Skip to main content

Dynamical Systems of Statistical Mechanics

  • Chapter

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 2))

Abstract

The motion of a system of N particles in d dimensions is described in Statistical Mechanics by means of a Hamiltonian system of 2Nd differential equations, which generates the group of transformations of the phase space. The object of the investigation is the time evolution of probability measures on the phase space determined by this group of transformations. The principal feature of problems in Statistical Mechanics is the fact that one deals with systems consisting of a large number of particles of the same type (a mole of a gas contains 6–1023 particles). Therefore, only those results in which all estimates are uniform with respect to the number of degrees of freedom are of interest here. This restriction, which is unusual from the point of view of the standard theory of dynamical systems, specifies the mathematical feature of the problems of Statistical Mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aizenman, M., Goldstein, S., Lebowitz, J.L.: Ergodic properties of an infinite one-dimensional hard rod system. Commun. Math. Phys. 39, 289–301 (1975). Zbl. 352.60073

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Goldstein, S., Lebowitz, J.L.: Ergodic properties of infinite systems. Lect. Notes Phys. 38, 112–143 (1975). Zbl. 316.28008

    Article  MathSciNet  Google Scholar 

  3. Alexander, R.: Time evolution for infinitely many hard spheres. Commun. Math. Phys. 49, 217–232 (1976)

    Article  Google Scholar 

  4. Arnold, V. L., Avez, A.: Ergodic problems of classical mechanics. New York—Amsterdam: Benjamin 1968, 286 p. Zbl. 167.229

    Google Scholar 

  5. Beieren, H. van: Transport properties of stochastic Lorentz models. Rev. Mod. Phys. 54, No. 1, 195–234(1982)

    Article  Google Scholar 

  6. Bogolyubov, N.N.: Problems of Dynamical Theory in Statistical Physics [Russian]. Moscow—Leningrad: OGIZ, Gostechnizdat 1946; see also Bogolyubov, N.N., Selected Papers, Vol. 2, 99–196. Kiev: Naukova Dumka 1970 [Russian]. Zbl. 197.536

    Google Scholar 

  7. Bogolyubov, N.N.: Equations of hydrodynamics in statistical mechanics [Ukrainian]. Sb. Tr. Inst. Mat. Akad. Nauk USSR 10, 41–59 (1948); see also Bogolyubov, N.N., Selected Papers, Vol. 2, 258–276. Kiev: Naukova Dumka 1970 [Russian]. Zbl. 197.536

    MathSciNet  Google Scholar 

  8. Bogolyubov, N.N., Khatset, B.I.: On some mathematical questions in the theory of statistical equilibrium. Dokl. Akad Nauk SSSR 66, 321–324 (1949) [Russian] Zbl. 39.217, see also Bogolyubov, N.N., Selected Papers, Vol. 2,494–498. Kiev: Naukova Dumka 1970 [Russian]. Zbl. 197.536

    MATH  Google Scholar 

  9. Bogolyubov, N.N., Petrina, D.Ya., Khazet, B.I.: Mathematical description of an equilibrium state of classical systems on the basis of the canonical ensemble formalism. Teor. Mat. Fiz. 1, No. 2, 251–274 (1969) [Russian]

    Article  Google Scholar 

  10. Boldrighini, C., Dobrushin, R.L., Sukhov, Yu.M.: Hydrodynamics of one-dimensional hard rods. Usp. Mat. Nauk. 35, No. 5, 252–253 (1980) [Russian]

    Google Scholar 

  11. Boldrighini, C., Dobrushin, R.L., Sukhov, Yu.M.: One dimensional hard rod caricature of hydrodynamics. J. Stat. Phys. 31, 577–615 (1983)

    Article  MathSciNet  Google Scholar 

  12. Boldrighini, C., Pellgrinotti, A., Triolo, L.: Convergence to stationary states for infinite harmonic systems. J. Stat. Phys. 30,123–155 (1983)

    Article  Google Scholar 

  13. Botvich, D.A., Malyshev, V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas. Commun. Math. Phys. 91, 301–312 (1983). Zbl. 547.46053

    Article  MathSciNet  MATH  Google Scholar 

  14. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics. I. New York-Heidelberg-Berlin, Springer-Verlag 1979. Zbl. 421.46048

    Book  Google Scholar 

  15. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics. II. New York-Heidelberg-Berlin, Springer-Verlag 1981. Zbl. 463.46052

    Book  MATH  Google Scholar 

  16. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56,101–113 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bunimovich, L.A.: Dynamical systems with elastic reflections. Usp. Mat. Nauk. 39, No. 1,184–185 (1984) [Russian]

    Google Scholar 

  18. Bunimovich, L.A., Sinai, Ya.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78, 247–280 (1980). Zbl. 453.60098

    Article  MathSciNet  MATH  Google Scholar 

  19. Bunimovich, L.A., Sinai, Ya.G.: Statistical properties of Lorentz gas with a periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981). Zbl. 459.60099

    Article  MathSciNet  MATH  Google Scholar 

  20. Chulaevsky, V.A.: The method of the inverse problem of scattering theory in statistical physics. Funkts. Anal. Prilozh. 17, No. 1, 53–62 (1983) [Russian]

    Article  Google Scholar 

  21. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. New York-Heidelberg-Berlin, Springer-Verlag 1982. 486 p. Zbl. 493.28007

    Book  MATH  Google Scholar 

  22. De Masi, A., Ianiro, N., Pellegrinotti, A., Presutti, E.: A survey of the hydrodynam- ical behaviour of many-particle systems. In: Nonequilibrium phenomena. II, pp. 123 – 294. Stud. Stat. Mech. 11. Amsterdam-Oxford-New York, North-Holland 1984. Zbl. 567.76006

    Google Scholar 

  23. Dobrushin, R.L.: On the Poisson law for the distribution of particles in space. Ukr. Mat. Z. 8, No. 2, 127–134 (1956) [Russian]. Zbl. 73.352

    MATH  Google Scholar 

  24. Dobrushin, R.L.: Gibbsian random fields for lattice system with pair interaction. Funkts. Anal. Prilozh. 2, No. 4, 31–43 (1968) [Russian]

    Google Scholar 

  25. Dobrushin, R.L.: The uniqueness problem for a Gibbsian random field and the problem of phase transitions. Funkts. Anal. Prilozh. 2, No. 4, 44–57 (1968) [Russian]. Zbl. 192.617. English transi.: Funct. Anal. Appl. 2, 302–312 (1968)

    Google Scholar 

  26. Dobrushin, R.L.: Gibbsian random fields. General case. Funkts. Anal. Prilozh. 3, No. 1, 27–35 (1969) [Russian]. Zbl. 192.618. English transi.: Funct. Anal. Appl. 3, 22–28 (1969)

    MathSciNet  Google Scholar 

  27. Dobrushin, R.L.: Gibbsian random fields for particles without hard core. Teor. Mat. Fiz. 4, No. 1, 101–118 (1970) [Russian]

    Article  MATH  Google Scholar 

  28. Dobrushin, R.L.: Conditions for the absence of phase transitions in one-dimensional classical systems. Mat. Sb., Nov. Ser. 93, No. 1, 29–49 (1974) [Russian]. Zbl. 307.60081. English transi.: Math. USSR, Sb. 22 (1974) 28–48 (1975)

    Google Scholar 

  29. Dobrushin, R.L.: Vlasov equations. Funkts. Anal. Prilozh. 13, No. 2, 48–58 (1979) [Russian]. Zbl. 405.35069. English, transi.: Funct. Anal. Appl. 13, 115–123 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Dobrushin, R.L., Fritz, J.: Nonequilibrium dynamics of one-dimensional infinite particle systems with a singular interaction. Commun. Math. Phys. 55, No. 3, 275–292 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dobrushin, R.L., Siegmund-Schultze, R.: The hydrodynamic limit for systems of particles with independent evolution. Math. Nachr. 105, No. 1, 199–224 (1982)

    Article  MathSciNet  Google Scholar 

  32. Dobrushin, R.L., Sinai, Ya.G.: Mathematical problems in statistical mechanics. Math. Phys. Rev. 1, 55–106 (1980). Zbl. 538.60094

    MathSciNet  MATH  Google Scholar 

  33. Dobrushin, R.L., Sukhov, Yu.M.: On the problem of the mathematical foundation of the Gibbs postulate in classical statistical mechanics. Lect. Notes Phys. 80, 325–340 (1978). Zbl. 439.70016

    Article  MathSciNet  Google Scholar 

  34. Dobrushin, R.L., Sukhov, Yu.M.: Time asymptotics for some degenerated models of evolution of systems with infinitely many particles. In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 14, 147–254. (1979) [Russian]. Zbl. 424.60096. English transi.: J. Sov. Math. 76,1277–1340(1981)

    Google Scholar 

  35. Doob, J.: Stochastic processes. Chichester-New York-Brisbane-Toronto, Wiley 1953. Zbl. 53.268

    MATH  Google Scholar 

  36. Durret, R.: An introduction to infinite particle systems. Stochast. Process Appl. 11, No. 2, 109–150 (1981)

    Article  Google Scholar 

  37. Fichtner, K.H., Freudenberg, W.: Asymptotic behaviour of time evolutions of infinite particle systems. Z. Wahrscheinlichkeitstheorie Verw. Gebiete. 54, 141–159 (1980). Zbl. 438.60088

    Article  MathSciNet  MATH  Google Scholar 

  38. Fritz, J.: An ergodic theorem for the stochastic dynamics of quasi-harmonic crystals. In: Random fields. Rigorous results in statistical mechanics and quantum field theory. Coll. Math. Soc. J; Bolyai, 27 vol. 373–386. Amsterdam-Oxford-New York, North-Holland 1981. Zbl. 489.60066

    Google Scholar 

  39. Fritz, J.: Infinite lattice systems of interacting diffusion processes. Existence and regu- larity properties. Z. Wahrscheinlichkeitstheor. Verw. Gebiete. 59, 291–309 (1982). Zbl. 477.60097

    Article  MathSciNet  MATH  Google Scholar 

  40. Fritz, J.: Local stability and hydrodynamical limit of Spitzer’s one-dimensional lattice model. Commun. Math. Phys. 86, 363–373 (1982). Zbl. 526.60092

    Article  MathSciNet  MATH  Google Scholar 

  41. Fritz, J.: Some remarks on nonequilibrium dynamics of infinite particle systems. J. Stat. Phys. 34, 539–556 (1984). Zbl. 591.60098

    Article  MathSciNet  MATH  Google Scholar 

  42. Fritz, J., Dobrushin, R.L.: Nonequilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Commun. Math. Phys. 57, 67–81 (1977)

    Article  MathSciNet  Google Scholar 

  43. Gallavotti, G., Lanford, O.E., Lebovitz, J.L.: Thermodynamic limit of time dependent correlation functions for one dimensional systems. J. Math. Phys. 13, No. 11, 2898–2905 (1972)

    Google Scholar 

  44. Gallovotti, G., Miracle-Sole, S.: Absence of phase transition in hard-core one-dimensional systems with long-range interaction. J. Math. Phys. 11, No. 1, 147–155 (1970)

    Article  Google Scholar 

  45. Gerasimenko, V.I.: The evolution of infinite system of particles interacting with nearest neighbours. Dokl. Akad. Nauk Ukr. SSR, Ser. A. No. 5, 10–13 (1982) [Russian]. Zbl. 486.45009

    MathSciNet  Google Scholar 

  46. Gerasimenko, V.I., Malyshev, P.V., Petrina, D.Ya.: Mathematical foundations of classical statistical mechanics. Kiev. Naukova Dumka 1985 [Russian]

    MATH  Google Scholar 

  47. Gerasimenko, V.I., Petrina, D.Ya.: Statistical mechanics of quantum-classical systems. Nonequilibrium systems. Teor. Mat. Fiz. 42, No. 1, 88–100 (1980) [Russian]

    Article  MathSciNet  Google Scholar 

  48. Gerasimenko, V.I., Petrina, D.Ya.: Mathematical description of the evolution of the state of infinite systems in classical statistical mechanics. Usp. Mat. Nauk. 38, No. 5, 3–58 (1983) [Russian]. Zbl. 552.35069. English transi.: Russ. Math. Surv. 38, No. 5,1–61 (1983)

    MathSciNet  Google Scholar 

  49. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, B. XII, Sekt. 26, pp. 205–294. Berlin, Springer-Verlag, 1958

    Google Scholar 

  50. Griffeath, D.: Additive and cancellative interacting particle systems. Lect. Notes Math. 724 (1979). Zbl. 412.60095

    Google Scholar 

  51. Gurevich, B.M.: Additive integrals of motion of point particles in one dimension. Math. Res. 12, 59–63 (1982). Zbl. 515.70017

    Google Scholar 

  52. Gurevich, B.M., Oseledets, V.I.: Some mathematical problems connected with non-equilibrium statistical mechanics of an infinite number of particles. In: Probab. Teor. Mat. Stat., Teor. Kybern. 14, 5–40.1977 [Russian]. Zbl. 405.60093

    Google Scholar 

  53. Gurevich, B.M., Sinai, Ya.G., Sukhov, Yu.M.: On invariant measures of dynamical systems of one dimensional statistical mechanics. Usp. Mat. Nauk. 28, No. 5,45–82 (1973) [Russian]. Zbl. 321.28011. English transi.: Russ. Math. Surv. 28, No. 5, 49–86 (1973)

    Google Scholar 

  54. Gurevich, B.M., Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy equations in classical statistical mechanics. 1–4. Commun. Math. Phys. 49, No. 1,69–96 (1976);

    Google Scholar 

  55. Gurevich, B.M., Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy equations in classical statistical mechanics. 1–4. Commun. Math. Phys.54, No. 1, 81–96 (1977);

    Article  MATH  Google Scholar 

  56. Gurevich, B.M., Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy equations in classical statistical mechanics. 1–4. Commun. Math. Phys. 56, No. 3, 225–236 (1977);

    Article  Google Scholar 

  57. Gurevich, B.M., Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy equations in classical statistical mechanics. 1–4. Commun. Math. Phys. 84, No. 4, 333–376 (1982)

    Article  Google Scholar 

  58. Gurevich, B.M., Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy in classical statistical mechanics. Dokl. Akad. Nauk SSSR 223, No. 2, 276–279 (1975) [Russian]. Zbl. 361.60090. English transi.: Sov. Math., Dokl. 16, 857–861 (1976)

    MathSciNet  Google Scholar 

  59. Gurevich, B.M., Sukhov, Yu.M.: Time evolution of the Gibbs states in one-dimensional classical statistical mechanics. Dokl. Akad. Nauk SSSR. 242, No. 2, 276–279 (1978) [Russian]. Zbl. 431.46054. English transi.: Sov. Math., Dokl. 19, 1088–1091 (1978)

    MathSciNet  Google Scholar 

  60. Hauge, E.G.: What can one learn from Lorentz models? Lect. Notes Phys. 31, 337–353 (1974)

    Article  MathSciNet  Google Scholar 

  61. Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Commun. Math. Phys. 105, No. 2, 189–203 (1986). Zbl. 609.76083

    Article  MathSciNet  MATH  Google Scholar 

  62. Kallenberg, O.: Random measures: London-New York-San Francisco, Academic Press., 104 p. 1976. Zbl. 345.60032; Akademie-Verlag 1975. Zbl. 345.60031

    MATH  Google Scholar 

  63. Kallenberg, O.: On the asymptotic behaviour of line processes and systems of non- interacting particles. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 43, N 1, 65–95 (1978). Zbl. 366.60086 (Zbl. 376.60059)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kesten, H., Papanicolau, G.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65, No. 2, 97–128 (1979). Zbl. 399.60049

    Article  MATH  Google Scholar 

  65. Kinetic theories and the Boltzmann equation, ed. C. Cercignani Lect. Notes Math. 1048, 1984. Zbl. 536.00019

    Google Scholar 

  66. Kozlov, O.K.: Gibbsian description of point random fields. Teor. Veroyatn. Primen. 21, No. 2, 348–365 (1976) [Russian]. Zbl. 364.60086. English transi.: Theory Probab. Appl. 21 (1976), 339–356 (1977)

    Google Scholar 

  67. Kramli, A., Szâsz, D.: On the convergence of equilibrium of the Lorentz gas. In: Functions, series, operators. Colloq. Math. Soc. János Bolyai 35, vol. II. 757–766. Amsterdam-Oxford-New York, North-Holland 1983. Zbl. 538.60099

    Google Scholar 

  68. Lanford, O.E.: The classical mechanics of one-dimensional systems of infinitely many particles. I. An existence theorem. Commun. Math. Phys. 9,176–191 (1968). Zbl. 164.254

    Article  MathSciNet  MATH  Google Scholar 

  69. Lanford, O.E.: The classical mechanics of one-dimensional systems of infinitely many particles. II. Kinetic theory. Commun. Math. Phys. 11, 257–292 (1969). Zbl. 175.214

    Article  MathSciNet  MATH  Google Scholar 

  70. Lanford, O.E.: Ergodic theory and approach to equilibrium for finite and infinite systems. Acta Phys. Aust., Suppl. 10, 619–639 (1973)

    Google Scholar 

  71. Lanford, O.E.: Time evolution of large classical systems. Lect. Notes Phys. 38, 1–111 (1975). Zbl. 329.70011

    Article  MathSciNet  Google Scholar 

  72. Lanford, O.E., Lebowitz, J.L.: Time evolution and ergodic properties of harmonic systems. Lect. Notes Phys. 38, 144–177 (1975). Zbl. 338.28011

    Article  MathSciNet  Google Scholar 

  73. Lanford, O.E., Lebowitz, J.L., Lieb, E.: Time evolution of infinite anharmonic systems. J. Stat. Phys. 16, No. 6, 453–461 (1977)

    Article  MathSciNet  Google Scholar 

  74. Lanford, O.E., Ruelle, D.: Observable at infinitely and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  MathSciNet  Google Scholar 

  75. Lang, R.: On the asymptotic behaviour of infinite gradient systems. Commun. Math. Phys. 65, 129–149 (1979). Zbl. 394.60098

    Article  MATH  Google Scholar 

  76. Lebowitz, J.L., Spohn, H.: Steady self-diffusion at low density. J. Stat. Phys. 29, 39–55 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  77. Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)

    Article  MathSciNet  Google Scholar 

  78. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. I, II. Arch. Rat. Mech. Anal. 50, 219–239; 241–256 (1975)

    Google Scholar 

  79. Liggett, T.M.: The stochastic evolution of infinite systems of interacting particles. Lect. Notes Math. 598, 187–248 (1977). Zbl. 363.60109

    Article  MathSciNet  Google Scholar 

  80. Malyshev, P.V.: Mathematical description of evolution of classical infinite system. Teor. Mat. Fiz. 44, No. 1, 63–74 (1980) [Russian]

    Article  Google Scholar 

  81. Marchioro, C., Pellegrinotti, A., Pulvirenti, M.: Remarks on the existence of non-equilibrium dynamics. In: Random fields. Rigorous results in statistical mechanics and quantum field theory, Colloq. Math. Soc. Janos Bolyai 27, vol. II, 733–746. Amsterdam-Oxford-New York, North-Holland 1981. Zbl. 496.60100

    MathSciNet  Google Scholar 

  82. Marchioro, C., Pulvirenti, M.: Vortex methods in two-dimensional fluid dynamics. (Roma, Edizione Klim), 1984. Zbl. 545.76027. Lect. Notes Phys. 203. Berlin etc.: Springer-Verlag III, 137 p. (1984)

    MATH  Google Scholar 

  83. Maslov, V.P.: Equations of the self-consisted field. In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 11, 153–234. (1978) [Russian]. Zbl. 404.45008. English transi.: J. Sov. Math. 11, 123–195(1979)

    Google Scholar 

  84. Maslov, V.P., Tariverdiev, CE.: The asymptotics of the Kolmogorov-Feller equation for a system of a large number of particles. In: Itogi Nauki Tekh., Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 19, 85–125 (1982) [Russian]. Zbl. 517.60100. English transi.: J. Sov. Math. 23, 2553–2579 (1983)

    Google Scholar 

  85. Matthes, K., Kerstan, J., Mecke, J.: Infinitely divisible point processes. Chichester-New York-Brisbane-Toronto, Wiley 1978. 532 p. Zbl. 383.60001

    MATH  Google Scholar 

  86. Minlos, R.A.: The limit Gibbs distribution. Funkts. Anal. Prilozh. 1, No. 2, 60–73 (1967) [Russian]. Zbl. 245.60080. English transi.: Funct. Anal. Appl. 1, 140–150 (1968)

    MathSciNet  Google Scholar 

  87. Minlos, R.A.: Regularity of the limit Gibbs distribution. Funkts. Anal. Prilozh. 1, No. 3, 40–53 (1967) [Russian]. Zbl. 245.60081. English transi.: Funct. Anal. Appl. 1, 206–217 (1968)

    MathSciNet  Google Scholar 

  88. Morrey, C.B.: On the derivation of the equations of hydrodynamics from statistical mechanics. Commun. Pure Appl. Math. 8, 279–326 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  89. Neunzert, H.: The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles. Trans. Fluid Dynamics 18, 663–678 (1977)

    Google Scholar 

  90. Nonequilibrium phenomena I. The Boltzmann equation. Studies in Statistical Me- chanics, Z (J.L. Lebowitz, E.W. Montroll, Eds.) Amsterdam-New York-Oxford, North-Holland 1983. Zbl. 583.76004

    Google Scholar 

  91. de Pazzis, O.: Ergodic properties of a semi-infinite hard rods systems. Commun. Math. Phys. 22, 121–132 (1971). Zbl. 236.60071

    Article  MATH  Google Scholar 

  92. Perkus, J.K.: Exact solution of kinetics of a model of classical fluid. Phys. Fluids. 12, 1560–1563(1969)

    Article  Google Scholar 

  93. Petrina, D.Ya.: Mathematical description for the evolution of infinite systems in classical statistical physics. Locally perturbed one dimensional systems. Teor. Mat. Fiz. 38, No. 2, 230–250 (1979) [Russian]

    Article  MathSciNet  Google Scholar 

  94. Presutti, E., Pulvirenti, M., Tirozzi, B.: Time evolution of infinite classical systems with singular, long range, two body interactions. Commun. Math. Phys. 47, 85–91 (1976)

    Article  MathSciNet  Google Scholar 

  95. Pulvirenti, M.: On the time evolution of the states of infinitely extended particles systems. J. Stat. Phys. 27, 693–709 (1982). Zbl. 511.60096

    Article  MathSciNet  MATH  Google Scholar 

  96. Ruelle, D.: Correlation functions of classical gases. Ann. Phys. 25, 109–120 (1963)

    Article  MathSciNet  Google Scholar 

  97. Ruelle, D.: Statistical Mechanics. Rigorous results. New York-Amsterdam, Benjamin 1969. Zbl. 177.573

    MATH  Google Scholar 

  98. Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 78, 127–159(1970)

    Article  MathSciNet  Google Scholar 

  99. Siegmund-Schultze, R.: On non-equilibrium dynamics of multidimensional infinite par- ticle systems in the translation invariant case. Commun. Math. Phys. 100, 245–265 (1985). Zbl. 607.60097

    Article  MathSciNet  MATH  Google Scholar 

  100. Sinai, Ya.G.: Ergodic theory. Acta Phys. Aust., Suppl. 10, 575–606 (1973)

    Google Scholar 

  101. Sinai, Ya.G.: Ergodic properties of a gas of one dimensional hard rods with an infinite number of degrees of freedom. Funkts. Anal. Prilozh. 6, No. 1, 41–50 (1972) [Russian]. Zbl. 257.60036. English, transi.: Funct. Anal. Appl. 6, 35–43 (1972)

    MathSciNet  Google Scholar 

  102. Sinai, Ya.G.: Construction of dynamics in one dimensional systems of statistical mechanics. Teor. Mat. Fiz. 11, No. 2, 248–258 (1972) [Russian]

    Article  MathSciNet  Google Scholar 

  103. Sinai, Ya.G.: Construction of cluster dynamics for dynamical systems of statistical mechanics. Vestn. Mosk. Gos. Univ. Mat. Mekh. 29, No. 3, 152–158 (1974) [Russian]

    MathSciNet  Google Scholar 

  104. Sinai, Ya.G.: Ergodic properties of the Lorentz gas. Funkt. Anal. Prilozh. 13, No. 3, 46–59 (1979) [Russian]. Zbl. 414.28015. English transi.: Funct. Anal. Appl. 13, 192–202 (1980)

    MathSciNet  MATH  Google Scholar 

  105. Sinai, Ya.G.: The theory of phase transitions. M.: Nauka 1980 [Russian]. Zbl. 508.60084

    Google Scholar 

  106. Skripnik, V.I.: On generalized solutions of Gibbs type for the Bogolyubov-Streltsova diffusion hierarchy. Teor. Mat. Fiz. 58, No. 3, 398–420 (1984) [Russian]

    Article  MathSciNet  Google Scholar 

  107. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52, No. 3, 569–615. (1980)

    Article  MathSciNet  Google Scholar 

  108. Spohn, H.: Fluctuation theory for the Boltzmann equation. In: Nonequilibrium phenomena I. The Boltzmann equation. Studies in statistical mechanics; pp. 418–439. (J.L. Lebowitz, E.W. Montroll, Eds.). Amsterdam-Oxford-New York, North-Holland 1983

    Google Scholar 

  109. Spohn, H.: Hydrodynamical theory for equilibrium time correlation functions of hard rods. Ann. Phys. 141, No. 2, 353–364 (1982)

    Article  MathSciNet  Google Scholar 

  110. Sukhov, Yu.M: Random point processes and DLR equations. Commun. Math. Phys. 50, No. 2, 113–132 (1976). Zbl. 357.60056

    Article  MATH  Google Scholar 

  111. Sukhov, Yu.M.: Matrix method for continuous systems of classical statistical mechanics. Tr. Mosk. Mat. O.-va. 24, 175–200 (1971) [Russian]. Zbl. 367.60117. English transi.: Trans. Mosc. Math. Soc. 24, 185–212 (1974)

    Google Scholar 

  112. Sukhov, Yu.M.: The strong solution of the Bogolyubov hierarchy in one dimensional classical statistical mechanics. Dokl. Akad. Nauk SSSR 244, No. 5, 1081–1084 (1979) [Russian]. Zbl. 422.45007. English transi.: Sov. Math., Dokl. 20, 179–182 (1979)

    MathSciNet  Google Scholar 

  113. Sukhov, Yu.M.: Stationary solutions of the Bogolyubov hierarchy and first integrals of the motion for the system of classical particles. Teor. Mat. Fiz. 55, No. 1, 78–87 (1983) [Russian]

    Article  MathSciNet  Google Scholar 

  114. Sukhov, Yu.M.: Convergence to a Poissonian distribution for certain models of particle motion. Izv. Akad. Nauk SSSR, Ser. Mat. 46, No. 1, 135–154 (1982) [Russian]. Zbl. 521.60063. English transi.: Math. USSR, Izv. 20, 137–155 (1983)

    MathSciNet  Google Scholar 

  115. Takahashi, Y.: A class of solutions of the Bogolyubov system of equations for classical statistical mechanics of hard core particles. Sci. Papers Coll. Gen. Educ, Univ. Tokyo. 26, No. 1, 15–26 (1976). Zbl. 402.70013

    MATH  Google Scholar 

  116. Takahashi, Y.: On a class of Bogolyubov equations and the time evolution in classical statistical mechanics. In: Random fields. Rigorous results in statistical mechanics and quantum field theory, vol. II. Amsterdam-Oxford-New York. Colloq. Math. Soc. Jáos Bolyai, 27, 1033–1056 (1981). Zbl. 495.28017

    Google Scholar 

  117. Tanaka, H.: On Markov processes corresponding to Boltzmann’s equation of Maxwellian gas. In: Proc. Second Japan-USSR Sympos. Prob. Theory, Kyoto. 1972, Lect. Notes Math. 330, 478–489 (1973). Zbl. 265.60095

    Google Scholar 

  118. Tanaka, H.: Stochastic differential equation associated with the Boltzmann equation of Maxwellian molecules in several dimensions. In: Stochastic analysis. London-New York-San Francisco, Acad. Press 1978. 301–314. Zbl. 445.76056. Proc. int. Conf., Evanston. 111.

    Google Scholar 

  119. Temam, R.: Navier-Stokes equations. Theory and numerical analysis. Stud. Math. Appl. 2 Amsterdam-New York-Oxford, North-Holland P.C., 1977. 500 p. Zbl. 383.35057

    Google Scholar 

  120. Ueno, T.: A stochastic model associated with the Boltzmann equation. Second Japan— USSR Symp. Prob. Theory, v. 2, 183–195, Kyoto 1972

    Google Scholar 

  121. Volkovysskij, K.L., Sinai, Ya.G.: Ergodic properties of an ideal gas with an infinite number of degrees of freedom. Funkt. Anal. Prilozh. 5, No. 3, 19–21 (1971) [Russian]. Zbl. 307.76005. English transi.: Funct. Anal. Appl. 5 (1971), 185–187 (1972)

    Google Scholar 

  122. Willms, J.: Convergence of infinite particle systems to the Poisson process under the action of the free dynamics. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 60, 69–74 (1982). Zbl. 583.60096. Infinite dimensional analysis and stochastic processes, Semin. Meet., Bielefeld 1983, Res. Notes Math. 124, 161–170 (1985)

    Google Scholar 

  123. Zemlyakov, A.N.: The construction of the dynamics in one dimensional systems of statistical physics in the case of infinite range potentials. Usp. Mat. Nauk. 28, No. 1, 239–240 (1973) [Russian]

    Google Scholar 

  124. Zessin, H.: Stability of equilibria of infinite particle systems. III. International Vilnius Conf. Prob. Theory Math. Stat. vol. III, 371–372, Vilnius 1981

    Google Scholar 

  125. Zessin, H.: The method of moments for random measures. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 62, 395–409 (1983). Zbl. 503.60060

    Article  MathSciNet  MATH  Google Scholar 

  126. Zessin, H.: BBGKY hierarchy equations for Newtonian and gradient systems. In: Infinite dimensional analysis and stochastic processes Semin. Meet., Bielefeld 1983, Res. Notes Math. 124 (S. Albeverio, Ed.), pp. 171–196. Boston-London-Melbourne: Pitman Adv. Publ. Program, 1985. Zbl. 583.60097

    Google Scholar 

  127. Zubarev, D.N.: Nonequilibrium statistical thermodynamics. Moscow, Nauka 1973 [Russian]

    Google Scholar 

  128. Zubarev, D.: Modern methods of statistical theory of nonequilibrium processes. Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. 15, 131–226 (1980) [Russian]. Zbl. 441.60099. English transi.: J. Sov. Math. 16, 1509–1572 (1981)

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobrushin, R.L., Sinai, Y.G., Sukhov, Y.M. (1989). Dynamical Systems of Statistical Mechanics. In: Sinai, Y.G. (eds) Dynamical Systems II. Encyclopaedia of Mathematical Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06788-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06788-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06790-1

  • Online ISBN: 978-3-662-06788-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics