Dopamine — Glutamate Interactions

  • C. Konradi
  • C. Cepeda
  • M. S. Levine
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 154 / 2)


Dopamine (DA) and glutamate interact in the brain on a number of different levels. In this chapter we will illustrate both interneuronal and intraneuronal interactions of the DA and glutamate neurotransmitter systems, ranging from reciprocal release regulation of neurotransmitters to an interactive control of membrane depolarization and gene expression. Although many of these interactions are reciprocal, our approach in this review will be to consider the glutamate system to function as the prime mover, while the DA system provides a strong modulatory influence on responses mediated by glutamate release or activation of glutamate receptors. The characteristics of the modulation by the DA system depend on a number of factors. These include, but certainly are not limited to, the DA and glutamate receptor subtypes involved, the baseline activity-state of the neuron, the location of the receptors on pre- and/or postsynaptic elements, and endogenous concentrations of glutamate and DA. In our view a very important factor is receptor subtype. The combinations of DA and glutamate receptor subtypes activated determines, to a large extent, the outcome of the interaction. Thus, depending on the subtypes of DA and glutamate receptors involved, the interactions can be cooperative or opposing. This chapter will review the present knowledge of the different levels and types of interaction between both neurotransmitter systems.


NMDA Receptor Glutamate Receptor Kainate Receptor Glutamate Receptor Subtype NMDA Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbuthnott GW, Wickens JR (1996) Dopamine cells are neurones too! Trends Neurosci 19:279–280PubMedCrossRefGoogle Scholar
  2. Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547PubMedGoogle Scholar
  3. Bernard V, Gardiol A, Faucheux B, Bloch B, Agid Y, Hirsch EC (1996) Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 368: 553–568PubMedCrossRefGoogle Scholar
  4. Bernardi G, Marciani MG, Morocutti C, Pavone F, Stanzione P (1978) The action of dopamine on rat caudate neurones intracellularly recorded. Neurosci Lett 8: 235–240PubMedCrossRefGoogle Scholar
  5. Blank T, Nijholt I, Teichert U, Kugler H, Behrsing H, Fienberg A, Greengard P, Spiess J (1997) The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci (USA) 94: 14859–14864CrossRefGoogle Scholar
  6. Boldry RC, Papa SM, Kask AM, Chase TN (1995) MK-801 reverses effects of chronic levodopa on D1 and D2 dopamine agonist-induced rotational behavior. Brain Res 692:259–264PubMedCrossRefGoogle Scholar
  7. Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787PubMedCrossRefGoogle Scholar
  8. Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233PubMedGoogle Scholar
  9. Calabresi P, Maj R, Mercuri NB, Bernardi G (1992a) Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142:95–99PubMedCrossRefGoogle Scholar
  10. Calabresi P, De Murtas M, Pisani A, Stefani A, Sancesario G, Mercuri NB, Bernardi G (1995) Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase. Eur J Neurosci 7:1674–1683PubMedCrossRefGoogle Scholar
  11. Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544PubMedGoogle Scholar
  12. Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341PubMedCrossRefGoogle Scholar
  13. Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci (USA) 90:9576–9580CrossRefGoogle Scholar
  14. Cepeda C, Levine MS (1998) Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18PubMedCrossRefGoogle Scholar
  15. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998a) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94PubMedGoogle Scholar
  16. Cepeda C, Li Z, Cromwell HC, Altemus KL, Crawford CA, Nansen EA, Ariano MA, Sibley DR, Peacock WJ, Mathern GW, Levine MS (1999) Electrophysiological and morphological analyses of cortical neurons obtained from children with catastrophic epilepsy: dopamine receptor modulation of glutamatergic responses. Dev Neurosci 21:223–235PubMedCrossRefGoogle Scholar
  17. Cepeda C, Itri JN, Flores-Hernández J, Hurst RS, Calvert CR, Levine MS (2001a) Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 14:1577–1589PubMedCrossRefGoogle Scholar
  18. Cepeda C, Hurst RS, Altemus KL, Flores-Hernández J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001b) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 85:659–670PubMedGoogle Scholar
  19. Charton JP, Herkert M, Becker CM, Schroder H (1999) Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telencephalon. Brain Res 816:609–617PubMedCrossRefGoogle Scholar
  20. Chergui K, Lacey MG (1999) Modulation by dopamine D1-like receptors of synaptic transmission and NMDA receptors in rat nucleus accumbens is attenuated by the protein kinase C inhibitor Ro 32–0432. Neuropharm 38:223–231CrossRefGoogle Scholar
  21. Cherubini E, Herrling PL, Lanfumey L, Stanzione P (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. J Physiol (Lond) 400:677–690Google Scholar
  22. Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823PubMedCrossRefGoogle Scholar
  23. Colwell CS, Levine MS (1995) Excitatory synaptic transmission in neostriatal neurons: regulation by cyclic AMP-dependent mechanisms. J Neurosci 15:1704–1713PubMedGoogle Scholar
  24. Counihan TJ, Landwehrmeyer GB, Standaert DG, Kosinski CM, Scherzer CR, Daggett LP, Velicelebi G, Young AB, Penney JB, Jr (1998) Expression of N-methyl-D-aspartate receptor subunit mRNA in the human brain: mesencephalic dopaminergic neurons. J Comp Neurol 390:91–101PubMedCrossRefGoogle Scholar
  25. Desce JM, Godeheu G, Galli T, Artaud F, Cheramy A, Glowinski J (1992) L-glutamateevoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience 47:333–339PubMedCrossRefGoogle Scholar
  26. Desee JM, Godeheu G, Galli T, Glowinski J, Cheramy A (1994) Opposite presynaptic regulations by glutamate through NMDA receptors of dopamine synthesis and release in rat striatal synaptosomes. Brain Res 640:205–214CrossRefGoogle Scholar
  27. Engber TM, Boldry RC, Kuo S, Chase TN (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res 581: 261–268PubMedCrossRefGoogle Scholar
  28. Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15:2453–2461PubMedGoogle Scholar
  29. Flores-Hernandez J, Cepeda C, Fienberg AA, Greengard P, Levine MS (1999) Multiple pathways are involved in the enhancement of NMDA responses by activation of dopamine D1 receptors in neostriatal neurons. Soc Neurosci AbstrGoogle Scholar
  30. Flores-Hernández J, Hernández S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ (2000) D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 83:2996–3004PubMedGoogle Scholar
  31. Gauchy C, Desban M, Glowinski J, Kernel ML (1994) NMDA regulation of dopamine release from proximal and distal dendrites in the cat substantia nigra. Brain Res 635:249–256PubMedCrossRefGoogle Scholar
  32. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432PubMedCrossRefGoogle Scholar
  33. Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711PubMedCrossRefGoogle Scholar
  34. Gracy KN, Pickel VM (1996) Ultrastructural immunocytochemical localization of the N-methyl-D-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens. Brain Res 739:169–181PubMedCrossRefGoogle Scholar
  35. Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17:5271–5280PubMedGoogle Scholar
  36. Healy DJ, Meador-Woodruff JH (1996) Differential regulation, by MK-801, of dopamine receptor gene expression in rat nigrostriatal and mesocorticolimbic systems. Brain Res 708:38–44PubMedCrossRefGoogle Scholar
  37. Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342PubMedGoogle Scholar
  38. Herrling PL, Hull CD (1980) Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res 192:441–462PubMedCrossRefGoogle Scholar
  39. Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237PubMedGoogle Scholar
  40. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108PubMedCrossRefGoogle Scholar
  41. Imperato A, Honore T, Jensen LH (1990) Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats. Brain Res 530:223–228PubMedCrossRefGoogle Scholar
  42. Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45:599–606PubMedCrossRefGoogle Scholar
  43. Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923PubMedGoogle Scholar
  44. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96PubMedCrossRefGoogle Scholar
  45. Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124PubMedGoogle Scholar
  46. Kim HS, Jang CG (1997) MK-801 inhibits methamphetamine-induced conditioned place preference and behavioral sensitization to apomorphine in mice. Brain Res Bull 44:221–227PubMedCrossRefGoogle Scholar
  47. Kita H (1996) Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience 70:925–940PubMedCrossRefGoogle Scholar
  48. Konradi C, Leveque JC, Hyman SE (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16:4231–4239PubMedGoogle Scholar
  49. Konradi C (1998) The molecular basis of dopamine and glutamate interactions in the striatum. Adv Pharmacol 42:729–733PubMedCrossRefGoogle Scholar
  50. Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci (USA) 87:230–234CrossRefGoogle Scholar
  51. Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci (USA) 88:4205–4209CrossRefGoogle Scholar
  52. Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78PubMedCrossRefGoogle Scholar
  53. Levine MS, Cepeda C (1998) Dopamine modulation of responses mediated by excitatory amino acids in the neostriatum. Adv Pharmacol 42:724–729PubMedCrossRefGoogle Scholar
  54. Levine MS, Cepeda C, Colwell CS, Yu Q, Chandler SH (1998) Infrared video microscopy: Visualization and manipulation of neurons in neostriatal slices. In: Ariano MA (ed) Receptor Localization: Laboratory Method Procedure New York: John Wiley, pp 128–139Google Scholar
  55. Lindefors N, Ungerstedt U (1990) Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci Lett 115:248–252PubMedCrossRefGoogle Scholar
  56. Lovinger DM, Tyler EC, Merritt A (1993) Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 70:1937–1949PubMedGoogle Scholar
  57. Martinez-Fong D, Rosales MG, Gongora-Alfaro JL, Hernandez S, Aceves J (1992) NMDA receptor mediates dopamine release in the striatum of unanesthetized rats as measured by brain microdialysis. Brain Res 595:309–315PubMedCrossRefGoogle Scholar
  58. Maura G, Carbone R, Raiteri M (1989) Aspartate-releasing nerve terminals in rat striatum possess D-2 dopamine receptors mediating inhibition of release. J Pharmacol Exp Ther 251:1142–1146PubMedGoogle Scholar
  59. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263PubMedCrossRefGoogle Scholar
  60. Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327PubMedCrossRefGoogle Scholar
  61. Micheletti G, Lannes B, Haby C, Borrelli E, Kempf E, Warter JM, Zwiller J (1992) Chronic administration of NMDA antagonists induces D2 receptor synthesis in rat striatum. Brain Res Mol Brain Res 14:363–368PubMedCrossRefGoogle Scholar
  62. Monsma FJ, Jr, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci (USA) 87:6723–6727CrossRefGoogle Scholar
  63. Nicola SM, Malenka RC (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 79:1768–1776PubMedGoogle Scholar
  64. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976PubMedCrossRefGoogle Scholar
  65. Rajadhyaksha A, Leveque J, Macias W, Barczak A, Konradi C (1998) Molecular components of striatal plasticity: the various routes of cyclic AMP pathways. Dev Neurosci 20:204–215PubMedCrossRefGoogle Scholar
  66. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633PubMedGoogle Scholar
  67. Rebec GV (1998) Dopamine, glutamate, and behavioral correlates of striatal neuronal activity. Adv Pharmacol 42:737–740PubMedCrossRefGoogle Scholar
  68. Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22:146–151PubMedCrossRefGoogle Scholar
  69. Richard MG, Bennett JP, Jr (1995) NMDA receptor blockade increases in vivo striatal dopamine synthesis and release in rats and mice with incomplete, dopamine-depleting, nigrostriatal lesions. J Neurochem 64:2080–2086PubMedCrossRefGoogle Scholar
  70. Schenk S, Valadez A, McNamara C, House DT, Higley D, Bankson MG, Gibbs S, Horger BA (1993) Development and expression of sensitization to cocaine’s reinforcing properties: role of NMDA receptors. Psychopharmacology (Berl) 111:332–338CrossRefGoogle Scholar
  71. Schultz W (1998) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690PubMedCrossRefGoogle Scholar
  72. Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270PubMedCrossRefGoogle Scholar
  73. Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106PubMedGoogle Scholar
  74. Shimizu N, Duan SM, Hori T, Oomura Y (1990) Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res Bull 25: 99–102PubMedCrossRefGoogle Scholar
  75. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265PubMedCrossRefGoogle Scholar
  76. Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19PubMedCrossRefGoogle Scholar
  77. Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253PubMedCrossRefGoogle Scholar
  78. Smolders I, Sarre S, Vanhaesendonck C, Ebinger G, Michotte Y (1996) Extracellular striatal dopamine and glutamate after decortication and kainate receptor stimulation, as measured by microdialysis. J Neurochem 66:2373–2380PubMedCrossRefGoogle Scholar
  79. Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18:10297–10303PubMedGoogle Scholar
  80. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151PubMedCrossRefGoogle Scholar
  81. Standaert DG, Friberg IK, Landwehrmeyer GB, Young AB, Penney JB, Jr (1999) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res Mol Brain Res 64:11–23PubMedCrossRefGoogle Scholar
  82. Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S (1998) Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 18:4588–4602PubMedGoogle Scholar
  83. Sunahara RK, Guan HC, BF OD, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than Dl. Nature 350:614–619PubMedCrossRefGoogle Scholar
  84. Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci (USA) 89:10178–10182CrossRefGoogle Scholar
  85. Surmeier DJ, Kitai ST (1993) D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 99:309–324PubMedCrossRefGoogle Scholar
  86. Surmeier DJ, Reiner AJ, Levine MS, Ariano MA (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci 16:299–305PubMedCrossRefGoogle Scholar
  87. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591PubMedGoogle Scholar
  88. Surmeier DJ, Yan Z, Song WJ (1998) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. Adv Pharmacol 42:1020–1023PubMedCrossRefGoogle Scholar
  89. Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 58:192–200PubMedCrossRefGoogle Scholar
  90. Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schiz-ophr Bull 24:285–301CrossRefGoogle Scholar
  91. Tang F, Costa E, Schwartz JP (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc Natl Acad Sci (USA) 80:3841–3844CrossRefGoogle Scholar
  92. Testa CM, Standaert DG, Young AB, Penney JB, Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018PubMedGoogle Scholar
  93. Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT, Jr, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci (USA) 88:7491–7495CrossRefGoogle Scholar
  94. Ulas J, Cotman CW (1996) Dopaminergic denervation of striatum results in elevated expression of NR2A subunit. Neuroreport 7:1789–1793PubMedCrossRefGoogle Scholar
  95. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614PubMedCrossRefGoogle Scholar
  96. Verma A, Moghaddam B (1998) Regulation of striatal dopamine release by metabotropic glutamate receptors. Synapse 28:220–226PubMedCrossRefGoogle Scholar
  97. Walsh JP, Dunia R (1993) Synaptic activation of N-methyl-D-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat. Neuroscience 57:241–248PubMedCrossRefGoogle Scholar
  98. Wan FJ, Geyer MA, Swerdlow NR (1995) Presynaptic dopamine-glutamate interactions in the nucleus accumbens regulate sensorimotor gating. Psychopharmacology (Berl) 120:433–441CrossRefGoogle Scholar
  99. Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different dopamine-glutamate interactions in the nucleus accumbens core and shell subre-gions. Brain Res 722:168–176PubMedCrossRefGoogle Scholar
  100. Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410PubMedGoogle Scholar
  101. Wolf ME, White FJ, Hu XT (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J Neurosci 14:1735–1745PubMedGoogle Scholar
  102. Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742PubMedCrossRefGoogle Scholar
  103. Yan Z, Surmeier DJ (1997) D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 19:1115–1126PubMedCrossRefGoogle Scholar
  104. Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, Nairn AC, Greengard P (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 2:13–17PubMedCrossRefGoogle Scholar
  105. Zheng P, Zhang XX, Bunney BS, Shi WX (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neurosci 91:527–535CrossRefGoogle Scholar
  106. Ziolkowska B, Hollt V (1993) The NMDA receptor antagonist MK-801 markedly reduces the induction of c-fos gene by haloperidol in the mouse striatum. Neurosci Lett 156:39–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • C. Konradi
  • C. Cepeda
  • M. S. Levine

There are no affiliations available

Personalised recommendations