Skip to main content

Dopamine — Acetylcholine Interactions

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

Dopamine-acetylcholine interactions can take place within and outside the striatum. In the striatum, cholinergic neurons are large aspiny interneurons that comprise 1%–3% of the total neuronal population of the striatum in rats (Fibiger 1982; Phelps et al. 1985) and monkeys (Mesulam et al. 1984; Difiglia 1987), and by virtue of their dendritic arborization extend over large territories in the striatum (Woolf 1991). Striatal cholinergic neurons receive direct excitatory glutamatergic inputs from the cortex and in particular from the parafascicular thalamus (Lapper and Bolam 1992) and dopaminergic inputs from substantia nigra pars compacta (Kubota et al. 1987). Striatal cholinergic neurons receive inhibitory and modulatory influences from various interneurons and from γ-aminobutyric acid (GABA)ergic medium-size spiny neurons where they finally converge with DA neurons (Di Chiara et al. 1994a). Acetylcholine, on the other hand, modulates the function of dopamine mesencephalic neurons by an action on nicotinic receptors by virtue of cholinergic projections from pontomesencephalic cell groups (Garzon et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie ED, DeBoer P (1997) Substantia nigra D1receptors and stimulation of striatal cholinergic interneurons by dopamine: a proposed circuit mechanism. J Neurosci 17:8498–8505

    PubMed  CAS  Google Scholar 

  • Acquas E, Fibiger HC (1996) Chronic lithium attenuates dopamine D1receptor mediated increases in acetylcholine release in rat frontal cortex. Psychopharmacology (Berl) 125:162–167

    Article  CAS  Google Scholar 

  • Acquas E, Fibiger HC (1998) Dopaminergic regulation of striatal acetylcholine release: the critical role of acetylcholinesterase inhibition. J Neurochem 70(3): 1088–1093

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Di Chiara G (1999a) Local application of SCH 39166 reversibly and dose-dependently decreases acetylcholine release in the rat striatum. Eur J Pharmacol 383:275–279

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Di Chiara G (1999b) Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine. Eur J Pharmacol 383:121–127

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Day JC, Fibiger HC (1994) The potent and selective dopamine D1receptor agonist A-77636 increases cortical and hippocampal acetylcholine release in the rat. Eur J Pharmacol 260:85–87

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Wilson C, Fibiger HC (1996) Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J Neurosci 16:3089–3096

    PubMed  CAS  Google Scholar 

  • Acquas E, Wilson C, Fibiger HC (1997) Nonstriatal dopamine D1receptors regulate striatal acetylcholine release in vivo. J Pharmacol Exp Ther 281:360–368

    PubMed  CAS  Google Scholar 

  • Acquas E, Wilson C, Fibiger HC (1998) Pharmacology of sensory stimulation-evoked increases in frontal cortical acetylcholine release. Neuroscience 85:73–83

    Article  PubMed  CAS  Google Scholar 

  • Ajima A, Yamaguchi T, Kato T (1990) Modulation of acetylcholine release by D1 D2 dopamine receptors in rat striatum under freely moving conditions. Brain Res 518:193–198

    Article  PubMed  CAS  Google Scholar 

  • Anderson JJ, Kuo S, Chase TN, Engber TM (1994) Dopamine D1receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokininl receptors. J Pharmacol Exp Ther 269:1144–1151

    PubMed  CAS  Google Scholar 

  • Andersson K, Fuxe K, Agnati LF (1981) Effects of single injections of nicotine on the ascending dopamine pathways in the rat. Evidence for increases of dopamine turnover in the mesostriatal and mesolimbic dopamine neurons. Acta Physiol Scand 112:345–347

    Article  PubMed  CAS  Google Scholar 

  • Aosaki T, Graybiel AM, Kimura M (1994) Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265: 412–415

    Article  PubMed  CAS  Google Scholar 

  • Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252

    PubMed  CAS  Google Scholar 

  • Aosaki T, Kiuchi K, Kawaguchi Y (1998) Dopamine D1like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18:5180–5190

    PubMed  CAS  Google Scholar 

  • Apicella P, Scarnati E, Schultz W (1991) Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84:672–675

    Article  PubMed  CAS  Google Scholar 

  • Armitage AK, Dollery CT, George CF, Houseman TH, Lewis PJ, Turner DM (1975) Absorption and metabolism of nicotine from cigarettes. Br Med J 4:313–316

    Article  PubMed  CAS  Google Scholar 

  • Arnold HM, Nelson CL, Neigh GN, Sarter M, Bruno JP (2000) Systemic and intraaccumbens administration of amphetamine differentially affects cortical acetylcholine release. Neuroscience 96:675–685

    Article  PubMed  CAS  Google Scholar 

  • Arqueros L, Naquira D, Zunino E (1978) Nicotine-induced release of catecholamines from rat hippocampus and striatum. Biochem Pharmacol 27:2667–2674

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Jimenes MM, Bourgeois J-P, Marubio LM, Le Sourd A-M, Ottersen OP, Rinvik E, Fairen A, Changeux J-P (1999) Ultrastructural localization if the α4-subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra. J Neurosci 19(15):6475–6487

    Google Scholar 

  • Baldi G, Russi G, Nannini L, Vezzani A, Consolo S (1995) Trans-synaptic modulation of striatal ACh release in vivo by the parafascicular thalamic nucleus. Eur J Neurosci 7:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Bassareo V, Tanda G, Petromilli P, Giua C, Di Chiara G (1996) Non-psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat [published erratum appears in Psychopharmacology (Berl) 1996 Oct; 127(3):289–90]. Psychopharmacology (Berl) 124:293–299

    Article  CAS  Google Scholar 

  • Bennett BD, Wilson CJ (1998) Synaptic regulation of action potential timing in neostriatal cholinergic interneurons. J Neurosci 18:8539–8549

    PubMed  CAS  Google Scholar 

  • Bertorelli R, Consolo S (1990) D1 and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats. J Neurochem 54:2145–2148

    Article  PubMed  CAS  Google Scholar 

  • Bertorelli R, Zambelli M, Di Chiara G, Consolo S (1992) Dopamine depletion preferentially impairs D1- over D2-receptor regulation of striatal in vivo acetylcholine release. J Neurochem 59:353–357

    Article  PubMed  CAS  Google Scholar 

  • Blaha CD, Winn P (1993) Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. J Neurosci 13:1035–1044

    PubMed  CAS  Google Scholar 

  • Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–722

    PubMed  CAS  Google Scholar 

  • Bolam JP, Ingham CA, Izzo PN, Levey AI, Rye DB, Smith AD, Wainer BH (1986) Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res 397:279–289

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP, Izzo PN (1988) The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Exp Brain Res 70:361–377

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41: 483–494

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Lacey MG, North RA (1989) Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 98:135–140

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Silvagni A, Rolando MT, Di Chiara G (2000) Stimulation of in vivo dopamine transmission in the bed nucleus of stria terminalis by reinforcing drugs. J Neurosci 20:RC102

    PubMed  CAS  Google Scholar 

  • Casamenti F, Deffenu G, Abbamondi AL, Pepeu G (1986) Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res Bull 16: 689–695

    Article  PubMed  CAS  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Clarke PB, Hommer DW, Pert A, Skirboll LR (1987) Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 23:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Connelly MS, Littleton JM (1983) Lack of stereoselectivity in ability of nicotine to release dopamine from rat synaptosomal preparations. J Neurochem 41:1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Wu CF, Fiorentini F, Ladinsky H, Vezzani A (1987a) Determination of endogenous acetylcholine release in freely moving rats by transstriatal dialysis coupled to a radioenzymatic assay: effect of drugs. J Neurochem 48:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Wu CF, Fusi R (1987b) D-1 receptor-linked mechanism modulates cholinergic neurotransmission in rat striatum. J Pharmacol Exp Ther 242:300–305

    PubMed  CAS  Google Scholar 

  • Consolo S, Girotti P, Russi G, Di Chiara G (1992) Endogenous dopamine facilitates striatal in vivo acetylcholine release by acting on D1 receptors localized in the striatum. J Neurochem 59:1555–1557

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Colli E, Caltavuturo C, Di Chiara G (1996a) Surgical anaesthesia with pentobarbital prevents the effect of local SCH 23390 on rat striatal acetylcholine release in a strain-dependent manner. Behavioural Pharmacology 7:663–668

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Baldi G, Giorgi S, Nannini L (1996b) The cerebral cortex and parafascicular thalamic nucleus facilitate in vivo acetylcholine release in the rat striatum through distinct glutamate receptor subtypes. Eur J Neurosci 8:2702–2710

    Article  PubMed  CAS  Google Scholar 

  • Consolo S, Baronio P, Guidi G, Di Chiara G (1996c) Role of the parafascicular thalamic nucleus and N-methyl-D-aspartate transmission in the D1-dependent control of in vivo acetylcholine release in rat striatum. Neuroscience 71:157–165

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Westerink BH, de Vries JB, Van den Berg CJ, Horn AS (1987) Measurement of acetylcholine release in freely moving rats by means of automated intracerebral dialysis. J Neurochem 48:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Tham CS, Robertson GS, Fibiger HC (1990) Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat. Eur J Pharmacol 186:335–338

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Robertson GS, Tham CS, Fibiger HC (1991) Dopaminergic regulation of striatal acetylcholine release: importance of D1 and N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 259:1064–1072

    PubMed  CAS  Google Scholar 

  • Day J, Fibiger HC (1992) Dopaminergic regulation of cortical acetylcholine release. Synapse 12:281–286

    Article  PubMed  CAS  Google Scholar 

  • Day J, Fibiger HC (1993) Dopaminergic regulation of cortical acetylcholine release: effects of dopamine receptor agonists. Neuroscience 54:643–648

    Article  PubMed  CAS  Google Scholar 

  • Day JC, Fibiger HC (1994) Dopaminergic regulation of septohippocampal cholinergic neurons. J Neurochem 63:2086–2092

    Article  PubMed  CAS  Google Scholar 

  • Day JC, Tham CS, Fibiger HC (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur J Pharmacol 263:285–292

    Article  PubMed  CAS  Google Scholar 

  • DeBoer P, Abercrombie ED (1996) Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther 277:775–783

    PubMed  CAS  Google Scholar 

  • DeBoer P, Damsma G, Schram Q, Stoof JC, Zaagsma J, Westerink BH (1992) The effect of intrastriatal application of directly and indirectly acting dopamine agonists and antagonists on the in vivo release of acetylcholine measured by brain microdialy-sis. The importance of the post-surgery interval. Naunyn Schmiedebergs Arch Pharmacol 345:144–152

    Article  CAS  Google Scholar 

  • DeBoer P, Heeringa MJ, Abercrombie ED (1996) Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur J Pharmacol 317:257–262

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem 264:6268–6272

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Morelli M (1994) Acetylcholine, Dopamine and NMDA transmission in the caudate-putamen: their interaction and functions as a striatal modulatory system. In: Percheron G (ed) The Basal ganglia IV. Plenum Press, New York, pp 491–505

    Chapter  Google Scholar 

  • Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233

    Article  PubMed  Google Scholar 

  • Difiglia M (1987) Synaptic organization of cholinergic neurons in the monkey neostriatum. J Comp Neurol 255:245–258

    Article  PubMed  CAS  Google Scholar 

  • Divac I, Fonnum F, Storm-Mathisen J (1977) High affinity uptake of glutamate in terminals of corticostriatal axons. Nature 266:377–378

    Article  PubMed  CAS  Google Scholar 

  • Dolezal V, Jackisch R, Hertting G, Allgaier C (1992) Activation of dopamine D1 receptors does not affect D2 receptor-mediated inhibition of acetylcholine release in rabbit striatum. Naunyn Schmiedebergs Arch Pharmacol 345:16–20

    PubMed  CAS  Google Scholar 

  • Dominguez DT, Juiz JM, Peng X, Lindstrom J, Criado M (1994) Immunocytochemical localization of the alpha 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol 349:325–342

    Article  Google Scholar 

  • Drukarch B, Schepens E, Schoffelmeer AN, Stoof JC (1989) Stimulation of D-2 dopamine receptors decreases the evoked in vitro release of [3H] acetylcholine from rat neostriatum: role of K+ and Ca2+. J Neurochem 52:1680–1685

    Article  PubMed  CAS  Google Scholar 

  • Drukarch B, Schepens E, Stoof JC (1991) Sustained activation does not desensitize the dopamine D2 receptor-mediated control of evoked in vitro release of radiolabeled acetylcholine from rat striatum. Eur J Pharmacol 196:209–212

    Article  PubMed  CAS  Google Scholar 

  • Fa M, Carcangiu G, Passino N, Ghiglieri V, Gessa GL, Mereu G (2000) Cigarette smoke inhalation stimulates dopaminergic neurons in rats. Neuroreport 11:3637–3639

    Article  PubMed  CAS  Google Scholar 

  • Fage D, Scatton B (1986) Opposing effects of D-1 and D-2 receptor antagonists on acetylcholine levels in the rat striatum. Eur J Pharmacol 129:359–362

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res 257:327–388

    PubMed  CAS  Google Scholar 

  • Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence [see comments]. Trends Neurosci 14:220–223

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–873

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, Sharp BM (1999) Local alpha-bungarotoxin-sensitive nicotinic receptors modulate hippocampal norepinephrine release by systemic nicotine. J Pharmacol Exp Ther 289:133–139

    PubMed  CAS  Google Scholar 

  • Fuxe K, Andersson K, Harfstrand A, Agnati LF (1986) Increases in dopamine utilization in certain limbic dopamine terminal populations after a short period of intermittent exposure of male rats to cigarette smoke. J Neural Transm 67:15–29

    Article  PubMed  CAS  Google Scholar 

  • Garzon M, Vaughan RA, Uhl GR, kuhar MJ, Pickel VM (1999) Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. J Comp Neurol 410(2):197–210

    Article  PubMed  CAS  Google Scholar 

  • George TP, Verrico CD, Roth RH (1998) Effects of repeated nicotine pre-treatment on mesoprefrontal dopaminergic and behavioral responses to acute footshock stress. Brain Res 801:36–49

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The Basal Ganglia. In: Swanson LW, Bjorklund A, Hockfelt T, Elsevier SV (eds) Handbook of Chemical Neuroanatomy, Vol. 12: Integrates Systems of the CNS, Part III. (Amsterdam), pp 371–468

    Google Scholar 

  • Giorguieff-Chesselet MF, Kernel ML, Wandscheer D, Glowinski J (1979) Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci 25:1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Giovannini MG, Camilli F, Mundula A, Bianchi L, Colivicchi MA, Pepeu G (1995) Differential regulation by iV-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of acetylcholine release from the rat striatum in vivo. Neuroscience 65: 409–415

    Article  PubMed  CAS  Google Scholar 

  • Goodman FR (1974) Effects of nicotine on distribution and release of 14C-norepinephrine and 14C-dopamine in rat brain striatum and hypothalamus slices. Neuropharmacology 13:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Czarnecki B (1986) Pharmacologic evidence for direct dopaminergic regulation of striatal acetylcholine release. Life Sci 38:2239–2246

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Czarnecki B, Hubbell S (1986) Functional antagonism of D-1 and D-2 dopaminergic mechanisms affecting striatal acetylcholine release. Life Sci 38: 2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Grady SR, Marks MJ, Collins AC (1994) Desensitization of nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes. J Neurochem 62:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JN, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–81

    Article  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128(3):351–358

    Article  PubMed  CAS  Google Scholar 

  • Gronier B, Rasmussen K (1998) Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 124:455–464

    Article  PubMed  CAS  Google Scholar 

  • Gronier B, Perry KW, Rasmussen K (2000) Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology (Berl) 147:347–355

    Article  CAS  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    Article  PubMed  CAS  Google Scholar 

  • Henderson Z, Sherriff FE (1991) Distribution of choline acetyltransferase immunore-active axons and terminals in the rat and ferret brainstem. J Comp Neurol 314: 147–163

    Article  PubMed  CAS  Google Scholar 

  • Hersi AI, Richard JW, Gaudreau P, Quirion R (1995) Local modulation of hippocampal acetylcholine release by dopamine D1 receptors: a combined receptor autoradiography and in vivo dialysis study. J Neurosci 15:7150–7157

    PubMed  CAS  Google Scholar 

  • Hertting G, Zumstein A, Jackisch R, Hoffmann I, Starke K (1980) Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 315:111–117

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Birdsall NJ, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Obinu MC, Casu MA, Mascia MS, Dazzi L, Gessa GL (1993) Evidence that neuroleptics increase striatal acetylcholine release through stimulation of dopamine D1 receptors. J Pharmacol Exp Ther 266:557–562

    PubMed  CAS  Google Scholar 

  • Imperato A, Obinu MC, Dazzi L, Gessa GL (1994b) Does dopamine exert a tonic inhibitory control on the release of striatal acetylcholine in vivo? Eur J Pharmacol 251:271–279

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Obinu MC, Carta G, Mascia MS, Casu MA, Dazzi L, Gessa GL (1994a) Neuroleptics cause stimulation of dopamine D1 receptors and their desensitiza-tion after chronic treatment. Eur J Pharmacol 264:55–60

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Obinu MC, Mascia MS, Casu MA, Zocchi A, Cabib S, Puglisi-Allegra S (1996) Strain-dependent effects of dopamine agonists on acetylcholine release in the hippocampus: an in vivo study in mice. Neuroscience 70:653–660

    Article  PubMed  CAS  Google Scholar 

  • Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    Article  PubMed  CAS  Google Scholar 

  • lorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226:462–468

    PubMed  CAS  Google Scholar 

  • Izenwasser S, Jacocks HM, Rosenberger JG, Cox BM (1991) Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem 56:603–610

    Article  PubMed  CAS  Google Scholar 

  • Jongen-Relo AL, Docter GJ, Jonker AJ, Voorn P (1995) Differential localization of mRNAs encoding dopamine D1 or D2 receptors in cholinergic neurons in the core and shell of the rat nucleus accumbens. Brain Res Mol Brain Res 28:169–174

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Marshall JF (1987) Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: localization to intrinsic neurons and not to neocortical afferents. Neuroscience 20:773–795

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Surmeier DJ (1993) Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. Adv Neurol 60:40–52

    PubMed  CAS  Google Scholar 

  • Klink R, de Kerkove d’Exaerde A, Zoli M, Changeaux J-P (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21(5):1452–1463

    PubMed  CAS  Google Scholar 

  • Klitenick MA, Kalivas PW (1994) Behavioral and neurochemical studies of opioid effects in the pedunculopontine nucleus and mediodorsal thalamus. J Pharmacol Exp Ther 269:437–448

    PubMed  CAS  Google Scholar 

  • Kogan MJ, Verebey K, Jaffee JH, Mule SJ (1981) Simultaneous determination of nicotine and cotinine in human plasma by nitrogen detection gas-liquid chromatography. J Forensic Sci 26:6–11

    PubMed  CAS  Google Scholar 

  • Ksir C, Mellor G, Hart C, Gerhardt GA (1995) Nicotine enhances dopamine clearance in rat nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 19: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M (1987) Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res 413:179–184

    Article  PubMed  CAS  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci USA 88:4205–4209

    Article  PubMed  Google Scholar 

  • Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10:1105–1120

    Article  PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Hefti F, Felix D, Huwyler T, Melamed E, Schlumpf M (1982) Stimulation of nigrostriatal dopamine neurones by nicotine. Neuropharmacology 21: 963–968

    Article  PubMed  CAS  Google Scholar 

  • Login IS, Borland K, Harrison MB (1995a) Acute dopamine depletion potentiates independent stimulatory and inhibitory D1 DA receptor-mediated control of striatal acetylcholine release in vitro. Brain Res 681:209–212

    Article  PubMed  CAS  Google Scholar 

  • Login IS, Borland K, Harrison MB, Ragozzino ME, Gold PE (1995b) Acetylcholine release from dissociated striatal cells. Brain Res 697:271–275

    Article  PubMed  CAS  Google Scholar 

  • Marien M, Brien J, Jhamandas K (1983) Regional release of [3H]dopamine from rat brain in vitro: effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Can J Physiol Pharmacol 61:43–60

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Grewaal DS, McGeer EG (1974) Influence of noncholinergic drugs on rat striatal acetylcholine levels. Brain Res 80:211–217

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG, Scherer U, Singh K (1977) A glutamatergic corticostriatal path? Brain Res 128:369–373

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141:395–399

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Sarter M, Bruno JP (1992) Age-dependent modulation of in vivo cortical acetylcholine release by benzodiazepine receptor ligands. Brain Res 596:17–29

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88: 811–822

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994a) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75:348–352

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994b) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Marcus M, Nomikos GG, Svensson TH (1997) Differential effects of acute and chronic nicotine on dopamine output in the core and shell of the rat nucleus accumbens. J Neural Transm 104:1–10

    Article  PubMed  CAS  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    PubMed  CAS  Google Scholar 

  • Olmstead MC, Munn EM, Franklin KB, Wise RA (1998) Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement. J Neurosci 18:5035–5044

    PubMed  CAS  Google Scholar 

  • Pepeu G, Bartolini A (1968) Effect of psychoactive drugs on the output of acetylcholine from the cerebral cortex of the cat. Eur J Pharmacol 4:254–263

    Article  PubMed  CAS  Google Scholar 

  • Pepeu G, Mantovani P (1978) Effect of bromocriptine on acetylcholine output from the cerebral cortex. Pharmacology 16 Suppl 1:204–206

    Article  PubMed  CAS  Google Scholar 

  • Phelps PE, Houser CR, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 238: 286–307

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G (2000) Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci (Online.) 20:RC69

    CAS  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs [see comments]. Nature 382: 255–257

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Colquhoun D, Rang HP (1982) The action of ganglionic blocking drugs on the synaptic responses of rat submandibular ganglion cells. Br J Pharmacol 75: 151–168

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1994) Arousal systems and attention. In: Gazzaniga MS (ed). The Cognitive Neurosciences, MIT (Cambridge), pp 703–720

    Google Scholar 

  • Rowell PP, Carr LA, Garner AC (1987) Stimulation of [3H]dopamine release by nicotine in rat nucleus accumbens. J Neurochem 49:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Russell MA, Jarvis M, Iyer R, Feyerabend C (1980) Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J 280:972–976

    Article  PubMed  CAS  Google Scholar 

  • Sakurai Y, Takano Y, Kohjimoto Y, Honda K, Kamiya HO (1982) Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res 242:99–106

    Article  PubMed  CAS  Google Scholar 

  • Sarter M (1994) Neuronal mechanisms of the attentional dysfunctions in senile dementia and schizophrenia: two sides of the same coin? Psychopharmacology (Berl) 114:539–550

    Article  CAS  Google Scholar 

  • Sarter M, Bruno JP (2000) Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95:933–952

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 35:146–160

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Ueda H, Okumura F, Misu Y (1994) Supersensitization of intrastriatal dopamine receptors involved in opposite regulation of acetylcholine release in Parkinson’s model rats. Neurosci Lett 173:59–62

    Article  PubMed  CAS  Google Scholar 

  • Scatton B (1982a) Further evidence for the involvement of D2, but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission. Life Sci 31:2883–2890

    Article  PubMed  CAS  Google Scholar 

  • Scatton B (1982b) Effect of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: evidence against dopamine receptor multiplicity. J Pharmacol Exp Ther 220:197–202

    PubMed  CAS  Google Scholar 

  • Schilstrom B, Svensson HM, Svensson TH, Nomikos GG (1998a) Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of alpha7 nicotinic receptors in the ventral tegmental area. Neuroscience 85: 1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Schilstrom B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998b) N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    PubMed  CAS  Google Scholar 

  • Schwaber JS, Rogers WT, Satoh K, Fibiger HC (1987) Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three- dimensional reconstruction. J Comp Neurol 263:309–325

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Sethy VH (1979) Regulation of striatal acetylcholine concentration by D2-dopamine receptors. Eur J Pharmacol 60:397–398

    Article  PubMed  CAS  Google Scholar 

  • Sethy VH, Van Woert MH (1974) Modification of striatal acetylcholine concentration by dopamine receptor agonists and antagonists. Res Commun Chem Pathol Pharmacol 8:13–28

    PubMed  CAS  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    Article  PubMed  CAS  Google Scholar 

  • Spencer HJ (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res 102:91–101

    Article  PubMed  CAS  Google Scholar 

  • Stadler H, Lloyd KG, Gadea-Ciria M, Bartholini G (1973) Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res 55: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Starr MS (1995) Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 19:264–293

    Article  PubMed  CAS  Google Scholar 

  • Steinberg R, Rodier D, Souiclhac J, Bougault I, Emonds-Alt X, Soubrie P, Le Fur G (1995) Pharmacological characterization of tachykinin receptors controlling acetylcholine release from rat striatum: an in vivo microdialysis study. J Neurochem 65:2543–2548

    Article  PubMed  CAS  Google Scholar 

  • Stoof JC, Drukarch B, De Boer P, Westerink BH, Groenewegen HJ (1992) Regulation of the activity of striatal cholinergic neurons by dopamine. Neuroscience 47: 755–770

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH, Mathe JM, Nomikos GG, Schilstrom B (1998) Role of excitatory amino acids in the ventral tegmental area for central actions of non-competitive NMDA-receptor antagonists and nicotine. Amino Acids 14:51–56

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–656

    Article  PubMed  CAS  Google Scholar 

  • Taber MT, Fibiger HC (1994) Cortical regulation of acetylcholine release in rat striatum. Brain Res 639:354–356

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Sakurai Y, Kohjimoto Y, Honda K, Kamiya HO (1983) Presynaptic modulation of the release of dopamine from striatal synaptosomes: differences in the effects of high K+ stimulation, methamphetamine and nicotinic drugs. Brain Res 279:330–334

    Article  PubMed  CAS  Google Scholar 

  • Tedford CE, Crosby G, Jr, lorio LC, Chipkin RE (1992) Effect of SCH 39166, a novel dopamine D1 receptor antagonist, on [3H]acetylcholine release in rat striatal slices. Eur J Pharmacol 211:169–176

    Article  PubMed  CAS  Google Scholar 

  • Trabucchi M, Cheney DL, Racagni G, Costa E (1975) In vivo inhibition of striatal ace-tycholine turnover by L-DOPA, apomophine and (plus)-amphetamine. Brain Res 85:130–134

    Article  PubMed  CAS  Google Scholar 

  • Vezina P, Blanc G, Glowinski J, Tassin JP (1992) Nicotine and morphine differentially activate brain dopamine in prefrontocortical and subcortical terminal fields: effects of acute and repeated injections. J Pharmacol Exp Ther 261:484–490

    PubMed  CAS  Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, McGinty JF (1997) The full D1 dopamine receptor agonist SKF-82958 induces neuropeptide mRNA in the normosensitive striatum of rats: regulation of D1/D2 interactions by muscarinic receptors. J Pharmacol Exp Ther 281:972–982

    PubMed  CAS  Google Scholar 

  • Westfall TC (1974) Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology 13: 693–700

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC, Grant H, Perry H (1983) Release of dopamine and 5-hydroxytryptamine from rat striatal slices following activation of nicotinic cholinergic receptors. Gen Pharmacol 14:321–325

    Article  PubMed  CAS  Google Scholar 

  • Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J Neurosci 14:5236–5242

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW, Kornfeld EC (1983) Effect of a stereospecific D2-dopamine agonist on acetylcholine concentration in corpus striatum of rat brain. J Neural Transm 58:55–67

    Article  PubMed  CAS  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    Article  PubMed  CAS  Google Scholar 

  • Woolf NJ, Harrison JB, Buchwald JS (1990) Cholinergic neurons of the feline pon-tomesencephalon. II. Ascending anatomical projections. Brain Res 520:55–72

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Surmeier DJ (1997) D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 19:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C- insensitive pathway. J Neurophysiol 77:1003–1015

    PubMed  CAS  Google Scholar 

  • Yang CR, Mogenson GJ (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 489:237–246

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS (1995) Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacol 12:3–16

    CAS  Google Scholar 

  • Zaborszky L, Cullinan WE, Braun A (1991) Afferents to basal forebrain cholinergic projection neurons: an update. Adv Exp Med Biol 295:43–100

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570:92–101

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corti-copetal system revisited. Ann NY Acad Sci 877:339–367

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Werner L, Qu M, Schleicher A, Gross G (1991) Quantitative autoradiography of 11 different transmitter binding sites in the basal forebrain region of the rat — evidence of heterogeneity in distribution patterns. Neuroscience 42:473–481

    Article  PubMed  CAS  Google Scholar 

  • Zocchi A, Pert A (1993) Increases in striatal acetylcholine by SKF-38393 are mediated through D1 dopamine receptors in striatum and not the frontal cortex. Brain Res 627:186–192

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Lena C, Picciotto MR, Changeux JP (1998) Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J Neurosci 18:4461–4472

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Acquas, E., Di Chiara, G. (2002). Dopamine — Acetylcholine Interactions. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics