • Sasek V, Musilek V (1967) Cultivation and antibiotic activity of mycorrhizal basidiomycetes. Folia Microbiol 12: 515–523

    Article  CAS  Google Scholar 

  • Simard SW, Molina R, Smith JE, Perry, Jones MD (1997a) Shared compatibility of ectomycorrhizae on Pseudotsuga menziesii and Betula papyrifera seedlings grown in mixture in soils from southern British Columbia. Can J For Res 27: 331–342

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997b) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388: 579–582

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997c) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136: 327–340

    Article  Google Scholar 

  • Skinner MF, Bowen GD (1974a) The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol Biochem 6: 57–61

    Article  Google Scholar 

  • Skinner MF, Bowen GD (1974b) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6: 53–56

    Article  CAS  Google Scholar 

  • Smith AH (1964) Rhizopogon,a curious genus of false truffle. Mich Bot 3:13–19

    Google Scholar 

  • Smith AH (1966) New and noteworthy higher fungi from Michigan. Mich Bot 5:18–25

    Google Scholar 

  • Smith AH (1968) Further studies on Rhizopogon. I. J Elisha Mitchell Sci Soc 84: 274–280

    Google Scholar 

  • Smith AH, Zeller SM (1966) A preliminary account of the North American species of Rhizopogon. Mem N Y Bot Gard 14: 1–178

    Google Scholar 

  • Smith JE, McKay D, Molina R (1994) Survival of mycorrhizal fungal isolates stored in sterile water at two temperatures and retrieved on solid and liquid nutrient media. Can J Microbiol 40: 736–742

    Article  Google Scholar 

  • Smith JE, Molina R, Perry DA (1995) Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol 129: 73–81

    Article  Google Scholar 

  • States JS, Gaud WS (1997) Ecology of hypogeous fungi associated with ponderosa pine. I. Patterns of distribution and sporocarp production in some Arizona forests. Mycologia 89: 712–721

    Google Scholar 

  • Theodorou C (1967) Inoculation with pure cultures of mycorrhizal fungi of radiata pine growing in partially sterilized soil. Aust For 31: 303–309

    Google Scholar 

  • Theodorou C (1968) Inositol phosphate in needles of Pinus radiata D. Don and the phytase activity of mycorrhizal fungi. Proc 9th Int Congr Soil Sci 3: 483–493

    CAS  Google Scholar 

  • Theodorou C (1971) Introduction of mycorrhizal fungi into soil by spore inoculation of seed. Aust For 35: 17–22

    Google Scholar 

  • Theodorou C (1978) Soil moisture and the mycorrhizal association of Pinus radiata D. Don. Soil Biol Biochem 10: 33–37

    Article  CAS  Google Scholar 

  • Theodorou C (1980) The sequence of mycorrhizal infection of Pinus radiata D. Don following

    Google Scholar 

  • inoculation with Rhizopogon luteolus Fr. and Nordh. Aust For Res 10:381–387

    Google Scholar 

  • Theodorou C (1984) Mycorrhizal inoculation of pine nurseries by spraying basidiospores onto soil prior to sowing. Aust For 47: 76–78

    Google Scholar 

  • Theodorou C, Benson AD (1983) Operational mycorrhizal inoculation of nursery beds with seed-borne fungal spores. Aust For 46: 43–47

    Google Scholar 

  • Theodorou C, Bowen GD (1970) Mycorrhizal responses of radiata pine in experiments with different fungi. Aust For 34: 183–191

    Google Scholar 

  • Theodorou C, Bowen GD (1971) Effects of non-host plants on growth of mycorrhizal fungi of radiata pine. Aust For 35: 17–22

    Google Scholar 

  • Theodorou C, Bowen GD (1973) Inoculation of seeds and soil with basidiospores of mycorrhizal fungi. Soil Biol Biochem 5: 765–771

    Article  Google Scholar 

  • Theodorou C, Bowen GD (1987) Germination of basidiospores of mycorrhizal fungi in the rhizosphere of Pinus radiata D. Don. New Phytol 106: 217–223

    Google Scholar 

  • Theodorou C, Skinner M (1976) Effects of fungicides on seed inocula of basidiospores of mycorrhizal fungi. Aust For Res 7: 53–58

    Google Scholar 

  • Thoen D (1974) Premières indications sur les mycorrhizes et les champignons mycorrhiziques des plantations d’exotiques du Hant-Shaba (République du Zaire). Bull Rech Agron Gembloux 9: 215–227

    Google Scholar 

  • Tilak KVBR, Li CY, Trappe JM (1988) Characterization of nitrogen-fixing Azospirillum within sporocarps of ectomycorrhizal fungi associated with Douglas-fir (Pseudotsuga menziesii ( Mirb.) Franco). Ind J Microbiol 28: 315–319

    Google Scholar 

  • Torres P, Honrubia M (1994a) Basidiospore viability in stored slurries. Mycol Res 98: 527–530

    Article  Google Scholar 

  • Torres P, Honrubia M (1994b) Inoculation of containerized Pinus halepensis (Miller) seedlings with basidiospores of Pisolithus arhizus (Pers.) Rauschert, Rhizopogon roseolus (Corda) and Suillus collinitus (Fr.) O. Kuntze. Ann Sci For 51: 521–528

    Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606 Trappe JM (1965) Tuberculate mycorrhizae of Douglas-fir. For Sci 11: 27–32

    Google Scholar 

  • Trappe JM (1967) Pure culture synthesis of Douglas-fir mycorrhizae with species of Hebeloma, Suillus, Rhizopogon, and Astraeus. For Sci 13: 121–130

    Google Scholar 

  • Trappe JM (1975) A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beih Nova Hedwigia 51: 279–309

    Google Scholar 

  • Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu Rev Phytopathol 15: 203–222

    Article  Google Scholar 

  • Trappe JM, Guzman G (1971) Notes on some hypogeous fungi from Mexico. Mycologia 63: 317–332

    Article  Google Scholar 

  • Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of “C-labeled lignin

    Google Scholar 

  • holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206

    Google Scholar 

  • Tulasne L-R, Tulasne C (1844) Fungii hypogaei nonnulli, novi vel minus cogniti. G Bot Ital 2: 56–63

    Google Scholar 

  • Tulasne L-R, Tulasne C (1851) Fungi hypogaei. Friedrich Klincksieck, Paris

    Google Scholar 

  • Uhl M (1988) Studies on ectomycorrhizae. XV. Mycorrhizae formed by Rhizopogon luteolus on Pinus sylvestris. Persoonia 13: 449–458

    Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129: 389–401

    Article  Google Scholar 

  • Vittadini C (1831) Monographia Tuberacearum. Felicis Rusconi, Milan

    Google Scholar 

  • Vogt KA, Bloomfield J, Ammirati JF, Ammirati SR (1992) Sporocarp production by basidiomycetes, with emphasis on forest ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, pp 563–581

    Google Scholar 

  • Volkart CM (1964) Formacion de micorrizas en pinos centro-americanos bajo condiciones controladas. Turrialba 14: 203–205

    Google Scholar 

  • Young HE (1937) Rhizopogon luteolus,a mycorrhizal fungus of Pinus. Forestry 11:30–31

    Google Scholar 

  • Zak B (1971) Characterization and classification of mycorrhizae of Douglas-fir. II. Pseudotsuga menziesii + Rhizopogon vinicolor. Can J Bot 49: 1079–1084

    Article  Google Scholar 

  • Zak B (1973) Classification of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 43–78

    Google Scholar 

  • Zak B (1976) Pure culture synthesis of bearberry mycorrhizae. Can J Bot 54: 1297–1305

    Article  Google Scholar 

  • Zeller SM (1939) New and noteworthy Gasteromycetes. Mycologia 31: 1–32

    Article  Google Scholar 

  • Zeller SM (1941) Further notes on fungi. Mycologia 33: 196–214

    Article  Google Scholar 

  • Zeller SM, Dodge CW (1918) Rhizopogon in North America. Ann Mo Bot Gard 5: 1–36

    Google Scholar 

  • Zobel JB (1854) Iconum fungorum hucusque cognitorum. V I. Friderici Ehrlich, Prague

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molina, R., Trappe, J.M., Grubisha, L.C., Spatafora, J.W. (1999). Rhizopogon. In: Cairney, J.W.G., Chambers, S.M. (eds) Ectomycorrhizal Fungi Key Genera in Profile. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06827-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08490-4

  • Online ISBN: 978-3-662-06827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics