Skip to main content

Dopamine — Glutamate Interactions

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

Dopamine (DA) and glutamate interact in the brain on a number of different levels. In this chapter we will illustrate both interneuronal and intraneuronal interactions of the DA and glutamate neurotransmitter systems, ranging from reciprocal release regulation of neurotransmitters to an interactive control of membrane depolarization and gene expression. Although many of these interactions are reciprocal, our approach in this review will be to consider the glutamate system to function as the prime mover, while the DA system provides a strong modulatory influence on responses mediated by glutamate release or activation of glutamate receptors. The characteristics of the modulation by the DA system depend on a number of factors. These include, but certainly are not limited to, the DA and glutamate receptor subtypes involved, the baseline activity-state of the neuron, the location of the receptors on pre- and/or postsynaptic elements, and endogenous concentrations of glutamate and DA. In our view a very important factor is receptor subtype. The combinations of DA and glutamate receptor subtypes activated determines, to a large extent, the outcome of the interaction. Thus, depending on the subtypes of DA and glutamate receptors involved, the interactions can be cooperative or opposing. This chapter will review the present knowledge of the different levels and types of interaction between both neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbuthnott GW, Wickens JR (1996) Dopamine cells are neurones too! Trends Neurosci 19:279–280

    Article  PubMed  CAS  Google Scholar 

  • Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547

    PubMed  CAS  Google Scholar 

  • Bernard V, Gardiol A, Faucheux B, Bloch B, Agid Y, Hirsch EC (1996) Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 368: 553–568

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Marciani MG, Morocutti C, Pavone F, Stanzione P (1978) The action of dopamine on rat caudate neurones intracellularly recorded. Neurosci Lett 8: 235–240

    Article  PubMed  CAS  Google Scholar 

  • Blank T, Nijholt I, Teichert U, Kugler H, Behrsing H, Fienberg A, Greengard P, Spiess J (1997) The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci (USA) 94: 14859–14864

    Article  CAS  Google Scholar 

  • Boldry RC, Papa SM, Kask AM, Chase TN (1995) MK-801 reverses effects of chronic levodopa on D1 and D2 dopamine agonist-induced rotational behavior. Brain Res 692:259–264

    Article  PubMed  CAS  Google Scholar 

  • Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233

    PubMed  CAS  Google Scholar 

  • Calabresi P, Maj R, Mercuri NB, Bernardi G (1992a) Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142:95–99

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, De Murtas M, Pisani A, Stefani A, Sancesario G, Mercuri NB, Bernardi G (1995) Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase. Eur J Neurosci 7:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544

    PubMed  CAS  Google Scholar 

  • Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci (USA) 90:9576–9580

    Article  CAS  Google Scholar 

  • Cepeda C, Levine MS (1998) Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998a) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94

    PubMed  CAS  Google Scholar 

  • Cepeda C, Li Z, Cromwell HC, Altemus KL, Crawford CA, Nansen EA, Ariano MA, Sibley DR, Peacock WJ, Mathern GW, Levine MS (1999) Electrophysiological and morphological analyses of cortical neurons obtained from children with catastrophic epilepsy: dopamine receptor modulation of glutamatergic responses. Dev Neurosci 21:223–235

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Itri JN, Flores-Hernández J, Hurst RS, Calvert CR, Levine MS (2001a) Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 14:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Hurst RS, Altemus KL, Flores-Hernández J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001b) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 85:659–670

    PubMed  CAS  Google Scholar 

  • Charton JP, Herkert M, Becker CM, Schroder H (1999) Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telencephalon. Brain Res 816:609–617

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Lacey MG (1999) Modulation by dopamine D1-like receptors of synaptic transmission and NMDA receptors in rat nucleus accumbens is attenuated by the protein kinase C inhibitor Ro 32–0432. Neuropharm 38:223–231

    Article  CAS  Google Scholar 

  • Cherubini E, Herrling PL, Lanfumey L, Stanzione P (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. J Physiol (Lond) 400:677–690

    CAS  Google Scholar 

  • Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Levine MS (1995) Excitatory synaptic transmission in neostriatal neurons: regulation by cyclic AMP-dependent mechanisms. J Neurosci 15:1704–1713

    PubMed  CAS  Google Scholar 

  • Counihan TJ, Landwehrmeyer GB, Standaert DG, Kosinski CM, Scherzer CR, Daggett LP, Velicelebi G, Young AB, Penney JB, Jr (1998) Expression of N-methyl-D-aspartate receptor subunit mRNA in the human brain: mesencephalic dopaminergic neurons. J Comp Neurol 390:91–101

    Article  PubMed  CAS  Google Scholar 

  • Desce JM, Godeheu G, Galli T, Artaud F, Cheramy A, Glowinski J (1992) L-glutamateevoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience 47:333–339

    Article  PubMed  CAS  Google Scholar 

  • Desee JM, Godeheu G, Galli T, Glowinski J, Cheramy A (1994) Opposite presynaptic regulations by glutamate through NMDA receptors of dopamine synthesis and release in rat striatal synaptosomes. Brain Res 640:205–214

    Article  Google Scholar 

  • Engber TM, Boldry RC, Kuo S, Chase TN (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res 581: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461

    PubMed  CAS  Google Scholar 

  • Flores-Hernandez J, Cepeda C, Fienberg AA, Greengard P, Levine MS (1999) Multiple pathways are involved in the enhancement of NMDA responses by activation of dopamine D1 receptors in neostriatal neurons. Soc Neurosci Abstr

    Google Scholar 

  • Flores-Hernández J, Hernández S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ (2000) D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 83:2996–3004

    PubMed  Google Scholar 

  • Gauchy C, Desban M, Glowinski J, Kernel ML (1994) NMDA regulation of dopamine release from proximal and distal dendrites in the cat substantia nigra. Brain Res 635:249–256

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  PubMed  CAS  Google Scholar 

  • Gracy KN, Pickel VM (1996) Ultrastructural immunocytochemical localization of the N-methyl-D-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens. Brain Res 739:169–181

    Article  PubMed  CAS  Google Scholar 

  • Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17:5271–5280

    PubMed  CAS  Google Scholar 

  • Healy DJ, Meador-Woodruff JH (1996) Differential regulation, by MK-801, of dopamine receptor gene expression in rat nigrostriatal and mesocorticolimbic systems. Brain Res 708:38–44

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342

    PubMed  CAS  Google Scholar 

  • Herrling PL, Hull CD (1980) Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res 192:441–462

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237

    PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Honore T, Jensen LH (1990) Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats. Brain Res 530:223–228

    Article  PubMed  CAS  Google Scholar 

  • Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45:599–606

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124

    PubMed  CAS  Google Scholar 

  • Kim HS, Jang CG (1997) MK-801 inhibits methamphetamine-induced conditioned place preference and behavioral sensitization to apomorphine in mice. Brain Res Bull 44:221–227

    Article  PubMed  CAS  Google Scholar 

  • Kita H (1996) Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience 70:925–940

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Leveque JC, Hyman SE (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16:4231–4239

    PubMed  CAS  Google Scholar 

  • Konradi C (1998) The molecular basis of dopamine and glutamate interactions in the striatum. Adv Pharmacol 42:729–733

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci (USA) 87:230–234

    Article  Google Scholar 

  • Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci (USA) 88:4205–4209

    Article  Google Scholar 

  • Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78

    Article  PubMed  CAS  Google Scholar 

  • Levine MS, Cepeda C (1998) Dopamine modulation of responses mediated by excitatory amino acids in the neostriatum. Adv Pharmacol 42:724–729

    Article  PubMed  CAS  Google Scholar 

  • Levine MS, Cepeda C, Colwell CS, Yu Q, Chandler SH (1998) Infrared video microscopy: Visualization and manipulation of neurons in neostriatal slices. In: Ariano MA (ed) Receptor Localization: Laboratory Method Procedure New York: John Wiley, pp 128–139

    Google Scholar 

  • Lindefors N, Ungerstedt U (1990) Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci Lett 115:248–252

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, Tyler EC, Merritt A (1993) Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 70:1937–1949

    PubMed  CAS  Google Scholar 

  • Martinez-Fong D, Rosales MG, Gongora-Alfaro JL, Hernandez S, Aceves J (1992) NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysis. Brain Res 595:309–315

    Article  PubMed  CAS  Google Scholar 

  • Maura G, Carbone R, Raiteri M (1989) Aspartate-releasing nerve terminals in rat striatum possess D-2 dopamine receptors mediating inhibition of release. J Pharmacol Exp Ther 251:1142–1146

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    Article  PubMed  CAS  Google Scholar 

  • Micheletti G, Lannes B, Haby C, Borrelli E, Kempf E, Warter JM, Zwiller J (1992) Chronic administration of NMDA antagonists induces D2 receptor synthesis in rat striatum. Brain Res Mol Brain Res 14:363–368

    Article  PubMed  CAS  Google Scholar 

  • Monsma FJ, Jr, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci (USA) 87:6723–6727

    Article  CAS  Google Scholar 

  • Nicola SM, Malenka RC (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 79:1768–1776

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976

    Article  PubMed  CAS  Google Scholar 

  • Rajadhyaksha A, Leveque J, Macias W, Barczak A, Konradi C (1998) Molecular components of striatal plasticity: the various routes of cyclic AMP pathways. Dev Neurosci 20:204–215

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Rebec GV (1998) Dopamine, glutamate, and behavioral correlates of striatal neuronal activity. Adv Pharmacol 42:737–740

    Article  PubMed  CAS  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22:146–151

    Article  PubMed  CAS  Google Scholar 

  • Richard MG, Bennett JP, Jr (1995) NMDA receptor blockade increases in vivo striatal dopamine synthesis and release in rats and mice with incomplete, dopamine-depleting, nigrostriatal lesions. J Neurochem 64:2080–2086

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Valadez A, McNamara C, House DT, Higley D, Bankson MG, Gibbs S, Horger BA (1993) Development and expression of sensitization to cocaine’s reinforcing properties: role of NMDA receptors. Psychopharmacology (Berl) 111:332–338

    Article  CAS  Google Scholar 

  • Schultz W (1998) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    PubMed  CAS  Google Scholar 

  • Shimizu N, Duan SM, Hori T, Oomura Y (1990) Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res Bull 25: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253

    Article  PubMed  CAS  Google Scholar 

  • Smolders I, Sarre S, Vanhaesendonck C, Ebinger G, Michotte Y (1996) Extracellular striatal dopamine and glutamate after decortication and kainate receptor stimulation, as measured by microdialysis. J Neurochem 66:2373–2380

    Article  PubMed  CAS  Google Scholar 

  • Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18:10297–10303

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  PubMed  CAS  Google Scholar 

  • Standaert DG, Friberg IK, Landwehrmeyer GB, Young AB, Penney JB, Jr (1999) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res Mol Brain Res 64:11–23

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S (1998) Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 18:4588–4602

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Guan HC, BF OD, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than Dl. Nature 350:614–619

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci (USA) 89:10178–10182

    Article  CAS  Google Scholar 

  • Surmeier DJ, Kitai ST (1993) D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 99:309–324

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Reiner AJ, Levine MS, Ariano MA (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci 16:299–305

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Yan Z, Song WJ (1998) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. Adv Pharmacol 42:1020–1023

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 58:192–200

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schiz-ophr Bull 24:285–301

    Article  CAS  Google Scholar 

  • Tang F, Costa E, Schwartz JP (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc Natl Acad Sci (USA) 80:3841–3844

    Article  CAS  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB, Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    PubMed  CAS  Google Scholar 

  • Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT, Jr, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci (USA) 88:7491–7495

    Article  CAS  Google Scholar 

  • Ulas J, Cotman CW (1996) Dopaminergic denervation of striatum results in elevated expression of NR2A subunit. Neuroreport 7:1789–1793

    Article  PubMed  CAS  Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  • Verma A, Moghaddam B (1998) Regulation of striatal dopamine release by metabotropic glutamate receptors. Synapse 28:220–226

    Article  PubMed  CAS  Google Scholar 

  • Walsh JP, Dunia R (1993) Synaptic activation of N-methyl-D-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat. Neuroscience 57:241–248

    Article  PubMed  CAS  Google Scholar 

  • Wan FJ, Geyer MA, Swerdlow NR (1995) Presynaptic dopamine-glutamate interactions in the nucleus accumbens regulate sensorimotor gating. Psychopharmacology (Berl) 120:433–441

    Article  CAS  Google Scholar 

  • Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different dopamine-glutamate interactions in the nucleus accumbens core and shell subre-gions. Brain Res 722:168–176

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410

    PubMed  CAS  Google Scholar 

  • Wolf ME, White FJ, Hu XT (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J Neurosci 14:1735–1745

    PubMed  CAS  Google Scholar 

  • Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Surmeier DJ (1997) D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 19:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, Nairn AC, Greengard P (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 2:13–17

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Zhang XX, Bunney BS, Shi WX (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neurosci 91:527–535

    Article  CAS  Google Scholar 

  • Ziolkowska B, Hollt V (1993) The NMDA receptor antagonist MK-801 markedly reduces the induction of c-fos gene by haloperidol in the mouse striatum. Neurosci Lett 156:39–42

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konradi, C., Cepeda, C., Levine, M.S. (2002). Dopamine — Glutamate Interactions. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics