Symplectic Geometry

  • V. I. Arnol’d
  • A. B. Givental’
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 4)

Abstract

Symplectic geometry is the mathematical apparatus of such areas of physics as classical mechanics, geometrical optics and thermodynamics. Whenever the equations of a theory can be gotten out of a variational principle, symplectic geometry clears up and systematizes the relations between the quantities entering into the theory. Symplectic geometry simplifies and makes perceptible the frightening formal apparatus of Hamiltonian dynamics and the calculus of variations in the same way that the ordinary geometry of linear spaces reduces cumbersome coordinate computations to a small number of simple basic principles.

Keywords

Entropy Manifold Benzene Stratification Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsden, J.: Foundations of Mechanics. Benjamin/Cummings, Reading, Mass. 1978, 806 p. Zbl. 397.70001MATHGoogle Scholar
  2. 2.
    Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Nauka, Moscow 1974, 431 p. (English translation: Graduate Texts in Mathematics 60, Springer-Verlag, New York-Heidelberg-Berlin 1978, 462 p.). Zbl. 386.70001MATHGoogle Scholar
  3. 3.
    Arnol’d, V.I.: Wave front evolution und equivariant Morse lemma. Commun. Pure Appl. Math. 29, 557–582 (1976). Zbl. 343.58003CrossRefMATHGoogle Scholar
  4. 4.
    Arnol’d, V.I.: Supplementary Chapters of the Theory of Ordinary Differential Equations. Nauka, Moscow 1978, 304 p. (English translation: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der mathematischen Wissenschaften 250, Springer-Verlag, New York-Heidelberg-Berlin 1983, 334 p.). Zbl. 507.34003MATHGoogle Scholar
  5. 5.
    Arnol’d, V.I.: Lagrange und Legendre cobordisms. I, II. Funkts. Anal. Prilozh. 14, No. 3, 1–13 (1980)Google Scholar
  6. 5a.
    Arnol’d, V.I.: Lagrange und Legendre cobordisms. I, II. Funkts. Anal. Prilozh. 14, No. 4, 8–17 (1980) (English translation: Funct. Anal. Appl. 14, 161–177 und 252–260 (1980)). Zbl. 448.57017 Zbl. 472.55002MATHGoogle Scholar
  7. 6.
    Arnol’d, V.I.: Singularities of Legendre varieties, of evolvents und of fronts at an obstacle. Ergodic Theory Dyn. Syst. 2, 301–309 (1982). Zbl. 525.53051MATHGoogle Scholar
  8. 7.
    Arnol’d, V.I.: Singularities of systems of rays. Usp. Mat. Nauk 38, No. 2 (230), 77–147 (1983) (English translation: Russ. Math. Surv. 38, No. 2, 87–176 (1983)). Zbl. 522.58007MATHGoogle Scholar
  9. 8.
    Arnol’d, V.I.: Singularities in variational calculus, in: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. (Contemporary Problems of Mathematics) 22. VINITI, Moscow 1983, pp. 3–55 (English translation: J. Sov. Math. 27, 2679–2713 (1984)). Zbl. 537.58012Google Scholar
  10. 9.
    Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, Volume I. Nauka, Moscow 1982, 304 p., Volume II. Nauka, Moscow 1984, 336 p. (English translation: Birkhäuser, Boston-Basel-Stuttgart, Volume I 1985, 382 p., Volume II 1987, 400 p.). Zbl. 513.58001 Zbl. 545.58001Google Scholar
  11. 10.
    Atiyah, M.F.: Convexity und commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982). Zbl. 482.58013MathSciNetCrossRefMATHGoogle Scholar
  12. 11.
    Atiyah, M.F., Bott, R.: The moment map und equivariant cohomology. Topology 23, 1–28 (1984). Zbl. 521.58025MathSciNetCrossRefMATHGoogle Scholar
  13. 12.
    Audin, M.: Quelques calculs en cobordisme lagrangien. Ann. Inst. Fourier 35, No. 3, 159–194 (1985). Zbl. 572.57019;MathSciNetCrossRefMATHGoogle Scholar
  14. 12a.
    Audin, M.: Cobordismes d’immersions lagrangiennes et legendriennes. Travaux en Cours, 20, Hermann, Paris 1987, 198 p. Zbl. 615.57001.Google Scholar
  15. 13.
    Benenti, S., Francaviglia, M., Lichnerowicz, A. (eds.): Modern Developments in Analytical Mechanics, Vols. I und II. Proc. IUTAM-ISIMM Symp., Torino/Italy 1982. Accademia delle Scienze di Torino, Turin 1983, 858 p. Zbl. 559.00013Google Scholar
  16. 14.
    Bourbaki, N.: Groupes et algèbres de Lie, ch. 4–6. Éléments de mathématique 34. Hermann, Paris 1968, 288 p. Zbl. 186,330Google Scholar
  17. 15.
    Brieskorn, E.: Singular elements of semi-simple algebraic groups, in: Actes du Congrès International des Mathématiciens 1970. Tome 2. Gauthier-Villars, Paris 1971, pp. 279–284. Zbl. 223.22012Google Scholar
  18. 16.
    Cartan, É.: Leçons sur les invariants intégraux. Hermann, Paris 1922, 210 p. FdM. 48, 538MATHGoogle Scholar
  19. 17.
    Conn, J.F.: Normal forms for analytic Poisson structures. Ann. Math., II. Ser. 119, 577–601 (1984). Zbl. 553.58004 andMathSciNetCrossRefMATHGoogle Scholar
  20. 17a.
    Conn, J.F.: Normal forms for smooth Poisson structures. Ann. Math., II. Ser. 121, 565–593 (1985). Zbl. 592.58025MathSciNetCrossRefMATHGoogle Scholar
  21. 18.
    Croke, C., Weinstein, A.: Closed curves on convex hypersurfaces und periods of nonlinear oscillations. Invent. Math. 64, 199–202 (1981). Zbl. 471.70020MathSciNetCrossRefMATHGoogle Scholar
  22. 19.
    Dazord, P., Desolneux-Moulis, N. (eds.): Séminaire sud-rhodanien de géométrie. Tomes I—III. Journées lyonnaises de la Soc. math. France 1983. Hermann, Paris 1984. III: Zbl. 528.00006, II: Zbl. 521.00017, I: Zbl. 521.00016Google Scholar
  23. 20.
    Dorfman, I.Ya., Gel’fand, I.M.: Hamiltonian operators und the classical Yang-Baxter equation. Funkts. Anal. Prilozh. 16, No. 4, 1–9 (1982) (English translation: Funct. Anal. Appl. 16, 241–248 (1982)). Zbl. 527.58018MathSciNetGoogle Scholar
  24. 21.
    Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras und the geometric meaning of the classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268, 285–287 (1983) (English translation: Sov. Math., Dokl. 27, 68–71 (1983)). Zbl. 526.58017MathSciNetGoogle Scholar
  25. 22.
    Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982). Zbl. 503.58015MathSciNetCrossRefMATHGoogle Scholar
  26. 23.
    Euler, L.: Du mouvement de rotation des corps solides autour d’un axe variable. Mémoires de l’académie des sciences de Berlin 14, 154–193 (1758), 1765 (reprinted in: Leonhardi Euleri Opera Omnia II 8. Societatis Scientiarum Naturalium Helveticae, Zürich 1964, pp. 200–235). Zbl. 125, 2Google Scholar
  27. 24.
    Fomenko, A.T.: Differential Geometry und Topology. Supplementary Chapters (in Russian). Moscow State University, Moscow 1983, 216 p. Zbl. 517.53001Google Scholar
  28. 25.
    Fomenko, A.T., Mishchenko, A.S.: Euler equations on finite-dimensional Lie groups. Izv. Akad. Nauk SSSR, Ser. Mat. 42, 396–415 (1978) (English translation: Math. USSR, Izv. 12, 371–389 (1978)). Zbl. 383.58006MathSciNetMATHGoogle Scholar
  29. 26.
    Fomenko, A.T., Mishchenko, A.S.: The integration of Hamiltonian systems with non-commutative symmetries (in Russian). Tr. Semin. Vektorn. Tenzorn. Anal. Prilozh. Geom. Mekh. Fiz. 20, 5–54(1981). Zbl. 473.58015MathSciNetGoogle Scholar
  30. 27.
    Fuks, D.B.: Maslov-Arnol’d characteristic classes. Dokl. Akad. Nauk SSSR 178, 303–306 (1968) (English translation: Sov. Math., Dokl. 9, 96–99 (1968)). Zbl. 175,203MathSciNetGoogle Scholar
  31. 28.
    Fuks, D.B.: The cohomology of the braid group mod 2. Funkts. Anal. Prilozh. 4, No. 2, 62–73 (1970) (English translation under the title: Cohomologies of the group COS mod 2. Funct. Anal. Appl. 4, 143–151 (1970)). Zbl. 222.57031MathSciNetGoogle Scholar
  32. 29.
    Galin, D.M.: Versal deformations of linear Hamiltonian systems. Tr. Semin. Im. I. G. Petrov-skogo 1, 63–74 (1975) (English translation: Transi., II. Ser., Am. Math. Soc. 118, 1–12 (1982)). Zbl. 343.58006MathSciNetGoogle Scholar
  33. 30.
    Gel’fand, I.M., Lidskij, V.B.: On the structure of the domains of stability of linear canonical systems of differential equations with periodic coefficients (in Russian). Usp. Mat. Nauk 10, No. 1 (63), 3–40 (1955). Zbl. 64,89Google Scholar
  34. 31.
    Gibbs, J.W.: Graphical methods in the thermodynamics of fluids. Transactions of the Connecticut Academy of Arts und Sciences II, 309–342 (1871–3). FdM 5,585Google Scholar
  35. 32.
    Givental’, A.B., Varchenko, A.N.: The period mapping und the intersection form. Funkts. Anal. Prilozh. 16, No. 2, 7–20 (1982) (English translation under the title: Mapping of periods und intersection form. Funct. Anal. Appl. 16, 83–93 (1982)). Zbl. 497.32008MathSciNetGoogle Scholar
  36. 33.
    Godbillon, C.: Géométrie différentielle et mécanique analytique. Hermann, Paris 1969, 183 p. Zbl. 174,246Google Scholar
  37. 34.
    Golubitsky, M., Tischler, D.: On the local stability of differential forms. Trans. Am. Math. Soc. 223, 205–221 (1976). Zbl. 339.58003MathSciNetCrossRefMATHGoogle Scholar
  38. 35.
    Golubitsky, M., Tischler, D.: An example of moduli for singular symplectic forms. Invent. Math. 38, 219–225 (1977). Zbl. 345.58002MathSciNetCrossRefMATHGoogle Scholar
  39. 36.
    Gromov, M.L.: A topological technique for the construction of solutions of differential equations und inequalities, in: Actes du Congrès International des Mathématiciens 1970. Tome 2. Gauthier-Villars, Paris 1971, pp. 221–225. Zbl. 237.57019Google Scholar
  40. 37.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics. Mathematical Surveys No. 14, American Mathematical Society, Providence, R.I. 1977, 474 p. Zbl. 364.53011Google Scholar
  41. 38.
    Guillemin, V., Sternberg, S.: Geometric quantization und multiplicities of group representations. Invent. Math. 67, 515–538 (1982). Zbl. 503.58018MathSciNetCrossRefMATHGoogle Scholar
  42. 39.
    Hamilton, W.R.: The Mathematical Papers of Sir William Rowan Hamilton. Vol. 2: Dynamics. Cunningham Mem. Nr. 14, Cambridge University Press, Cambridge 1940, 656 p. Zbl. 24,363Google Scholar
  43. 40.
    Jacobi, C.G.J.: Vorlesungen über Dynamik. G. Reimer, Berlin 1884, 300 p. (reprint: Chelsea Publishing Company, New York 1969)Google Scholar
  44. 41.
    Kirillov, A. A.: Elements of the Theory of Representations. Nauka, Moscow 1972, 336d p. (English translation: Grundlehren der mathematischen Wissenschaften 220, Springer-Verlag, Berlin-Heidelberg-New York 1976, 315 p.). Zbl. 264.22011Google Scholar
  45. 42.
    Kirillov, A.A.: Local Lie algebras. Usp. Mat. Nauk 31, No. 4 (190), 57–76 (1976) (English translation: Russ. Math. Surv. 31, No. 4, 55–75 (1976)). Zbl. 352.58014MathSciNetMATHGoogle Scholar
  46. 43.
    Klein, F.: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Teil I und II. Verlag von Julius Springer, Berlin 1926, 385 p., Teil II 1927, 208 p. (reprint of both parts in a single volume: Springer-Verlag, Berlin-Heidelberg-New York 1979). FdM 52,22 FdM 53,24Google Scholar
  47. 44.
    Kostant, B.: Quantization und unitary representations. Part I: Prequantization, in: Lectures in Modern Analysis und Applications III. Lect. Notes Math. 170. Springer-Verlag, Berlin-Heidelberg-New York 1970, pp. 87–208. Zbl. 223.53028CrossRefGoogle Scholar
  48. 45.
    Landau, L.D., Lifshitz [Lifshits], E.M.: Course of Theoretical Physics. Vol. 1. Mechanics (Third edition). Nauka, Moscow 1973, 208 p. (English translation: Pergamon Press, Oxford-New York-Toronto 1976, 169 p.). Zbl. 114,148Google Scholar
  49. 46.
    Lees, J.A.: On the classification of Lagrange immersions. Duke Math. J. 43, 217–224 (1976). Zbl. 329.58006MathSciNetCrossRefMATHGoogle Scholar
  50. 47.
    Leray, J.: Analyse lagrangienne et mécanique quantique. Séminaire sur les Équations aux Dérivées Partielles (1976–1977). I, Exp. No. 1, Collège de France, Paris 1977, 303 p.; und Recherche coopérative sur programme CNRS No. 25, IRMA de Strasbourg 1978 (revised und translated into English: Lagrangian Analysis und Quantum Mechanics. The MIT Press, Cambridge, Mass.-London 1981, 271p.). Zbl. 483.35002Google Scholar
  51. 48.
    Lie, S.: Theorie der Transformationsgruppen. Zweiter Abschnitt. B.G. Teubner, Leipzig 1890, 559 p. (reprint: B.G. Teubner, Leipzig-Berlin 1930).MATHGoogle Scholar
  52. 49.
    Lion, G., Vergne, M.: The Weil Representation, Maslov Index und Theta Series. Prog. Math., Boston 6, Birkhäuser, Boston-Basel-Stuttgart 1980, 337 p. Zbl. 444.22005Google Scholar
  53. 50.
    Lychagin, V.V.: Local classification of non-linear first order partial differential equations. Usp. Mat. Nauk 30, No. 1 (181), 101–171 (1975) (English translation: Russ. Math. Surv. 30, No. 1, 105–175 (1975)). Zbl. 308.35018MATHGoogle Scholar
  54. 51.
    Martinet, J.: Sur les singularités des formes différentielles. Ann. Inst. Fourier 20, No. 1, 95–178 (1970). Zbl. 189,100MathSciNetCrossRefMATHGoogle Scholar
  55. 52.
    Maslov, V.P.: Théorie des perturbations et méthodes asymptotiques. Moscow State University, Moscow 1965, 554 p. (French translation with 2 additional articles by V.I. Arnol’d und V.C Bouslaev [Buslaev]: Etudes mathématiques, Dunod Gauthier-Villars, Paris 1972, 384p.). Zbl. 247.47010Google Scholar
  56. 53.
    Matov, V.I.: Unimodal und bimodal germs of functions on a manifold with boundary. Tr. Semin. Im. I.G. Petrovskogo 7, 174–189 (1981) (English translation: J. Sov. Math. 31, 3193–3205 (1985)). Zbl. 497.58005MathSciNetMATHGoogle Scholar
  57. 54.
    Melrose, R.B.: Equivalence of glancing hypersurfaces. Invent. Math. 37, 165–191 (1976). Zbl. 354.53033MathSciNetCrossRefMATHGoogle Scholar
  58. 55.
    Milnor, J.: Morse Theory. Ann. Math. Stud. 51, Princeton University Press, Princeton, N.J. 1963, 153 p. Zbl. 108,104Google Scholar
  59. 56.
    Milnor, J., Stasheff, J.: Characteristic Classes. Ann. Math. Stud. 76, Princeton University Press und University of Tokyo Press, Princeton, N.J. 1974, 330 p. Zbl. 298.57008Google Scholar
  60. 57.
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965). Zbl. 141,194CrossRefMATHGoogle Scholar
  61. 58.
    Nguyễn hû~u Ðúc, Nguyễn tiến Ðai: Stabilité de l’interaction géométrique entre deux composantes holonomes simples. C. R. Acad. Sci., Paris, Sér. A 291, 113–116 (1980). Zbl. 454.58004Google Scholar
  62. 59.
    Pnevmatikos, S.: Structures hamiltoniennes en présence de contraintes. C. R. Acad. Sci., Paris, Sér. A 289, 799–802 (1979). Zbl. 441.53030MathSciNetMATHGoogle Scholar
  63. 60.
    Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tomes 1–3. Gauthier-Villars, Paris 1892, 1893, 1899 (reprint: Dover Publications, Inc., New York 1957, 382/479/414 p.). Zbl. 79,238Google Scholar
  64. 61.
    Poisson, S.D.: Traité de mécanique (2e édition). Tomes I, II. Bachelier, Paris 1832, 1833Google Scholar
  65. 62.
    Roussarie, R.: Modèles locaux de champs et de formes. Astérisque 30 (1975), 181 p. Zbl. 327.57017MathSciNetGoogle Scholar
  66. 63.
    Semenov-Tyan-Shanskij, M.A.: What is a classical r-matrix?. Funkts. Anal. Prilozh. 17, No. 4, 17–33 (1983) (English translation: Funct. Anal. Appl. 17, 259–272 (1983)). Zbl. 535.58031Google Scholar
  67. 64.
    Shcherbak, I.G.: Focal set of a surface with boundary, und caustics of groups generated by reflections B k , C k und F4. Funkts. Anal. Prilozh. 18, No. 1, 90–91 (1984) (English translation: Funct. Anal. Appl. 18, 84–85 (1984)). Zbl. 544.58002MathSciNetMATHGoogle Scholar
  68. 65.
    Shcherbak, I.G.: Duality of boundary singularities. Usp. Mat. Nauk 39, No. 2, 207–208 (1984) (English translation: Russ. Math. Surv. 39, No. 2, 195–196 (1984)). Zbl. 581.58006MathSciNetGoogle Scholar
  69. 66.
    Shcherbak, O.P.: Singularities of families of evolvents in the neighborhood of an inflection point of the curve, und the group H 3 generated by reflections. Funkts. Anal. Prilozh. 17, No. 4, 70–72 (1983) (English translation: Funct. Anal. Appl. 17, 301–303 (1983)). Zbl. 534.58011MathSciNetMATHGoogle Scholar
  70. 67.
    Smale, S.: Topology und mechanics I., und II. The planar n-body problem. Invent. Math. 10, 305–331 (1970)MathSciNetCrossRefMATHGoogle Scholar
  71. 67a.
    Smale, S.: Topology und mechanics I., und II. The planar n-body problem. Invent. Math. 11, 45–64 (1970). Zbl. 202,232; Zbl. 203,261MathSciNetCrossRefMATHGoogle Scholar
  72. 68.
    Souriau, J.-M.: Structure des systèmes dynamiques. Dunod, Paris 1970, 414 p. Zbl. 186,580MATHGoogle Scholar
  73. 69.
    Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954). Zbl. 57,155MathSciNetCrossRefMATHGoogle Scholar
  74. 70.
    Tischler, D.: Closed 2-forms und an embedding theorem for symplectic manifolds. J. Differ. Geom. 12, 229–235 (1977). Zbl. 386.58001MathSciNetMATHGoogle Scholar
  75. 71.
    Vasil’ev, V.A.: Characteristic classes of Lagrangian und Legendre manifolds dual to singularities of caustics und wave fronts. Funkts. Anal. Prilozh. 15, No. 3, 10–22 (1981) (English translation: Funct. Anal. Appl. 15, 164–173 (1981)). Zbl. 493.57008MATHGoogle Scholar
  76. 72.
    Vasil’ev, V.A.: Self-intersections of wave fronts und Legendre (Lagrangian) characteristic numbers. Funkts. Anal. Prilozh. 16, No. 2, 68–69 (1982) (English translation: Funct. Anal. Appl. 16, 131–133 (1982)). Zbl. 556.58007Google Scholar
  77. 73.
    Weinstein, A.: Lectures on Symplectic Manifolds. Reg. Conf. Ser. Math. 29, American Mathematical Society, Providence, R.I. 1977, 48 p. Zbl. 406.53031Google Scholar
  78. 74.
    Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983). Zbl. 524.58011MATHGoogle Scholar
  79. 75.
    Weyl, H.: The Classical Groups. Their Invariants und Representations. Princeton University Press, Princeton, N.J. 1946, 320 p. Zbl. 20,206Google Scholar
  80. 76.
    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles und Rigid Bodies (Fourth edition). Cambridge University Press, Cambridge 1937, 456 p. (This edition has been reprinted many times with new publication dates). Zbl. 91, 164Google Scholar
  81. 77.
    Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141–163 (1936). Zbl. 13,284CrossRefGoogle Scholar
  82. 78.
    Zhitomirskij, M.Ya.: Finitely determined 1-forms w, w|0?0, are exhausted by the Darboux und Martinet models. Funkts. Anal. Prilozh. 19, No. 1, 71–72 (1985) (English translation: Funct. Anal. Appl. 19, 59–61 (1985)). Zbl. 576.58001CrossRefGoogle Scholar

Added in proof: Additional list of new publications On linear symplectic geometry:

  1. 1.
    Arnol’d V.I.: The Sturm theorems und symplectic geometry. Funkts. Anal. Prilozh. 19, No. 4, 1–10 (1985) (English translation: Funct. Anal. Appl. 19, 251–259 (1985))Google Scholar

On Poisson structures:

  1. 2.
    Karasev, M.V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets. Izv. Akad. Nauk SSSR, Ser. Mat. 50, 508–538 (1986) (English translation: Math. USSR, Izv. 28, 497–527 (1987))MathSciNetMATHGoogle Scholar
  2. 3.
    Weinstein, A.: Symplectic groupoids und Poisson manifolds. Bull. Am. Math. Soc, New Ser. 16, 101–104 (1987)CrossRefMATHGoogle Scholar
  3. 4.
    Weinstein, A.: Coisotropic calculus und Poisson groupoids. J. Math. Soc. Japan 40, 705–727 (1988)MathSciNetCrossRefMATHGoogle Scholar

On contact singularities:

  1. 5.
    Arnol’d V.I.: Surfaces defined by hyperbolic equations. Mat. Zametki 44, No. 1, 3–18 (1988) (English translation: Math. Notes 44, 489–497 (1988))MathSciNetMATHGoogle Scholar
  2. 6.
    Arnol’d, V.I.: On the interior scattering of waves defined by the hyperbolic variational principles. To appear in J. Geom. Phys. 6 (1989)Google Scholar

On geometrical optics:

  1. 7.
    Bennequin, D.: Caustique mystique. Séminaire N. Bourbaki No. 634 (1984). Astérisque 133–134, 19–56 (1986)MathSciNetGoogle Scholar
  2. 8.
    Shcherbak, O.P.: Wavefronts und reflection groups. Usp. Mat. Nauk 43, No. 3, 125–160 (1988) (English translation: Russ. Math. Surv. 43, No. 3, 149–194 (1988))MathSciNetGoogle Scholar
  3. 9.
    Givental’, A.B.: Singular Lagrangian varieties und their Lagrangian mappings (in Russian), in: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. (Contemporary Problems of Mathematics) 33. VINITI, Moscow 1988, pp. 55–112 (English translation will appear in J. Sov. Math.)Google Scholar

On cobordism theory:

  1. 10.
    Vassilyev [Vasil’ev], V.A.: Lagrange und Legendre characteristic classes. Gordon und Breach, New York 1988, 278 p.Google Scholar

On Lagrangian intersections:

  1. 11.
    Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 12.
    Laudenbach, F., Sikorav, J.-C.: Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent. Invent. Math. 82, 349–357 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 13.
    Hofer, H.: Lagrangian embeddings und critical point theory. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2, 407–462 (1985)MathSciNetMATHGoogle Scholar
  4. 14.
    Floer, A.: Intersections of Lagrangian submanifolds of symplectic manifolds. Preprint Nr. 108/1987. Fakultät und Institut für Mathematik der Ruhr-Universität Bochum, Bochum 1987Google Scholar
  5. 15.
    Viterbo, C.: Intersection de sous-variétés lagrangiennes, fonctionelles d’action et indice des systèmes hamiltoniens. Bull. Soc. Math. Fr. 115, 361–390 (1987)MathSciNetMATHGoogle Scholar
  6. 16.
    Givental’, A.B.: Periodic mappings in symplectic topology (in Russian). Funkts. Anal. Prilozh. 23, No. 1, 1–10 (1989) (English translation: Funct. Anal. Appl. 23 (1989))CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • V. I. Arnol’d
  • A. B. Givental’

There are no affiliations available

Personalised recommendations