Skip to main content

Behavioural Pharmacology of Dopamine D2 and D3 Receptors: Use of the Knock-out Mice Approach

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

Since the first evidence that dopamine (DA) serves as a central neurotransmitter became available (Carlsson et al. 1958), this catecholamine has generated enormous interest among neuroscientists, and would probably qualify as the most studied central neurotransmitter. Its pivotal role in numerous physiological processes (Jaber et al. 1996) and in major pathological conditions, in particular psychoses (Snyder 1976), has certainly contributed greatly to this privileged status. It appeared fairly early that the effects of DA are mediated by at least two types of receptors, named the D1 and the D2 receptors (Kebabian and Calne 1979). This conclusion was based on the dissociated effects that stimulation of each type had on the activity of adenylate cyclase, the enzyme responsible for the production of cyclic adenosine monophosphate (c-AMP). Levels of c-AMP are increased by activation of D1 receptors (Kebabian and Calne 1979) and decreased by activation of D2 receptors (De camilli et al. 1979). This opposite role of the two types of DA receptors is not ubiquitous, as they have also been shown to act in a cooperative manner in several models (see Waddington 1989 for review). For example, the two subtypes act synergistically to promote locomotor activity when activated (Molloy et al. 1986) or to produce catalepsy when blocked (Klemm and Block 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park B-H, Gauda EB, Lee EJ, Cool MH, Sibley DR, Gerfen CR, Westphal H, Fuchs S (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 93:1945–1949

    PubMed  CAS  Google Scholar 

  • Acri JB, Carter SR, Alling K, Geter-Douglass B, Dijkstra D, Wikström H, Katz JL, Witkin JM (1995) Assessment of cocaine-like discriminative stimulus effects of dopamine D3 receptor ligands. Eur J Pharmacol R7–R9

    Google Scholar 

  • Ahlenius S, Salmi P (1994) Behavioral and biochemical effects of the dopamine D3 receptor-selective ligand, 7-OH-DPAT, in the normal and the reserpine-treated rat. Eur J Pharmacol 260:177–181

    PubMed  CAS  Google Scholar 

  • Ahlenius S, Larsson K (1995) Effects of the dopamine D3 receptor ligand 7-OH-DPAT on male rat ejaculatory behavior. Pharmacol Biochem Behav 51:545–547

    PubMed  CAS  Google Scholar 

  • Arnt J (1982) Pharmacological specificity of conditioned avoidance response inhibition in rats: inhibition by neuroleptics and correlation to dopamine receptor blockade. Acta Pharmacol Toxicol 51:321–329

    CAS  Google Scholar 

  • Audinot V, Newman-Tancredi A, Gobert A, Rivet JM, Brocco M, Lejeune F, Gluck L, Desposte I, Bervoets K, Dekeyne A, Millan MJ (1998) A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 287:187–197

    PubMed  CAS  Google Scholar 

  • Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–428

    PubMed  CAS  Google Scholar 

  • Bevins RA, Delzer TA, Bardo MT (1996) Characterisation of the conditioned taste aversion produced by 7-OH-DPAT in rats. Pharmacol Biochem Behav 53:695–699

    PubMed  CAS  Google Scholar 

  • Bevins RA, Klebaur JE, Bardo MT (1997) 7-OH-DPAT has d-amphetamine-like discriminative stimulus properties. Pharmacol Biochem Behav 58:485–490

    PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Perrault Gh, Sanger DJ (1998) No evidence for differences between dopamine D3 receptor knock-out and wild-type mice. J Psychopharmacology 12, suppl. A: 26

    Google Scholar 

  • Boulay D, Depoortere R, Rostene W, Perrault Gh, Sanger DJ (1999a) Dopamine D3 receptor agonists produce similar decreases in body temperature and locomotor activity in D3 knock-out and wild-type mice. Neuropharmacology 38:555–565

    PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Perrault Gh, Borrelli E, Sanger DJ (1999b) Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of DA D2/D3 receptor agonists. Neuropharmacology 38:1389–1396

    PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Sanger DJ, Perrault Gh (1999c) Knocking out the D2, but not the D3, dopamine receptor produces an acquisition deficit, and an insensitivity to the deleterious effects of haloperidol in an active avoidance task. Society for Neuroscience 25:30.19

    Google Scholar 

  • Boulay D, Depoortere R, Oblin A, Claustre Y, Sanger DJ, Schoemaker H, Perrault Gh (2000) Cataleptogenic effects of haloperidol are absent in dopamine D2 receptor knock-out mice but maintained in D3 receptor knock-out mice. Eur J Pharmacol 391:63–73

    PubMed  CAS  Google Scholar 

  • Boyer P, Lecrubier Y, Puech AJ, Dewailly J, Aubin F (1995) Treatment of negative symptoms in schizophrenia with amisulpride. Br J Psychiatry 166:68–72

    PubMed  CAS  Google Scholar 

  • Bristow LJ, Cook GP, Patel S, Curtis N, Mawer I, Kulagowski JJ (1998) Discriminative stimulus properties of the putative dopamine D3 receptor agonist, (+)-PD 128907: Role of presynaptic dopamine D2 autoreceptors. Neuropharmacology 37:793–802

    PubMed  CAS  Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    PubMed  CAS  Google Scholar 

  • Burris KD, Pacheco MA, Filtz TM, Kung MP, Kung HF, Molinoff PB (1995) Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology 12:335–345

    PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    PubMed  CAS  Google Scholar 

  • Caine SB, Geyer MA, Swerdlow NR (1995) Effects of D3/D2 dopamine receptor agonists and antagonists on prepulse inhibition of acoustic startle in the rat. Neuropsychopharmacology 12:139–145

    PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF, Parsons LH, Everitt BJ, Schwartz JC, Sokoloff P (1997) D3 receptor test in vitro predicts decreased cocaine self-administration in rats. NeuroReport 8:2373–2377

    PubMed  CAS  Google Scholar 

  • Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544

    PubMed  CAS  Google Scholar 

  • Calon F, Goulet M, Blanchet PJ, Martel JC, Piercey MF, Bedard PJ, Di Paolo T (1995) Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA receptors in the striatopallidal complex. Brain Res 680:43–52

    PubMed  CAS  Google Scholar 

  • Camacho-Ochoa M, Hoffmann WE, Moon MW, Figur LM, Tang AH, Hirnes CS, Nichols NF, Piercey MF (1995) Presynaptic and postsynaptic pharmacology of U-95666 A, a dopamine agonist selective for the D2 receptor subtype: increase in postsynaptic response in Parkinson’s disease (PD) model. Society for Neuroscience 21:340.9

    Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471

    PubMed  CAS  Google Scholar 

  • Chaperon F, Thiébot, MH (1996) Effects of dopaminergic D3-receptor-preferring ligands on the acquisition of place conditioning in rats. Behav Pharmacol 7:105–109

    PubMed  CAS  Google Scholar 

  • Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60

    PubMed  CAS  Google Scholar 

  • Clifford JJ, Waddington JL (1998) Heterogeneity of behavioural profile between three new putative selective D3 dopamine receptor antagonists using an ethologically based approach. Psychopharmacology 136:284–290

    PubMed  CAS  Google Scholar 

  • Cohen C, Perrault GH, Sanger DJ (1998) Preferential involvement of D3 versus D2 dopamine receptors in the effects of dopamine receptor ligands on oral ethanol self-administration in rats. Psychopharmacology 140:478–485

    PubMed  CAS  Google Scholar 

  • Cook CD, Picker MJ (1998) Dopaminergic activity and the discriminative stimulus effects of mu opioids in pigeons: importance of training dose and attenuation by the D3 agonist (±)-7-OH-DPAT. Psychopharmacology 136:59–69

    PubMed  CAS  Google Scholar 

  • Cook CD, Rodefer JS, Picker MJ (1999) Selective attenuation of the antinociceptive effects of μ opioids by the putative dopamine D3 agonist 7-OH-DPAT. Psychopharmacology 144:239–247

    PubMed  CAS  Google Scholar 

  • Corbin AE, Pugsley TA, Akunne HC, Whetzel SZ, Zoski KT, Georgic LM, Nelson CB, Wright JL, Wise LD, Heffner TG (1998) Pharmacological characterization of PD152255, a novel dimeric benzimidazole dopamine D3 antagonist. Pharmacol Biochem Behav 59:487–493

    PubMed  CAS  Google Scholar 

  • Crusio WE (1996) Gene-targeting studies: New methods, old problems — Commentary. Trends Neurosci 19:186–187

    PubMed  CAS  Google Scholar 

  • Daly SA, Waddington JL (1993) Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other “D-2-like” agonists. Neuropharmacology 32:509–510

    PubMed  CAS  Google Scholar 

  • Damsma G, Bottema T, Westerink BHC, Tepper PG, Dijkstra D, Pugsley TA, MacKenzie RG, Heffner TG, Wikström H (1993) Pharmacological aspects of R-(+)-7-OH-DPAT, a putative dopamine D3 receptor ligand. Eur J Pharmacol 249: R9–R10

    PubMed  CAS  Google Scholar 

  • Davidson AB, Weidley E (1976) Differential effects of neuroleptic and other psychotropic agents on acquisition of avoidance in rats. Life Sci 18:1279–1284

    PubMed  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347:72–76

    PubMed  CAS  Google Scholar 

  • De Camilli P, Macconi D, Spada A (1979) Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenoma. Nature 278:252–254

    PubMed  Google Scholar 

  • De Fonseca FR, Rubio P, Martin-Calderon JL, Caine SB, Koob GF, Navarro M (1995) The dopamine receptor agonist 7-OH-DPAT modulates the acquisition and expression of morphine-induced place preference. Eur J Pharmacol 274:47–55

    Google Scholar 

  • Depoortere R, Perrault GH, Sanger, DJ (1996) Behavioural effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: Comparison with quinpirole and apomorphine. Psychopharmacology 124:231–240

    PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault GH, Sanger, DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: Effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142:221–229

    PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault GH, Sanger, DJ (2000) The D3 antagonist PNU-99194A potentiates the discriminative cue produced by the D3 agonist 7-OH-DPAT. Pharmacol Biochem Behav 65:31–34

    PubMed  CAS  Google Scholar 

  • Ferrari F, Giuliani D (1995) Behavioural effects of the dopamine D3 receptor agonist 7-OH-DPAT in rats. Pharmacol Res 32:63–68

    PubMed  CAS  Google Scholar 

  • Ferrari F, Giuliani D (1997) Effects of (-)eticlopride and 7-OH-DPAT on the tail suspension test in mice. J Psychopharmacol 11:339–344

    PubMed  CAS  Google Scholar 

  • Fibiger H, Phillips A (1988) Mesocorticolimbic dopamine systems and reward. Ann NY Acad Sci 537:206–215

    PubMed  CAS  Google Scholar 

  • Gackenheimer SL, Schaus JM, Gehlert DR (1995) [3H]-quinelorane binds to D2 and D3 dopamine receptors in the rat brain. J Pharmacol Exp Ther 274:1558–1565

    Google Scholar 

  • Gaitnetdinov RR, Sotnikova TD, Grekhova TV, Rayevsky KS (1996) In vivo evidence for preferential role of dopamine D3 receptor in the presynaptic regulation of dopamine release but not synthesis. Eur J Pharmacol 308:261–269

    Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Neurosci 19:177–182

    PubMed  CAS  Google Scholar 

  • Gilbert DB, Millar J, Cooper SJ (1995) The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Res 681:1–7

    PubMed  CAS  Google Scholar 

  • Gold LH (1996) Integration of molecular biological techniques and behavioural pharmacology. Behav Pharmacol 7:589–615

    PubMed  CAS  Google Scholar 

  • Grandy DK, Zhang YA, Bouvier C, Zhou QY, Johnson RA, Allen L, Buck K, Bunzow JR, Salon J, Civelli O (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc Natl Acad Sci USA 88:9175–9179

    PubMed  CAS  Google Scholar 

  • Hatcher JP, Hagan JJ (1998) The effects of dopamine D3/D2 receptor agonists on intracranial self stimulation in the rat. Psychopharmacology 140:405–410

    PubMed  CAS  Google Scholar 

  • Hernandez L, Auerbach S, Hoebel BG (1988) Phencyclidine (PCP) injected in the nucleus accumbens increases extracellular dopamine and serotonin as measured by microdialysis. Life Sci 42:1713–1723

    PubMed  CAS  Google Scholar 

  • Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35:1503–1519

    PubMed  CAS  Google Scholar 

  • Jung MY, Skryabin BV, Arai M, Abbondanzo S, Fu D, Brosius J, Robakis NK, Polites HG, Pintar JE, Schmauss C (1999) Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience 91:911–924

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    PubMed  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19:103–113

    PubMed  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–3479

    PubMed  CAS  Google Scholar 

  • Khroyan TV, Baker DA, Neisewander JL (1995) Dose dependent effects of the D3-preferring agonist 7-OH-DPAT on motor behaviors and place conditioning. Psychopharmacology 122:351–357

    PubMed  CAS  Google Scholar 

  • Khroyan TV, Fuchs RA, Baker DA, Neisewander JL (1997) Effects of D3-preferring agonists 7-OH-PIPAT and PD-128,907 on motor behaviors and place conditioning. Behav Pharmacol 8:65–74

    PubMed  CAS  Google Scholar 

  • Klemm WR, Block H (1988) D-1 and D-2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways. Pharmacol Biochem Behav 29:223–229

    PubMed  CAS  Google Scholar 

  • Kleven MS, Koek W (1996) Differential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys. J Pharmacol Exp Ther 279: 1211–1219

    PubMed  CAS  Google Scholar 

  • Kleven MS, Koek W (1997) Dopamine D2 receptors play a role in the (-)-apomorphine-like discriminative stimulus effects of (+)-PD 128907. Eur J Pharmacol 321:1–4

    PubMed  CAS  Google Scholar 

  • Kling-Petersen T, Ljung E, Wollter L, Svensson K (1995a) Effects of dopamine D3 preferring compounds on conditioned place preference and intracranial self-stimulation in the rat. J Neural Transm [Gen Sect] 101:27–39

    CAS  Google Scholar 

  • Kling-Petersen T, Ljung E, Svensson K (1995b) Effects on locomotor activity after local application of D3 preferring compounds in discrete areas of the rat brain. J Neural Transm [Gen Sect] 102:209–220

    CAS  Google Scholar 

  • Koeltzow TE, Cooper DC, Hu X-T, Xu M, Tonegawa S, White, FJ (1995) In vivo effects of dopaminergic ligands in dopamine D3 receptor deficient mice. Society for Neuroscience 21:149.3

    Google Scholar 

  • Kostrzewa RM, Brus R (1991) Is dopamine-agonist induced yawning behavior a D3 mediated event? Life Sci 48:129

    Google Scholar 

  • Kulagowski JJ, Broughton HB, Curtis NR, Mawer IM, Ridgill MP, Baker R, Emms F, Freedman SB, Marwood R, Patel S, Patel S, Ragan CI, Leeson PD (1996) 3[[4-(4-Chlorophenyl)piperazin-l-yl]-methyl]-lH-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem 39:1941–1942

    PubMed  CAS  Google Scholar 

  • Kurashima M, Yamada K, Nagashima M, Shirakawa K, Furukawa T (1995) Effects of putative dopamine D3 receptor agonists, 7-OH-DPAT, and quinpirole, on yawning, stereotypy, and body temperature in rats. Pharmacol Biochem Behav 52:503–508

    PubMed  CAS  Google Scholar 

  • Lagos P, Scorza C, Monti JM, Jantos H, Reyes-Parada M, Silveira R, Ponzoni A (1998) Effects of the D3 preferring dopamine agonist pramipexole on sleep and waking, locomotor activity and striatal dopamine release in rats. Eur Neuropsychopharmacol 8:113–120

    PubMed  CAS  Google Scholar 

  • Large CH, Stubbs CM (1994) The dopamine D3 receptor: Chinese hamsters or Chinese whispers? Trends Pharmacol Sci 15:46–47

    PubMed  CAS  Google Scholar 

  • Levant B (1997) The D3 dopamine receptor: Neurobiology and potential clinical relevance. Pharmacol Rev 49:231–252

    PubMed  CAS  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA 89:8155–8159

    PubMed  Google Scholar 

  • Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388: 586–589

    PubMed  CAS  Google Scholar 

  • Mallet PE, Beninger RJ (1994) 7-OH-DPAT produces place conditioning in rats. Eur J Pharmacol 261:R5–R6

    PubMed  CAS  Google Scholar 

  • Manzanedo C, Aguilar MA, Minarro J (1999) The effects of dopamine D2 and D3 antagonists on spontaneous motor activity and morphine-induced hyperactivity in male mice. Psychopharmacology 143:82–88

    PubMed  CAS  Google Scholar 

  • McCullough LD, Salamone JD (1992) Increases in extracellular dopamine levels and locomotor activity after direct infusion of phencyclidine into the nucleus accumbens. Brain Res 577:1–9

    PubMed  CAS  Google Scholar 

  • McElroy J, Zeller KL, Amy KA, Ward KA, Cawley JF, Mazzola AL, Keim W, Rohrbach K (1993) In vivo agonist properties of 7-hydroxy-N,N-Di-N-propyl-2-aminotetralin, a dopamine D3-selective receptor ligand. Drug Dev Res 30:257–259

    CAS  Google Scholar 

  • McElroy JF (1994) Discriminative stimulus properties of 7-OH-DPAT, a dopamine D3-selective receptor ligand. Pharmacol Biochem Behav 48:531–533

    PubMed  CAS  Google Scholar 

  • Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM (1995) Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur J Pharmacol 290:29–36

    PubMed  CAS  Google Scholar 

  • Millan MJ, Peglion JL, Vian J, Rivet JM, Broceo M, Gobert A, Newman-Tancredi A, Dacquet C, Bervoets K, Girardon S, Jacques V, Chaput C, Audinot V (1995) Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297:I. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J Pharmacol Exp Ther 275:885–898

    PubMed  CAS  Google Scholar 

  • Millan MJ, Gressier H, Broceo M (1997) The dopamine D3 receptor antagonist, (+)-S 14297, blocks the cataleptic properties of haloperidol in rats. Eur J Pharmacol 321:R7-R9

    PubMed  CAS  Google Scholar 

  • Moller HJ, Boyer P, Fleurot O, Rein W (1997) Improvement of acute exacerbations of schizophrenia with amisulpride: a comparison with haloperidol. Psychopharmacology 132:396–401

    PubMed  CAS  Google Scholar 

  • Molloy AG, O’Boyle KM, Pugh MT, Waddington JL (1986) Locomotor behaviors in response to new selective D-1 and D-2 dopamine receptor agonists, and the influence of selective antagonists. Pharmacol Biochem Behav 25:249–253

    PubMed  CAS  Google Scholar 

  • Monsma FJ Jr, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci USA 87:6723–6727

    PubMed  CAS  Google Scholar 

  • Murray PJ, Helden RM, Johnson MR, Robertson GM, Scopes DIC, Stokes M, Wadman S, Whitehead JWF, Hayes AG, Kilpatrick GJ, Large C, Stubbs CM, Turpin MP (1996) Novel 6-substituted 2-aminotetralins with potent and selective affinity for the dopamine D3 receptor. Bioorg Med Chem Lett 6:403–408

    CAS  Google Scholar 

  • Nakajima S, Liu X, Lau CL (1993) Synergistic interaction of D1 and D2 dopamine receptors in the modulation of the reinforcing effect of brain stimulation. Behav Neurosci 107:161–165

    PubMed  CAS  Google Scholar 

  • Niemegeers CJE, Verbrugen FJ, Janssen PAJ (1969) The influence of various neuroleptic drugs on shock avoidance responding in rats. Psychopharmacologia 16:161–174

    PubMed  CAS  Google Scholar 

  • Perrault Gh, Depoortere R, Sanger DJ (1996) Hypothermia and climbing behaviour induced by D2/D3 dopamine agonists in mice. Behav Pharmacol 7, sup 1:83

    Google Scholar 

  • Perrault Gh, Depoortere R, Morel E, Sanger DJ, Scatton B (1997) Psychopharmaco-logical profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 280:73–82

    PubMed  CAS  Google Scholar 

  • Piercey MF, Moon MW, Sethy VH, Schreur PJKD, Smith MW, Tang AH, Von Voigtlander PF (1996) Pharmacology of U-91356 A, an agonist for the dopamine D2 receptor subtype. Eur J Pharmacol 317:29–38

    PubMed  CAS  Google Scholar 

  • Phillips TJ, Brown KJ, Burkhart-Kasch S, Wenger CD, Kelly MA, Rubinstein M, Grandy DK, Low MJ (1998) Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nature Neurosci 7:610–615

    Google Scholar 

  • Pugsley TA, Davis MD, Akunne HC, Mackenzie RG, Shih YH, Damsma G, Wikstrom H, Whetzel SZ, Georgic LM, Cooke LW, Demattos SB, Corbin AE, Glase SA, Wise LD, Dijkstra D, Heffner TG (1995) Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 275:1355–1366

    PubMed  CAS  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Russel RN, Mc Bride WJ, Lumeng L, Li TK, Murphy JM (1996) Apomorphine and 7-OH-DPAT reduce ethanol intake of P and HAD rats. Alcohol 13:515–519

    Google Scholar 

  • Sanger DJ, Depoortere R, Perrault Gh (1996) Evidence for a role for dopamine D3 receptors in the effects of dopamine agonists on operant behaviour in rats. Behav Pharmacol 7:477–482

    PubMed  CAS  Google Scholar 

  • Sanger DJ, Depoortere R, Perrault Gh (1997) Discriminative stimulus effects of apomorphine and 7-OH-DPAT: a potential role for dopamine D3 receptors. Psychopharmacology 130:387–395

    PubMed  CAS  Google Scholar 

  • Sanger DJ, Perrault Gh, Depoortere R, Cohen C (1999) Using drug discrimination in rats to investigate the pharmacology of dopamine D3 receptors. In: Palomo T, Beninger RJ, Archer T (eds) Interactive monoaminergic disorders. Editorial Sintesis, Madrid, pp 481–498

    Google Scholar 

  • Sautel F, Griffon N, Levesque D, Pilon C, Schwartz JC, Sokoloff P (1995a) A functional test identifies dopamine agonists selective for D3 versus D2 receptors. Neuroreport 6:329–332

    PubMed  CAS  Google Scholar 

  • Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P, Costentin J, Schoenfelder A, Garrido F, Mann A (1995b) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 275:1239–1246

    PubMed  CAS  Google Scholar 

  • Scatton B, Claustre Y, Cudennec A, Oblin A, Perrault GH, Sanger DJ, Schoemaker H (1997) Amisulpride: from animal pharmacology to therapeutic action. Int Clin Psychopharmacol 12:S29–S36

    PubMed  Google Scholar 

  • Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O, Oblin A, Gonon F, Carter C, Benavides J, Scatton B (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 280:83–97

    PubMed  CAS  Google Scholar 

  • Schreur PJKD, Nichols NF (1995) U-95666 A, a dopamine D2 agonist: Behavioral studies in rats. Society for Neuroscience 21:340.7

    Google Scholar 

  • Schwartz J-C, Griffon N, Diaz J, Levesque D, Sautel F, Sokoloff P, Simon P, Costentin J, Garrido F, Mann A, Wermuth C (1995) The D3 receptor and its relevance in psychiatry. Int Clin Psychopharmacol 10:15–20

    PubMed  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7:261–284

    PubMed  CAS  Google Scholar 

  • Silvestre JS, O’Neill MF, Fernandez AG, Palacios JM (1996) Effects of a range of dopamine receptor agonists and antagonists on ethanol intake in the rat. Eur J Pharmacol 318:257–265

    PubMed  CAS  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. Am J Psychiatry 133:197–202

    PubMed  CAS  Google Scholar 

  • Snyder SH (1990) The dopamine connection. Nature 347:121–122

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    PubMed  CAS  Google Scholar 

  • Spealman RD (1996) Dopamine D3 receptor agonists partially reproduce the discriminative stimulus effects of cocaine in Squirrel monkeys. J Pharm Exp Ther 278: 1128–1137

    CAS  Google Scholar 

  • Starr MS, Starr BS (1995) Motor actions of 7-OH-DPAT in normal and reserpine-treated mice suggest involvement of both dopamine D2 and D3 receptors. Eur J Pharmacol 277:151–158

    PubMed  CAS  Google Scholar 

  • Steiner H, Fuchs S, Accili D (1998) D3 dopamine receptor-deficient mouse: evidence for reduced anxiety. Physiol Behav 63:137–141

    CAS  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y, Seeman P, O’Dowd BF (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    PubMed  CAS  Google Scholar 

  • Suzuki T, Maeda J, Funada M, Misawa M (1995) The D3-receptor agonist (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) attenuates morphine-induced hyperlocomotion in mice. Neurosci Lett 187:45–48

    PubMed  CAS  Google Scholar 

  • Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 334:234–245

    PubMed  CAS  Google Scholar 

  • Svensson K, Carlsson A, Waters N (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm [Gen Sect] 95:71–74

    CAS  Google Scholar 

  • Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT Jr, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 88:7491–7495

    PubMed  CAS  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  • Varty GB, Higgins GA (1997) Investigations into the nature of a 7-OH-DPAT discriminative cue: Comparison with D-amphetamine. Eur J Pharmacol 339:101–107

    PubMed  CAS  Google Scholar 

  • Varty GB, Higgins GA (1998) Dopamine agonist-induced hypothermia and disruption of prepulse inhibition: Evidence for a role of D3 receptors? Behav Pharmacol 9:445–455

    PubMed  CAS  Google Scholar 

  • Waddington JL (1989) Functional interactions between D1 and D2 dopamine receptor systems: Their role in the regulation of psychomotor behaviour, putative mechanisms, and clinical relevance. J Psychopharmacol 3:54–63

    PubMed  CAS  Google Scholar 

  • Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm [Gen Sect] 94:11–19

    CAS  Google Scholar 

  • Waters N, Lofberg L, Haadsma-Svensson S, Svensson K, Sonesson C, Carlsson A (1994) Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J Neural Transm [Gen Sect] 98:39–55

    CAS  Google Scholar 

  • Weinshank RL, Adham N, Macchi M, Olsen MA, Branchek TA, Hartig PR (1991) Molecular cloning and characterization of a high affinity dopamine receptor (Dl beta) and its pseudogene. J Biol Chem 266:22427–22435

    PubMed  CAS  Google Scholar 

  • Willner P (1995) Dopaminergic mechanisms in depression and mania. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology, the fourth generation of progress. Raven Press, New York, pp 921–931

    Google Scholar 

  • Wilson JM, Sanyal S, Van Tol HHM (1998) Dopamine D2 and D4 receptor ligands: Relation to antipsychotic action. Eur J Pharmacol 351:273–286

    PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    PubMed  CAS  Google Scholar 

  • Xu M, Caine SB, Cooper DC, Gold LH, Graybiel AM, Hu XT, Koeltzow TE, Koob GF, Moratalla R, White FJ, Tonegawa S (1995) Analyses of dopamine D3 and D1 receptor mutant mice. Society for Neuroscience 21:149.2

    Google Scholar 

  • Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu X-T, White NM, Graybiel AM, White FJ, Tonegawa S (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19:837–848

    PubMed  CAS  Google Scholar 

  • Xu M, Koeltzow TE, Cooper DC, Tonegawa S, White FJ (1999) Dopamine D3 receptor mutant and wild-type mice exhibit identical responses to putative D3 receptor-selective agonists and antagonists. Synapse 31:210–215

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Aiba A, Nakamura K, Nakao K, Sakagami H, Goto K, Kondo H, Katsuki M (1996) Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. Genes Cells 1:253–268

    PubMed  CAS  Google Scholar 

  • Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Depoortere, R., Boulay, D., Perrault, G., Sanger, D.J. (2002). Behavioural Pharmacology of Dopamine D2 and D3 Receptors: Use of the Knock-out Mice Approach. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics