Skip to main content

Atypical Antipsychotics

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

Neuroleptic action was first discovered and defined in 1952 with the clinical use of chlorpromazine, known before as an antihistamine (Delay et al. 1952). The identification of dopamine as a neurotransmitter in the brain and neurochemical and pharmacological studies revealed that neuroleptic activity involved dopamine antagonism (Carlsson and Lindqvist 1963; Van Rossum 1966). The butyrophenone, haloperidol, discovered in 1958, became the prototype of a neuroleptic with selective dopamine antagonistic action (Divry et al. 1958; Janssen et al. 1959). Following these discoveries, a first generation of neuroleptics was developed between the 1960s and mid-1980s, which were designed to be dopamine antagonists. Over 70 neuroleptics, belonging to more than 10 different chemical classes, were brought to the European market (Leysen and Niemegeers 1985). All these compounds appeared to block dopamine D2 receptors in the brain and a correlation was shown between their affinity for D2 receptors and dosages used for treating positive symptoms of schizophrenia (Creese et al. 1976; Seeman et al. 1976). However, a direct relationship also exists between blockade of D2 receptors and the induction of extrapyramidal symptoms and the elevation of plasma prolactin levels (Van Wielinck and Leysen 1983; Kuenstler et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby CR Jr, Edwards E, Wang RY (1994) Electrophysiological evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in the rat medial prefrontal cortex: an iontophoretic study. Synapse 17:173–181

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review on central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bartoszyk GD, Greiner HE, Seyfried CA (1997) Pharmacological profile of EMD 128130: a putative atypical antipsychotic with dopamine D2 antagonist and serotonin 5-HT1A agonistic properties. Soc Neurosci Abstr 23 (part 1):530

    Google Scholar 

  • Beijsterveldt van LEC, Geerts RJF, Leysen JE, Megens AAHP, Van den Eynde HMJ, Meuldermans WEG, Heykants JJP (1994) Regional brain distribution of risperidone and its active metabolite 9-hydroxy-risperidone in the rat. Psychopharmacology 114:53–62

    Article  PubMed  Google Scholar 

  • Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K, Cuddigan M, Turton DJ, Osman S, Frackowiak RSJ (1993) Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059–01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology 112: 208–314

    Article  Google Scholar 

  • Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836

    PubMed  CAS  Google Scholar 

  • Bolden C, Cusack B, Richelson E (1991) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther 260:576–580

    Google Scholar 

  • Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR (1997) Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci 18:186–188

    PubMed  CAS  Google Scholar 

  • Bromidge SM, Duckworth M, Forbes IT, Ham P, King FD, Thewlis KM, Blaney FE, Naylor CB, Blackburn TP, Kennett GA, Wood MD, Clarke SE (1997) 6-Chloro-5-methyl-l-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB-242084): the first selective and brain penetrant 5-HT2C receptor antagonist. J Med Chem 40:3494–3496

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP (1993) Muscarinic receptors — Characterization, coupling and function. Pharmac Ther 58:319–379

    Article  CAS  Google Scholar 

  • Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D5 receptor immulocalization in rat and monkey brain. Synapse 37:125–145

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytryramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Hansson LO, Waters N, Carlsson ML (1997) Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci 61:75–94

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT (1995) Serotonin-dopamine antagonists and treatment of negative symptoms. Clin Psychopharmacol 16 [suppl 1]:30S–35S

    Article  Google Scholar 

  • Davis JM, Janicak PG (1996) Risperidone: a new, novel (and better?) antipsychotic. Psychiatr Ann 26:78–87

    Google Scholar 

  • Delay J, Deniker P, Harl JM (1952) Traitement des états d’excitation et d’agitation par une méthode médicamenteuse dérivée de l’hibernothérapie. Ann Méd Psychol 110:267–273

    CAS  Google Scholar 

  • Divry P, Bobon J, Collard J (1958) Le R01625 nouvelle thérapeutique symptomatique de l’agitation psychomotrice. Acta Neurol Psychiat Belg 58:878–888

    CAS  Google Scholar 

  • Docherty JR (1998) Subtypes of functional α1 and α2-adrenoceptors. Eur J Pharmacol 361:1–15

    Article  PubMed  CAS  Google Scholar 

  • Duinkerke SJ, Botter PA, Jansen AAI, Van Dongen PA, Van Haaften AJ, Boom AJ, Van Laarhoven JH, Busard HL (1993) Ritanserin, a selective 5-HT2A/2c antagonist, and negative symptoms in schizophrenia: a placebo-controlled double-blind trial. Br J Psychiatry 163:451–455

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Martin GR (1996) Classification and nomenclature of 5-HT receptors: a comment on current issues. Behav Brain Res 73:263–268

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: towards a harmonisation with the human genome. Neuropharmacology 36:419–428

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic P (1998) 5-hydroxyhyptamine 2 A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dentrites. Proc Natl Acad Science USA 95:735–740

    Article  CAS  Google Scholar 

  • Janssen PAJ, Van de Westeringh C, Jageneau AHM, Demoen PJA, Hermans BKP, Vandaele GHP, Schellekens KHL, Van der Eycken CAM, Niemegeers CJE (1959) Chemistry and pharmacology of CNS depressants related to 4-(4-hydroxy-4-phenylpiperidino) butyrophenone. Part I. Synthesis and screening data in mice. J Med Pharmac Chem 1:281–297

    Article  CAS  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KH, Megens AA, Meert TF (1988) Pharmacology of risperidone (R64766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244: 685–693

    PubMed  CAS  Google Scholar 

  • Jones H (1997) Risperidone: A review of its pharmacology and use in the treatment of schizophrenia. J Serotonin Res 4:17–28

    CAS  Google Scholar 

  • Karlsson P, Smith L, Farde L, Harwyd C, Sedvall G, Wiesel FA (1995) Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH 39166 in acutely ill schizophrenic patients. Psychopharmacology 121:309–316

    Article  PubMed  CAS  Google Scholar 

  • King DJ (1998) Drug treatment of the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 8:33–42

    Article  PubMed  CAS  Google Scholar 

  • Kuenstler U, Juhnhold U, Knapp WH, Gertz H-J (1999) Positive correlation between reduction of handwriting area and D2 dopamine receptor occupancy during treatment with neuroleptic drugs. Psychiat Res: Neuroimaging Section 90:31–39

    Article  CAS  Google Scholar 

  • Lahti RA, Roberts RC, Cochrane EV, Primus RJ, Gallager DW, Tamminga CA (1998) Dopamine D4 receptors in human postmortem brain tissue of normal and schizophrenic subjects. An [3]NGD-94-l study. Schizophr Res 29:93

    Article  Google Scholar 

  • Lesage A, De Loore KL, Peeters L, Leysen JE (1995) Neuroprotective sigma ligands interfere with the glutamate-activated NOS pathway in hippocampal cell culture. Synapse 20:156–164

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE (1984) Receptors for neuroleptic drugs. In: Burrows GD, Werry JS (eds) Advances in Human Psychopharmacology, vol 3, JAI Press Inc, pp 315–356

    Google Scholar 

  • Leysen JE (2000) Receptor profile of antipsychotics. In: Ellenbroek BA, Cools AR (eds) Atypical antipsychotics, Birkhauser Verlag, Basel Boston Berlin, pp 57–81

    Chapter  Google Scholar 

  • Leysen JE, Janssen PMF, Schotte A, Luyten WHML, Megens AAHP (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology 112: S40–S54

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W, Eens A, De Chaffoy de Courcelles D, Stoof JC, Janssen PAJ (1988) The biochemical profile of risperidone, a new antipsychotic. J Pharmacol Exp Ther 247:661–670

    PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W, Van Gompel P, Wynants J, Janssen PFM, Laduron PM (1985) Receptor binding properties in vitro and in vivo of ritanserin: A very potent and long acting serotonin-S2 antagonist. Mol Pharmacol 27:600–611

    PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers (1985) Neuroleptics. In: Lajtha A (ed) Handbook of Neuro-chemistry, vol 9, Plenum Publishing Corporation, pp 331–361

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272:168–171

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom LH (1989) A retrospective study on the long-term efficacy of clozapine in 96 schizophrenic and schizoaffective patients during a 13-year period. Psychopharmacology 99 [suppl]:84–86

    Article  Google Scholar 

  • Meltzer HY, Nash JF (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 43:587–604

    PubMed  CAS  Google Scholar 

  • Migler BM, Warawa EJ, Malick JB (1993) Seroquel: behavioral effects in conventional and novel tests for atypical antipsychotic drug. Psychopharmacology 112:299–307

    Article  PubMed  CAS  Google Scholar 

  • Moebius FF, Reiter RJ, Bermoser K, Glossman H, Cho SY, Paik YK (1998) Pharmacological analysis of sterol delta-8-delta-7 isomerase proteins with [3H]ifenprodil. Mol Pharmacol 54:591–598

    PubMed  CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    PubMed  CAS  Google Scholar 

  • Needham PL, Atkinson J, Skill MJ, Heal DJ (1996) Zotepine: preclinical tests predict antipsychotic efficacy and an atypical profile. Psychopharmacol Bull 32:123–128

    PubMed  CAS  Google Scholar 

  • Nyberg S, Nakashima Y, Nordström AL, Halldin C, Farde L (1996) Positron emission tomography of in-vivo binding characteristics of atypical antipsychotic drugs. Review of D2 and 5-HT2 receptor occupancy studies and clinical response. Br J Psychiatry 168 [suppl 29]:40–44

    Google Scholar 

  • Roth BL, Tandra S, Burgess LH, Sibley DR, Meltzer HY (1995) D-4 Dopamine receptor binding affinity does not distinguish between typical and atypical antipsychotic drugs. Psychopharmacology 120:365–368

    Article  PubMed  CAS  Google Scholar 

  • Reyntjens A, Gelders YG, Hoppenbrouwers M-LJA, Vanden Bussche G (1986) Thy-mostenic effects of ritanserin (R55667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 8:205–211

    Article  CAS  Google Scholar 

  • Sailer CF, Salama AI (1993) Seroquel: biochemical profile of a potential atypical antipsychotic. Psychopharmacology 112:285–292

    Article  Google Scholar 

  • Schmidt CJ, Sorensen SM, Kehne JH, Carr AA, Palfreyman MG (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 56:2209–2222

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD, Cartmell J, Ornstein P, Monn JA (2000) In vivo pharmacology of group II metabotropic glutamate receptor agonists: novel agents for psychiatric disorders. Neuropsychopharmacology 23:S2, S86

    Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  PubMed  CAS  Google Scholar 

  • Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA III, Heym J (1995) Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 275:101–113

    PubMed  CAS  Google Scholar 

  • Seeman P (1995) Dopamine receptors and psychosis. Sci Am 273:28–37

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  • Sirviö J, MacDonald E (1999) Central α1-adrenoceptors: their role in the modulation of attention and memory formation. Pharmacol Ther 83:49–65

    Article  PubMed  Google Scholar 

  • Sleight AJ, Boess FG, Bos M, Levettrafit B, Riemer C, Bourson A (1998) Characterization of Ro 04–6790 and Ro 63–0563 — potent and selective antagonists at human and rat 5-HT6 receptors. Br J Pharmacol 124:556–562

    Article  PubMed  CAS  Google Scholar 

  • Sleight AJ, Boess FG, Bourson A, Sibley DR, Monsma FJ Jr (1997) 5-HT6 and 5-HT7 receptors: molecular biology, functional correlates and possible therapeutic indications. DN & P 10:214–224

    CAS  Google Scholar 

  • Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691

    PubMed  CAS  Google Scholar 

  • Stahl SM, Shayegan DK (2000) New discoveries in the development of antipsychotics with novel mechanisms of action: beyond the atypical antipsychotics with serotonin dopamine antagonism. In: Ellenbroek BA, Cools AR (eds) Atypical antipsychotics, Birkhauser Verlag, Basel Boston Berlin, pp 215–232

    Chapter  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1996) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542–546

    Article  Google Scholar 

  • Vanhauwe JFM, Ercken M, Van de Wiel D, Jurzak M, Leysen JE (2000) Effects of recent and reference antipsychotic agents at human dopamine D2 and D3 receptor signaling in Chinese hamster ovary cells. Psychopharmacology 150:383–390

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494

    PubMed  Google Scholar 

  • Van Wielinck PS, Leysen JE (1983) Choice of neuroleptics based on in vitro pharmacology. J Drug Res 8:1984–1997

    Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leysen, J.E. (2002). Atypical Antipsychotics. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics