Skip to main content

Stability Analysis Using Kalman Filtering, Scoring, EM, and an Adaptive EM method

  • Conference paper
Economic Structural Change
  • 134 Accesses

Summary

This chapter gives a detailed description of the implementation of ML estimation using scoring and EM for the hyperparameters of a particular econometric state-space. Kaiman filtering enters these methods in an essential way. The EM method can be turned into an on-line (adaptive) estimation method, which can be conveniently used for speeding up the ML estimation procedure. We apply these techniques to a random walk parameter model of a standard (Goldfeld type) West German money-demand function testing its stability via testing the variances of the random walk for zero. We compare these results to a descriptive stability analysis that uses so-called flexible least squares—a nonstochastic variant of Kaiman filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B.D.O. and Moore, J.B. (1979), Optimal Filtering. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Ansley, C.F. and Kohn, R. (1982), A geometrical derivation of the fixed interval smoothing algorithm. Biometrika, 69, 486–487.

    Article  Google Scholar 

  • Aoki, M. (1987), State Space Modeling of Time Series. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Bierman, G.J. (1974), Sequential square root filtering and smoothing of discrete linear systems. Automatica, 10, 147–158.

    Article  Google Scholar 

  • Bierman, G.J. (1977), Factorization Methods for Discrete Sequential Estimation. New York: Academic Press.

    Google Scholar 

  • Brown, R.L., Durbin, J., and Evans, J.M. (1975), Techniques for testing the constancy of regession relationships over time. Journal of the Royal Statistical Society, B-37, 149–192.

    Google Scholar 

  • Buscher, H.S. (1984), The stability of the West German demand for money. Weltwirt schaftliches Archiv, 120, 256–277.

    Article  Google Scholar 

  • Carraro, C. and Sartore, D. (1986), Square root iterative filter: Theory and applications to econometric models. Working Paper 8611, University of Venice.

    Google Scholar 

  • Cooley, T.F. and Prescott, E.C. (1973), Varying parameter regression: A theory and some applications. Annals of Economic and Social Measurement, 2, 463–473.

    Google Scholar 

  • Cooley, T.F., Rosenberg, B., and Wall, K.D. (1977), A note on the optimal smoothing for time varying coefficient problems. Annals of Economic and Social Measurement, 6, 453–462.

    Google Scholar 

  • Cooper, J.P. (1973), Time-varying regression coefficients: A mixed estimation approach and operational limitations of the general Markov structure. Annals of Economic and Social Measurement, 4, 525–530.

    Google Scholar 

  • de Jong, P. and MacKinnon, M.J. (1988), Covariances for smoothed estimates in state- space models. Biometrika, 75, 601–602.

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977), Maximum-likelihood from incom plete data via the EM-algorithm. Journal of the Royal Statistical Society, B-39, 1–38.

    Google Scholar 

  • Duncan, D.B. and Horn, S.D. (1972), Linear recursive estimation from the viewpoint of regression analysis. Journal of the American Statistical Association, 67, 815–821.

    Google Scholar 

  • Eraser, D.C. and Potter, J.E. (1969), The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automation and Control, AC-14, 387–390.

    Article  Google Scholar 

  • Gaab, W. and Seitz, H. (1988), Zur Frage der Stabilität der Geldnachfrage Ml, pp. 93 – 122 in W. Franz, W. Gaab, and J. Wolters (eds.), Theoretische und angewandte Wirtschaftsforschung. Berlin: Springer-Verlag.

    Google Scholar 

  • Garbade, K. (1977), Two methods for examining the stability of regression coefficients. Journal of the American Statistical Association, 72, 54–63.

    Article  Google Scholar 

  • Gersch, W. and Kitigawa, G. (1988), Smoothness priors in time series, pp. 431–476 in C. Spall (ed.), Bayesian Analysis of Time Series and Dynamic Models. New York: Marcel Dekker.

    Google Scholar 

  • Goldfeld, S.M. (1976), The case of the missing money. Brookings Papers on Economic Activity, 3, 683–730.

    Article  Google Scholar 

  • Gupta, N.K. and Mehra, R.K. (1974), Computational aspects of maximum likelihood estimation and reduction of sensitivity function calculations. IEEE Transactions on Automation and Control, AC-19, 774–783.

    Article  Google Scholar 

  • Harrison, P.J. and Stevens, C.F. (1976), Bayesian forecasting (with discussion). Journal of the Royal Statistical Society, B-38, 205–247.

    Google Scholar 

  • Jazwinski, A.H. (1970), Stochastic Processes and Filtering Theory. New York: Academic Press.

    Google Scholar 

  • Kalaba, R. and Tesfatsion, L. (1986), Time-varying regression via flexible least squares. Modelling Research Group Working Paper 8633, University of Southern California, Los Angeles.

    Google Scholar 

  • Kalaba, R. and Tesfatsion, L. (1988a), U.S. money demand instability: A flexible least squares approach. Modelling Research Group Working Paper 8809, University of Southern California, Los Angeles.

    Google Scholar 

  • Kalaba, R. and Tesfatsion, L. (1988b), An organizing principle for dynamic estimation. Modelling Research Group Working Paper 8818, University of Southern California, Los Angeles.

    Google Scholar 

  • Kaminski, P.G., Bryson, A.E., and Schmidt, S.F. (1971), Discrete square root filtering: A survey of current techniques. IEEE Transactions on Automation and Control, AC-16, 727–736.

    Article  Google Scholar 

  • Kohn, R. and Ansley, C.F. (1988), Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation, pp. 393–430 in C. Spall (ed.), Bayesian Analysis of Time Series and Dynamic Models. New York: Marcel Dekker.

    Google Scholar 

  • Kwakernaak, H. and Sivan, R. (1972), Linear Optimal Control Systems. New York: John Wiley.

    Google Scholar 

  • Lasdon, L.S. (1970), Optimization Theory for Large Systems. New York: John Wiley.

    Google Scholar 

  • Louv, W.C. (1984), Adaptive filtering. Technometrics, 26, 399–409.

    Article  Google Scholar 

  • Luenberger, D.G. (1969), Optimization by Vector Space Methods. New York: John Wiley.

    Google Scholar 

  • Magnus, J.R. and Neudecker, H. (1988), Matrix Differential Calculus. New York: John Wiley.

    Google Scholar 

  • Mayne, D.Q. (1966), A solution for the smoothing problem for linear dynamic systems. Automatica, 4, 73–92.

    Article  Google Scholar 

  • Meinhold, R.J. and Singpurwalla, N. (1983), Understanding the Kaiman filter. The American Statistician, 37, 123–127.

    Google Scholar 

  • Morf, M. and Kailath, T. (1975), Square-root algorithms for least-squares estimation. IEEE Transactions on Automation and Control, AC-20, 487–497.

    Article  Google Scholar 

  • Morris, C.R. (1983), Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78, 47–55.

    Article  Google Scholar 

  • Nabeya, S. and Tanaka, K. (1988), Asymptotic theory of a test for the constancy of regression coefficients against the random walk alternative. The Annals of Statistics, 16, 218–235.

    Article  Google Scholar 

  • Oberhofer, W. and Kmenta, J. (1974), A general procedure for obtaining maximum likelihood estimates via generalized regression models. Econometrica, 42, 579–590.

    Article  Google Scholar 

  • Pagan, A. (1980), Some identification and estimation results for regression models with stochastically varying coefficients. Journal of Econometrics, 13, 341–363.

    Article  Google Scholar 

  • Rao, C.R. (1971), Estimation of variance and covariance components: MINQUE theory. Journal of Multivariate Analysis, 1, 257–277.

    Article  Google Scholar 

  • Rao, C.R. (1973), Linear Statistical Inference and Its Applications. New York: John Wiley.

    Book  Google Scholar 

  • Rosenberg, B. (1973), A survey of stochastic parameter regression. Annals of Economic and Social Measurement, 2, 381–398.

    Google Scholar 

  • Rosenberg, B. (1977), Estimation of error covariance in regession with sequentially varying parameters. Annals of Economic and Social Measurement, 6, 457–462.

    Google Scholar 

  • Ruskeepää, H. (1985), Conditionally Gaussian distributions and an application to Kaiman filtering with stochastic regressors. Communications in Statistics, Theory and Methods, A-14, 2919–2942.

    Article  Google Scholar 

  • Sallas, W.M. and Harville, D.A. (1981), Best linear recursive estimation for mixed linear models. Journal of the American Statistical Association, 76, 860–869.

    Article  Google Scholar 

  • Sallas, W.M. and Harville, D.A. (1988), Noninformative priors and restricted maximum likelihood estimation in the Kaiman filter, pp. 477–508 in C. Spall, (ed.), Bayesian Analysis of Time Series and Dynamic Models. New York: Marcel Dekker.

    Google Scholar 

  • Sarris, A.H. (1973), Kaiman filter models: A Bayesian approach to estimation of time varying regression coefficients. Annals of Economic and Social Measurement, 2, 501–523.

    Google Scholar 

  • Schneider, W. (1986), Der Kaimanfilter als Instrument zur Diagnose und Schätzung variabler Parameter in ökonometrischen Modellen, volume 27 in K.-A. Schäffer, P. Schönfeld, and W. Wetzel (eds.), Arbeiten zur Angewandten Statistik. Heidelberg: Physica.

    Google Scholar 

  • Schneider, W. (1988), Analytical uses of Kalman filtering in econometrics: A survey. Statistical Papers, 29, 3–33.

    Article  Google Scholar 

  • Schneider, W. (1989), Maximum likelihood estimation of seemingly unrelated regression equations with time varying coefficients by Kalman filtering: A comparison of scoring, EM- and an adaptive EM-method. Working paper, University of Kiel.

    Google Scholar 

  • Shumway, R.H. and Stoffer, D.S. (1982), An approach to time series smoothing and forecasting using the EM-algorithm. Journal of Time Series Analysis, 3, 253–264.

    Article  Google Scholar 

  • Watson, M.W. and Engle, R.F. (1983), Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models. Journal of Econometrics, 23, 385–400.

    Article  Google Scholar 

  • Wu, C.F.J. (1983), On the convergence properties of the EM-algorithm. The Annals of Statistics, 11, 95–103.

    Article  Google Scholar 

  • Zellner, A. (1962), An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57, 348–368.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, W. (1991). Stability Analysis Using Kalman Filtering, Scoring, EM, and an Adaptive EM method. In: Hackl, P., Westlund, A.H. (eds) Economic Structural Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06824-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06824-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06826-7

  • Online ISBN: 978-3-662-06824-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics