Skip to main content

Electrophysiological Pharmacology of Mesencephalic Dopaminergic Neurons

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

Abstract

We dedicate this chapter to the memory of Dr. Stephen J. Young, mentor, colleague and friend. For decades Steve contributed tirelessly and selflessly to the advancement of the science of countless students, colleagues and scientists around the world. His presence is sorely missed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effects of stress on in vivo dopamine release in striatum, nucleus accumbens and medial frontal cortex. J Neurochem 52:1655–1658

    Article  PubMed  CAS  Google Scholar 

  • Aceto MD, Scates SM, Lowe JA, Martin BR (1995) Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR 141716 A. Eur J Pharmacol 282:R1–2

    Article  PubMed  CAS  Google Scholar 

  • Aceto MD, Scates SM, Lowe JA, Martin BR (1996) Dependence on delta 9-tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J Pharmacol Exp Ther 278:1290–1295

    PubMed  CAS  Google Scholar 

  • Ackerman JM, White FJ (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett 117:181–187

    Article  PubMed  CAS  Google Scholar 

  • Ackerman JM, White FJ (1992) Decreased activity of rat A10 dopamine neurons following withdrawal from repeated cocaine. Eur J Pharmacol 218:171–173

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Bunney BS (1973) Central dopaminergic neurons: Neurophysiological identification and responses to drugs. Snyder SH Usdin E (eds) Frontiers in Catecholamine Research, Pergamon Press, NY, pp 643–648

    Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedeberg’s Arch Pharmacol 297:1–7

    Article  CAS  Google Scholar 

  • Akaoka H, Charléty P, Saunier C-F, Buda M, Chouvet G (1992) Inhibition of nigral dopamine neurons by systemic and local apomorphine: Possible contribution of dendritic autoreceptors. Neuroscience 49:879–891

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Carlsson A, Dahlstrom A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530

    Article  PubMed  CAS  Google Scholar 

  • Anden NE, Dahlstrom A, Fuxe K, Larsson K (1965) Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and dien-cephalon. Life Sci 4:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Arai H, Sirinathsinghiji DJS, Emson PC (1985) Depletion in substance P- and neurokinin A-like immunoreactivity in substantia nigra after ibotenate-induced lesions of striatum. Neurosci Res 5:167–171

    Article  Google Scholar 

  • Arnold EB, Molinoff PB, Rutledge CO (1977) The release of endogenous norepinephrine and dopamine from cerebral cortex by amphetamine. J Pharmacol Exp Ther 202:544–557

    PubMed  CAS  Google Scholar 

  • Bailey CP, Manley SJ, Watson WP, Wonnacott S, Molleman A, Little HJ (1998) Chronic ethanol administration alters activity in ventral tegmental area neurons after cessation of withdrawal hyperexcitability. Brain Res 803:144–152

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Bunney EB, Roth RH (1981) Mesocortical dopamine neurons: Rapid transmitter turnover compraed to other brain catecholamine systems. Brain Res 218:376–382

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Reinhard Jr. JF, Bunney EB, Roth RH (1982) Unique response to antipsychotic drugs is due to absence of terminal autoreceptors in mesocortical dopamine neurones. Nature 296:444–446

    Article  PubMed  CAS  Google Scholar 

  • Bean AJ, Shepard PD, Bunney BS, Nestler EJ, Roth RH (1988) The effects of pertussis toxin on autoreceptor-mediated inhibition of dopamine synthesis in the rat striatum. Mol Pharmacol 34:715–718

    PubMed  CAS  Google Scholar 

  • Beart PM, McDonald D (1982) 5-Hydroxytryptamine and 5-hydroxytryptaminergic-dopaminergic interactions in the ventral tegmental area of rat brain. J Pharm Pharmacol 34:591–593

    Article  PubMed  CAS  Google Scholar 

  • Beninato M, Spencer RF (1988) The cholinergic innervation of the rat substantia nigra: a light and electron microscopic immunohistochemical study. Exp Brain Res 72:178–184

    Article  PubMed  CAS  Google Scholar 

  • Bertler A, Falck B, Gottfries CG, Lijunggren L, Rosengren E (1964) Some observations on adrenergic connections between mesencephalon and cerebral emispheres. Acta Pharmacol Toxicol 21:283–289

    Article  CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83:531–537

    Article  PubMed  CAS  Google Scholar 

  • Blaschko H (1939) The specific action of L-DOPA decarboxylase. J Physiol (Lond) 96:50–51

    CAS  Google Scholar 

  • Bolam JP, Smith Y (1990) The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat. Brain Res 529:57–78

    Article  PubMed  CAS  Google Scholar 

  • Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17:796–803

    PubMed  CAS  Google Scholar 

  • Bonci A, Grillner P, Siniscalchi A, Mercuri NB, Bernardi G (1997) Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci 9:2359–2369

    Article  PubMed  CAS  Google Scholar 

  • Bowery B, Rothwell LA, Seabrook GR (1994) Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br J Pharmacol 112:873–880

    Article  PubMed  CAS  Google Scholar 

  • Boyar WC, Altar CA (1987) Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J Neurochem 48:824–831

    Article  PubMed  CAS  Google Scholar 

  • Brodie MS, Appel SB (1998) The effects of ethanol on dopaminergic neurons of the ventral tegmental area studied with intracellular recording in brain slices. Alcohol Clin Exp Res 22:236–244

    Article  PubMed  CAS  Google Scholar 

  • Brodie MS, McElvain MA, Bunney EB, Appel SB (1999a) Pharmacological reduction of small conductance calcium-activated potassium current (SK) potentiates the excitatory effect of ethanol on ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 290:325–333

    PubMed  CAS  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999b) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS (1979) The electrophysiological pharmacology of midbrain dopaminergic systems. In: Horn AS, Korf J, Westerink BHC (ed) The Neurobiology of Dopamine. New York, Academic Press, pp 417–452

    Google Scholar 

  • Bunney BS, Aghajanian GK (1973) Electrophysiological effects of amphetamine on dopaminergic neurons. In: Snyder SH, Usdin E (eds) Frontiers in Catecholamine Research. Pergamon Press, NY, pp 957–962

    Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23:1715–1727

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Aghajanian GK, Roth RH (1973a) Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biology 245:123–125

    PubMed  CAS  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973b) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharm Exp Ther 185:560–571

    CAS  Google Scholar 

  • Calabresi P, Lacey MG, North RA (1989) Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 98:135–140

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347

    Article  PubMed  CAS  Google Scholar 

  • Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49–69

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Bortone L, Giua C, Di Chiara G (2000) Dissociation of physical abstinence from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug and Alcohol Dependence 58: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: Modulations by dopamine and GABAB receptors. J Neuro-physiol 74:1137–1148

    CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effects of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of three-hydroxytyramine in brain. Science 27:471

    Article  Google Scholar 

  • Carlsson A, Kehr W, Lindqvist M, Magnusson T, Atack CV (1972) Regulation of monoamine metabolism in the central nervous system. Pharmacol Rev 24:371–384

    PubMed  CAS  Google Scholar 

  • Cass WA, Gerhardt GA (1995) In vivo assessment of dopamine uptake in rat medial prefrontal cortex: comparison with dorsal striatum and nucleus accumbens. J Neurochem 65:201–207

    Article  PubMed  CAS  Google Scholar 

  • Cathala L, Paupardin-Tritsch D (1999) Effect of catecholamines on the hyperpolarization-activated cationic Ih and the inwardly rectifying potassium IKir currents in the rat substantia nigra pars compacta. Eur J Neurosci 11:398–406

    Article  PubMed  CAS  Google Scholar 

  • Celada P, Paladini CA, Tepper JM (1999) GABAergic control of rat substantia nigra dopaminergic neurons: Role of globus pallidus and substantia nigra pars reticulata. Neuroscience 89:813–825

    Article  PubMed  CAS  Google Scholar 

  • Chang HT, Kita H, Kitai ST (1984) The ultrastructural morphology of the subthalamicnigral axon terminals intracellularly labeled with horseradish peroxidase. Brain Res 299:182–185

    Article  PubMed  CAS  Google Scholar 

  • Charlety PJ, Grenhoff J, Chergui K, De La Chapelle Buda M, Svensson TH, Chouvet G (1991) Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate. Acta Physiol Scand 142:105–112

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Paredes W, Lowinson JH, Gardner EL (1990) Delta 9-tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. Eur J Pharmacol 190:259–262

    Article  PubMed  CAS  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Charlety PJ, Akaoka H, Saunier CF, Brunet J-L, Buda M, Svensson TH, Chouvet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137–144

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Akaoka H, Charlety PJ, Saunier CF, Buda M, Chouvet G (1994) Subthalamic nucleus modulates burst firing of nigral dopamine neurones via NMDA receptors. NeuroReport 5:1185–1188

    Article  PubMed  CAS  Google Scholar 

  • Chien P-Y, Farkas RH, Nakajima S, Nakajima Y (1996) Single-channel properties of the non-selective cation conductance induced by neurotensin in dopaminergic neurons. Proc Natl Acad Sci (USA) 93:14917–14921

    Article  CAS  Google Scholar 

  • Chiodo LA, Antelman SM (1980) Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210: 799–801

    Article  PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3:1607–1619

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1987) Population response of midbrain dopaminergic neurons to neuroleptics: further studies on time course and nondopaminergic neuronal influences. J Neurosci 7:629–33

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bannon MJ, Grace AA, Roth RH, Bunney BS (1984) Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience 12:1–16

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Chiodo LA (1988) Electrophysiological and pharmacological characterization of identified nigrostriatal and mesoaccumbens dopamine neurons in the rat. Synapse 2:474–485

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Hommer DW, Pert A, Skirboll LR (1987) Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 23:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Davies J (1982) Actions of substance P and opiates in the rat substantia nigra. Neuropharmacology 21:715–719

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, James TA, MacLeod NK (1980) Antidromic latency variations of nigral compacta neurones. Experientia 36:970–971

    Article  PubMed  CAS  Google Scholar 

  • Connelly ST, Shepard PD (1997) Competitive NMDA receptor antagonists differentially affect dopamine cell firing pattern. Synapse 25:234–242

    Article  PubMed  CAS  Google Scholar 

  • Coombs JS, Curtis DR, Eccles JC (1957) The interpretation of spike potentials of motoneurones. J Physiol (Lond) 139:198–231

    CAS  Google Scholar 

  • Corvaja N, Doucet G, Bolam JP (1993) Ultrastructure and synaptic targets of the raphe-nigral projection in the rat. Neuroscience 55:417–427

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu, LX, Hoffmann IS, Talmaciu RK (1990) Is the release of dopamine from medial prefrontal cortex modulated by presynaptic autoreceptors? In: Kalsner S, Westfall TC (eds) Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter Release, Ann NY Acad Sci 604:452–461

    Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 15:398–399

    Article  Google Scholar 

  • Dai M, Tepper JM (1998) Do silent dopaminergic neurons exist in rat substantia nigra in vivo? Neuroscience 85:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Damlama M (1994) Subthalamic and Pedunculopontine inputs to Substantia Nigra: A Light and Electron Microscopic Analysis. Ph.D. Thesis, Rutgers University, University Microfilms International, Ann Arbor

    Google Scholar 

  • Damlama M, Tepper JM (1993) Subcortical excitatory inputs to nigral dopaminergic and non-dopaminergic neurons: A light and electron microscopic study. Proc. 51st Annual Meeting of the Microscopy Society of America, pp 94–95

    Google Scholar 

  • Dani JA, Radcliffe KA, Pidoplichko VI (2000) Variations in desensitization of nicotinic acetylcholine receptors from hippocampus and midbrain dopamine areas. Eur J Pharmacol 393:31–38

    Article  PubMed  CAS  Google Scholar 

  • De Blasi A, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Deniau JM, Hammond C, Riszk A, Feger J (1978) Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): evidences for the existence of branched neurons. Exp Brain Res 32:409–422

    Article  PubMed  CAS  Google Scholar 

  • Deniau JM, Kitai ST, Donoghue JP, Grofova I (1982) Neuronal Interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. Exp Brain Res 47:105–113

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Collu M, Muntoni AL, Pistis M, Serra G, Gessa GL, Diana M (1995) Biochemical and electrophysiological effects of 7-OH-DPAT on the mesolimbic dopaminergic system. Synapse 20:153–155

    Article  PubMed  CAS  Google Scholar 

  • Diana M (1996) Dopaminergic neurotransmission and drug withdrawal: relevance to drug craving. In: Ohye C, Kimura M, McKenzie J (eds) The Basal Ganglia V, Adv in Behav Biol 47: Plenum Press New York, pp 123–130

    Google Scholar 

  • Diana M (1998) Drugs of abuse and dopamine cell activity. Adv Pharmacol 42:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Young SJ, Groves PM (1988) Modulation of dopaminergic terminal excitability by D1 selective agents. Neuropharmacology 28:99–101

    Article  Google Scholar 

  • Diana M, Garcia-Munoz M, Richards J, Freed CR (1989) Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling rats. Exp Brain Res 74:625–630

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Young SJ, Groves PM (1991a). Modulation of dopaminergic terminal excitability by D1 selective agents: Further characterization. Neuroscience 42:441–449

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Mereu G, Mura A, Fadda F, Passino N, Gessa GL (1991b) Low doses of gamma-hydroxybutyric acid stimulate the firing rate of dopaminergic neurons in unanesthetized rats. Brain Res 566:208–211

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Rossetti ZL, Gessa GL (1992) Lack of tolerance to ethanol-induced stimulation of mesolimbic dopamine system. Alcohol & Alcoholism 27:329–334

    CAS  Google Scholar 

  • Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993a) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci (USA) 90:7966–7969

    Article  CAS  Google Scholar 

  • Diana M, Pistis M, Muntoni AL, Gessa GL (1993b) Heterogeneous responses of substantia nigra pars reticulata neurons to gamma-hydroxybutyric acid administration. Eur J Pharmacol 230:363–365

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Pistis M, Muntoni AL, Gessa GL (1995a) Ethanol withdrawal does not induce a reduction in the number of spontaneously active dopaminergic neurons in the mesolimbic system. Brain Res 682:29–34

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Pistis M, Muntoni AL, Gessa GL (1995b) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharm Exp Ther 272:781–785

    CAS  Google Scholar 

  • Diana M, Rossetti ZL, Gessa GL (1995c) Central dopaminergic mechanisms of alcohol and opiate withdrawal syndromes. In: Tagliamonte A, Maremmani I (eds) Drug Addiction and related clinical problems. Springer-Verlag Wien New York, pp 19–26

    Chapter  Google Scholar 

  • Diana M, Pistis M, Muntoni AL, Gessa GL (1996) Mesolimbic dopaminergic reduction outlasts ethanol withdrawal syndrome: evidence of protracted abstinence. Neuroscience 71:411–415

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Melis M, Muntoni AL, Gessa GL (1998a) Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci (USA) 95:10269–10273

    Article  CAS  Google Scholar 

  • Diana M, Melis M, Gessa GL (1998b) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10: 2825–2830

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Muntoni AL, Pistis M, Melis M, Gessa GL (1999) Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. Eur J Neurosci 11:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci (USA) 85:5274–5278

    Article  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Triller A, Schwartz J-C, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    PubMed  CAS  Google Scholar 

  • Di Loreto S, Florio T, Scarnati E (1992) Evidence that non-NMDA receptors are involved in the excitatory pathway from the pedunculopontine region to nigrostriatal dopaminergic neurons. Exp Brain Res 89:79–86

    Article  PubMed  Google Scholar 

  • Dray A, Gonye TJ, Oakley NR, Tanner T (1976) Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res 113:45–57

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC (1957) The Physiology of Nerve Cells, Johns Hopkins Press, Baltimore, pp 47–56

    Google Scholar 

  • Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    PubMed  CAS  Google Scholar 

  • Engberg G, Kling-Petersen T, Nissbrandt H (1993) GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra. Synapse 15:229–238

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Andersson B, Nissbradt H, Engberg G (1998) Inhibition of firing rate and changes in the firing pattern on nigral dopaminergic neurons by γ-hydroxybutyric acid (GHBA) are specifically induced by activation of GABAB receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 357:611–619

    Article  CAS  Google Scholar 

  • Erhardt S, Nissbrandt H, Engberg G (1999) Activation of nigral dopamine neurons by the selective GABA(B)-receptor antagonist SCH 50911. J Neural Trans 106:383–394

    Article  CAS  Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catechol amines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    Article  CAS  Google Scholar 

  • Fallon JH (1981) Collateralization of monoamine neurons: Mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci 1:1361–1368

    PubMed  CAS  Google Scholar 

  • Fallon JH, Laughlin SE (1995) Substantia nigra. In: Paxinos G (ed) The Rat Nervous System, 2nd Edition. Academic Press, San Diego, pp 215–237

    Google Scholar 

  • Farkas RH, Chien R-Y, Nakajima S, Nakajima Y (1997) Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons. Neurosci Lett 231:21–24

    Article  PubMed  CAS  Google Scholar 

  • Farnebo LO, Hamberger B (1971) Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta Physiol Scand 371:35–44

    Article  CAS  Google Scholar 

  • Fibiger HC, Miller JJ (1977) An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat. Neuroscience 2:975–987

    Article  Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394:78–82

    Article  PubMed  CAS  Google Scholar 

  • Francois C, Percheron G, Yelnik J, Heyner S (1979) Demonstration of the existence of small local circuit neurons in the Golgi-stained primate substantia nigra. Brain Res 172:160–164

    Article  PubMed  CAS  Google Scholar 

  • Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: Further characterization and effects of apomorphine and cholecystokinin. Brain Res 405:46–55

    Article  PubMed  CAS  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983–1994

    Article  PubMed  CAS  Google Scholar 

  • Freeman AS, Chiodo LA, Lentz SI, Wade K, Bunney BS (1991) Release of cholecystokinin from rat midbrain slices and modulatory effect of D2 receptor stimulation. Brain Res 555:281–287

    Article  PubMed  CAS  Google Scholar 

  • French ED (1997) Delta9-tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett 226:159–162

    Article  PubMed  CAS  Google Scholar 

  • French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 10:649–652

    Article  Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215

    Article  PubMed  CAS  Google Scholar 

  • Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342

    Article  PubMed  CAS  Google Scholar 

  • Galarraga E, Bargas J (1995) Firing patterns in substantia nigra compacta indentified neurons in vitro. Arch Med Res 26:191–199

    PubMed  CAS  Google Scholar 

  • Gao WY, Lee TH, King GR, Ellinwood EH (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 18:222–232

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Munoz M, Segal DS, Patino P, Young SJ, Kuczenski R, Groves PM (1996) Amphetamine-induced changes in nigrostriatal terminal excitability are modified following repeated amphetamine pretreatment. Brain Res 720:131–138

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL, Lowinson JH (1991) Marijuana’s interaction with brain reward systems: update 1991. Pharmacol Biochem Behav 40:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gariano RF, Groves PM (1988) Burst firing in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res 462: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Gariano RF, Sawyer SF, Tepper JM, Young SJ, Groves PM (1989a) Mesocortical dopaminergic neurons. 2. Electrophysiological consequences of terminal auto-receptor activation Brain Res Bull 22:517–523

    Article  PubMed  CAS  Google Scholar 

  • Gariano RF, Tepper JM, Sawyer SF, Young SJ, Groves PM (1989b) Mesocortical dopaminergic neurons. 1. Electrophysiological properties and evidence for somadendritic autoreceptors. Brain Res Bull 22:511–516

    Article  PubMed  CAS  Google Scholar 

  • Gariano RF, Young SJ, Jeste DV, Segal DS, Groves PM (1990) Effects of long-term administration of haloperidol on electrophysiolgic properties of rat mesencephalic neurons. J Pharmacol Exp Ther 255:108–113

    PubMed  CAS  Google Scholar 

  • Geffen LB, Jessell TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 18:258–260

    Article  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    PubMed  CAS  Google Scholar 

  • Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201–203

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341:39–44

    Article  PubMed  CAS  Google Scholar 

  • Gifford AN, Gardner EL, Ashby CR Jr (1997) The effect of intravenous administration of delta-9-tetrahydrocannabinol on the activity of A10 dopamine neurons recorded in vivo in anesthetized rats. Neuropsychobiology 36:96–99

    Article  PubMed  CAS  Google Scholar 

  • Giralt MT, Bonanno G, Raiteri M (1990) GABA terminal autoreceptors in the pars compacta and in the pars reticulata of the rat substantia nigra are GABAB. Eur J Pharmacol 175:137–144

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Cheramy A (1981) Dendritic release of dopamine: Its role in the substantia nigra. In: Stjarne L, Hedqvist P, Lagercrantz H, Wennmalm A (eds) Chemical Neurotransmission: 75 Years, Academic Press, New York, pp 285–299

    Google Scholar 

  • Gonon FG (1988) Nonlinear Relationship Between Impulse Flow and Dopamine Released by Rat Midbrain Dopaminergic Neurons as Studied by In Vitro Electrochemistry. Neuroscience 24:19–28

    Article  PubMed  CAS  Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    PubMed  CAS  Google Scholar 

  • Gould E, Woolf NJ, Butcher LL (1989) Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 28:611–623

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1987) The regulation of dopamine neuron activity as determined by in vivo and in vitro intracellular recordings. In: Chiodo LA, Freeman AS (eds) Neurophysiology of Dopaminergic Systems-Current Status and Clinical Perspectives. Grosse Pointe, Lakeshore Publishing Company, pp 1–66

    Google Scholar 

  • Grace AA (1990) Evidence for the functional compartmentalization of spike generating regions of rat midbrain dopamine neurons recorded in vitro. Brain Res 524:31–41

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: Indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59:211–218

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1980) Nigral dopamine neurons: intracellular recording and identification with L-dopa injection and histofluorescence. Science 210:654–656

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1983a) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identification and characterization. Neuroscience 10:301–316

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1983b) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-2. Action potential generating mechanisms and morphological correlates. Neuroscience 10:317–331

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: Single spike firing. J Neurosci 4:2866–2876

    PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: Burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 333:271–284

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1986) Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238:1092–1100

    PubMed  CAS  Google Scholar 

  • Grace AA, Hommer DW, Bunney BS (1980) Peripheral and striatal influences on nigral dopamine cells: Mediations by reticula neurons. Brain Res Bull 5:105–109

    Article  Google Scholar 

  • Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20:31–37

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Svensson TH (1988) Clonidine regularizes substantia nigra dopamine cell firing. Life Sci 42:2003–2009

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Svensson TH (1989) Clonidine modulates dopamine cell firing in rat ventral tegmental area. Eur J Pharmacol 165:11–18

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Ugedo L, Svensson TH (1988) Firing patterns of midbrain dopamine neurons differences between A9 and A10 cells. Acta Physiol Scand 134:127–132

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Nisell M, Ferré S, Aston-Jones G, Svensson TH (1993) Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of locus coeruleus in the rat. J Neural Trans 93:11–25

    Article  CAS  Google Scholar 

  • Grenhoff J, North RA, Johnson SW (1995) Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. Eur J Neurosci 7:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Grillner P, Berretta N, Bernardi G, Svensson TH, Mercuri NB (2000) Muscarinic receptors depress GABAergic synaptic transmission in rat midbrain dopamine neurons. Neuroscience 96:299–307

    Article  PubMed  CAS  Google Scholar 

  • Grinspoon L, Bakalar JB (1997) Marihuana. In: Substance abuse A comprehensive textbook. Third Edition. (Ed. Lowinson JH, Ruiz P, Millman RB, Langrod JG) Williams and Wilkins. pp 199–206

    Google Scholar 

  • Grofova I, Rinvik E (1970) An experimental electron microscopic study on the striatonigral projection in the cat. Exp Brain Res 11:249–262

    Article  PubMed  CAS  Google Scholar 

  • Grofova I, Deniau JM, Kitai ST (1982) Morphology of the substantia nigra pars reticulata projection neurons intracellularly labeled with HRP. J Comp Neurol 208:352–368

    Article  PubMed  CAS  Google Scholar 

  • Groves PM, Wilson CJ, Young SJ, Rebec GV (1975) Self-inhibition by dopaminergic neurons. Science 190:522–529

    Article  PubMed  CAS  Google Scholar 

  • Groves PM, Fenster GA, Tepper JM, Nakamura S, Young SJ (1981) Changes in dopaminergic terminal excitability induced by amphetamine and haloperidol. Brain Res 221:425–431

    Article  PubMed  CAS  Google Scholar 

  • Guatteo E, Mercuri NB, Bernardi G, Knopfel T (1999) Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. J Neurophysiol 82: 1974–1981

    PubMed  CAS  Google Scholar 

  • Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150:69–84

    Article  PubMed  CAS  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277:119–127

    Article  PubMed  CAS  Google Scholar 

  • Hajos M, Greenfield SA (1994) Synaptic connections between pars compacta and pars reticulata neurones: Electrophysiological evidence for functional modules within the substantia nigra. Brain Res 660:216–224

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Deniau JM, Rizk A, Feger J (1978) Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 151:235–244

    Article  PubMed  CAS  Google Scholar 

  • Harris GC, Aston-Jones G (1994) Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 8371:155–157

    Article  Google Scholar 

  • Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362

    Article  PubMed  CAS  Google Scholar 

  • Harrison MB, Wiley RG, Wooten GF (1990) Selective localization of striatal D1 receptors to striatonigral neurons. Brain Res 528:317–322

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Fibiger HC, McGeer PL (1975) Demonstration of a pallid-nigral projection innervating dopaminergic neurons. J Comp Neurol 162:487–504

    Article  PubMed  CAS  Google Scholar 

  • Hausser MA, Yung WH (1994) Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro. J Physiol (Lond) 479:401–422

    Google Scholar 

  • Hausser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647

    Article  PubMed  CAS  Google Scholar 

  • Helmreich I, Reimann W, Hertting G, Starke K (1982) Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucleus pharmacologically different? Neuroscience 7:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251:833–839

    PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, de Costa BR, Richfield EK (1991) Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 547:267–274

    Article  PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1989) Haloperidol given chronically decreases basal dopamine in the prefrontal cortex more than the striatum or nucleus accumbens as simultaneously measured by microdialysis. Brain Res Bull 22:763–769

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286:105–107

    Article  PubMed  CAS  Google Scholar 

  • Hervé D, Pickel VM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435:71–83

    Article  PubMed  Google Scholar 

  • Inanobe A, Yoshimoto Y, Horio Y, Morishige K-I, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y (1999) Characterization of G-protein-gated K+ channels compsed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 19:1006–1017

    PubMed  CAS  Google Scholar 

  • Hollerman JR, Abercrombie ED, Grace AA (1992) Electrophysiological, biochemical, and behavioral studies of acute haloperidol-induced depolarization block of nigral dopamine neurons. Neuroscience 47:589–601

    Article  PubMed  CAS  Google Scholar 

  • Hommer DW, Skirboll LR (1983) Cholecystokinin-like peptides potentiate apomor-phine-induced inhibition of dopamine neurons. Eur J Pharmacol 91:151–152

    Article  PubMed  CAS  Google Scholar 

  • Ianobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y (1999) Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 19:1006–10017

    Google Scholar 

  • Innis RB, Aghajanian GK (1987) Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res 411:139–143

    Article  PubMed  CAS  Google Scholar 

  • Innis R, Andrade R, Aghajanian G (1985) Substance K excites dopaminergic and non-dopaminergic neurons in rat substantia nigra. Brain Res 335:381–383

    Article  PubMed  CAS  Google Scholar 

  • Iribe Y, Moore K, Pang KC, Tepper JM (1999) Subthalamic stimulation-induced synaptic responses in nigral dopaminergic neurons in vitro. J Neurophysiol 82:925–933

    PubMed  CAS  Google Scholar 

  • Israel JM, Kirk C, Vincent JD (1987) Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J Physiol 390:1–22

    PubMed  CAS  Google Scholar 

  • Iwatsubo K, Clouet DH (1977) Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons. J Pharmacol Exp Ther 202:429–436

    PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopaminergic neurons induced by N-methyl-D aspartate: Role of electrogenic sodium pump. Science 258:665–667

    Article  PubMed  CAS  Google Scholar 

  • Jones LS, Gauger L, Davis JN (1985) Anatomy of brain alpha-1-adrenergic receptors: In vitro autoradiography with [125I]-HEAT. J Comp Neurol 231:190–208

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Hu X-T, Cooper DC, Wightman RM, White FJ, Aron MG (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2:649–655

    Article  PubMed  CAS  Google Scholar 

  • Juraska JM, Wilson CJ, Groves PM (1977) The substantia nigra of the rat: A Golgi study. J Comp Neurol 4:585–599

    Article  Google Scholar 

  • Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev 18:75–113

    Article  PubMed  CAS  Google Scholar 

  • Kamal LA, Arbilla S, Anger SZ (1981) Presynaptic modulation of the release of dopamine from the rabbit caudate nucleus: Differences between electrical stimulation, amphetamine and tyramine. J Pharmacol Exp Ther 216:592–598

    PubMed  CAS  Google Scholar 

  • Kamata K, Rebec GV (1983) Dopaminergic and neostriatal neurons: dose-dependent changes in sensitivity to amphetamine following long-term treatment. Neuropharmacology 22:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Kamata K, Rebec GV (1984a) Long-term amphetamine treatment attenuates or reverses the depression of neuronal activity produced by dopamine agonists in the ventral tegmental area. Life Sci 34:2419–2427

    Article  PubMed  CAS  Google Scholar 

  • Kamata K, Rebec GV (1984b) Nigral dopaminergic neurons: Differential sensitivity to apomorphine following long-term treatment with low and high doses of amphetamine. Brain Res 321:147–150

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kitai ST (1993a) Calcium spike underlying rhythmic firing in the dopaminergic neurons of the rat substantia nigra. Neurosci Res 18:195–207

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kitai ST (1993b) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci Res 18: 209–221

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kubota Y, Kitai ST (1989) Synaptic action on substantia nigra compacta neurons by subthalamic inputs studied by a spike trigger averaging method. Soc Neurosci Abstr 15:900

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Keegan KD, Woodruff GN, Pinnock RD (1992) The selective NK3 receptor agonist senktide excites a subpopulation of dopamine-sensitive neurones in the rat substantia nigra pars compacta in vitro. Br J Pharmacol 105:3–5

    Article  PubMed  CAS  Google Scholar 

  • Kelland MD, Chiodo LA, Freeman AS (1990a) Anesthetic influences on the basal activity and pharmacological responsiveness of nigrostriatal dopamine neurons. Synapse 6:207–209

    Article  PubMed  CAS  Google Scholar 

  • Kelland MD, Freeman AS, Chiodo LA (1990b) Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. J Pharmacol Exp Ther 253:803–811

    PubMed  CAS  Google Scholar 

  • Kilts CD, Anderson CM, Ely TD, Nishita JK (1987) Absence of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations. J Neurosci 7:3961–3975

    PubMed  CAS  Google Scholar 

  • Kinon BJ, Lieberman JA (1996) Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 124:2–34

    Article  PubMed  CAS  Google Scholar 

  • Kita T, Kita H, Kitai ST (1986) Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation. Brain Res 372:21–30

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260: 435–452

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697

    Article  PubMed  CAS  Google Scholar 

  • Klitenick MA, Taber MT, Fibiger HC (1996) Effects of chronic haloperidol on stress-and stimulation-induced increases in dopamine release: Tests of the depolarization block hypothesis. Neuropsychopharmacology 15:424–428

    Article  PubMed  CAS  Google Scholar 

  • Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18:2231–2238

    PubMed  CAS  Google Scholar 

  • Kondo Y, Iwatsubo K (1980) Diminished responses of nigral dopaminergic neurons to haloperidol and morphine following lesions in the striatum. Brain Res 181:237–240

    Article  PubMed  CAS  Google Scholar 

  • Konig JFR, Klippel RA (1963) The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Brainstem, Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R (1983) Biochemical actions of amphetamine and other stimulants In: Creese I (ed) Stimulants: Neurochemical Behavioral and Clinical Perspectives. New York, Raven Press, pp 31–62

    Google Scholar 

  • Lacey MG (1993) Neurotransmitter receptors and ionic conductances regulating the activity of neurones in substantia nigra pars compacta and ventral tegmental area. In: Arbuthnott GW, Emson PC (ed) Progress in Brain Research. Vol. 99 Elsevier Science Publishers BV, pp 251–276

    Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1987) Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol (Lond) 392:397–416

    CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1988) On the potassium conductance increase activated by GABAb and dopamine D2 receptors in rat substantia nigra neurones. J Physiol (Lond) 401:437–453

    CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1989) Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci 9:1233–1241

    PubMed  CAS  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1990) Actions of cocaine on rat dopaminergic neurones in vitro. Br J Pharmacol 99:731–735

    Article  PubMed  CAS  Google Scholar 

  • Letchworth SR, Smith HR, Porrino LJ, Bennett BA, Davies HM, Sexton T, Childers SR (2000) Characterization of a tropane radioligand, [(3)H]2beta-propanoyl-3beta-(4-tolyl) tropane ([(3)H]PTT), for dopamine transport sites in rat brain. J Pharmacol Exp Ther 293:686–696

    PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Hefti F, Felix D, Huwyler T, Melamed E, Schlumpf M (1982) Stimulation of nigrostriatal dopamine neurones by nicotine. Neuropharmacology 21: 963–968

    Article  PubMed  CAS  Google Scholar 

  • Liu L-X, Burgess LH, Gonzalez AM, Sibley DR, Chiodo LA (1999) D2 S, D2L, D3 and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 x mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse 31:108–118

    Article  PubMed  CAS  Google Scholar 

  • Llinás R, Greenfield SA, Jahnsen HJ (1984) Electrophysiology of pars compacta cells in the in vitro substantia nigra — a possible mechanism for dendritic release. Brain Res 294:127–132

    Article  PubMed  Google Scholar 

  • Lokwan SJ, Overton PG, Berry MS, Clark D (1999) Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience 92:245–254

    Article  PubMed  CAS  Google Scholar 

  • Mahalik TJ (1988) Direct demonstration of interactions between substance P immunoreactive terminals and tyrosine hydroxylase immunoreactive neurons in the substantia nigra of the rat: An ultrastructural study. Synapse 2:508–515

    Article  PubMed  CAS  Google Scholar 

  • Maitre M, Andriamampandry C, Kemmel V, Schmidt C, Hode Y, Hechler V, Gobaille S (2000) Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol 20:277–283

    Article  PubMed  CAS  Google Scholar 

  • Manzoni OJ, Williams JT (1999) Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J Neurosci 19:6629–6636

    PubMed  CAS  Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Eccles JC, McGeer EL (1987) Molecular Neurobiology of the Mammalian Brain, 2nd Ed., New York, Plenum Press, pp 149–224

    Book  Google Scholar 

  • McGeer PL, Eccles JC, McGeer EL (1987) Molecular Neurobiology of the Mammalian Brain, 2nd Ed., New York, Plenum Press, pp 553–594

    Book  Google Scholar 

  • Meador-Woodruff JH, Mansour A, Bunzow JR, Van Tol HH, Watson SJ Jr, Civelli O (1989) Distribution of D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci (USA) 86:7625–7628

    Article  CAS  Google Scholar 

  • Melis M, Mereu GP, Lilliu V, Quartu M, Diana M, Gessa GL (1998) Haloperidol does not produce dopamine cell depolarization-block in immobilized rats. Brain Res 783:127–132

    Article  PubMed  CAS  Google Scholar 

  • Melis M, Gessa GL, Diana M (2000) Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog Neuropsychopharmacol Biol Psychiatry 24:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci (USA) 96:13591–13593

    Article  CAS  Google Scholar 

  • Meltzer LT, Serpa KA, Christoffersen CL (1997) Metabotropic glutamate receptor-mediated inhibition and excitation of substantia nigra dopamine neurons. Synapse 26:184–193

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Calabresi P, Bernardi G (1989) The mechanism of amphetamine-induced inhibition of rat substantia nigra compacta neurones investigated with intracellular recording in vitro. Br J Pharmacol 98:127–134

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Calabresi P, Bernardi G (1990) Effects of glycine on neurons in the rat substantia nigra zona compacta: in vitro electrophysiological study. Synapse 5: 190–200

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Stratta F, Calabresi P, Bernardi G (1992) Electrophysiological evidence for the presence of ionotropic and metabotropic excitatory amino acid receptors on dopaminergic neurons of the rat mesencephalon: an in vitro study. Funct Neurol 7:231–234

    PubMed  CAS  Google Scholar 

  • Mercuri NB, Stratta F, Calabresi P, Bonci A, Bernardi G (1993) Activation of metabotropic glutamate receptors induces an inward current in rat dopamine mesencephalic neurons. Neuroscience 56:399–407

    Article  PubMed  CAS  Google Scholar 

  • Mercuri NB, Grillner P, Bernardi G (1996) N-Methyl-D-aspartate receptors mediate a slow excitatory postsynaptic potential in the rat midbrain dopaminergic neurons. Neuroscience 74:785–792

    Article  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Gessa GL (1985) Low doses of ethanol inhibit the firing of neurons in the substantia nigra pars reticulata: A GABAergic effect? Brain Res 360:325–330

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Fadda F, Gessa GL (1984a) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63–69

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Fanni B, Gessa GL (1984b) General anesthetics prevent dopaminergic neuron stimulation by neuroleptics. In: Catecholamines: Neuropharmacology and Central Nervous System-Theoretical Aspects. New York, Alan R Liss, pp 353–358

    Google Scholar 

  • Mereu G, Westfall TC, Wang RY (1985) Modulation of terminal excitability of mesolim-bic dopaminergic neurons by D-amphetamine and haloperidol. Brain Res 359: 88–96

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141:395–399

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Costa E, Armstrong DM, Vicini S (1991) Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices. J Neurosci 11:1359–1366

    PubMed  CAS  Google Scholar 

  • Mereu G, Lilliu V, Vargiu P, Muntoni AL, Diana M, Gessa GL (1994) Failure of chronic haloperidol to induce depolarization inactivation of dopamine neurons in unanesthetized rats. Eur J Pharmacol 264:449–453

    Article  PubMed  CAS  Google Scholar 

  • Mereu G, Lilliu V, Vargiu P, Muntoni AL, Diana M, Gessa GL (1995) Depolarization inactivation of dopamine neurons: an artifact? J Neurosci 15:1144–1149

    PubMed  CAS  Google Scholar 

  • Mereu G, Lilliu V, Casula A, Vargiu PF, Diana M, Musa A, Gessa GL (1997) Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: Role of N-methyl-D-aspartate receptors. Neuroscience 77:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Meyerhoff JL, Kant GJ (1978) Release of endogenous dopamine from corpus striatum. Life Sci 23:1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Miller AS, Walker JM (1995) Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur J Pharmacol 279:179–185

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1993) Depolarization inactivation of dopamine neurons: terminal release characteristics. Synapse 14:195–200

    Article  PubMed  CAS  Google Scholar 

  • Moon-Edley S, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215

    Article  Google Scholar 

  • Moore KE, Demarest KT, Lookingland KJ (1987) Stress, prolactin and hypothalamic dopaminergic neurons. Neuropharmacology 26:801–808

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Todd CL, Grace AA (1998) Striatal extracellular dopamine levels in rats with haloperidol-induced depolarization block of substantia nigra dopamine neurons. J Neurosci 18:5068–5077

    PubMed  CAS  Google Scholar 

  • Morelli M, Mennini T, DiChiara G (1988) Nigral dopamine autoreceptors are exclusively of the D2 Type: Quantitative autoradiography of [125I]iodosulpride and [125I]SCH 23982 in adjacent brain sections. Neuroscience 27:865–870

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Matsuura T, Takino T, Sano Y (1987) Light and electron microscopic immuno-histochemical studies of serotonin nerve fibers in the substantia nigra of the rat, cat and monkey. Anat Embryol (Berl) 176:13–18

    Article  CAS  Google Scholar 

  • Naito A, Kita H (1994) The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 637:317–322

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Iwatsubo K, Tsai C-T, Iwama K (1979) Cortically evoked inhibition of neurons of rat substantia nigra (pars compacta). Jpn J Physiol 29:353–357

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res 437:45–55

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Greenfield SA (1992) Sub-populations of pars compacta neurons in the substantia nigra: The significance of qualitatively and quantitatively distinct conductances. Neuroscience 48:423–437

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Bolam JP, Greenfield SA (1988) Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 333:174–177

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1991) Excitation of substantia nigra pars compacta neurones by 5-hydroxy-tryptamine in-vitro. NeuroReport 2:329–332

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and w-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol (Lond) 466:727–747

    CAS  Google Scholar 

  • Nestler EJ (1992) Molecular mechanisms of drug addiction. J Neurosci 12:2439–2450

    PubMed  CAS  Google Scholar 

  • Nestler EJ (1993) Cellular responses to chronic treatment with drugs of abuse. Crit Rev Neurobiol 7:23–39

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  • Nitsch C, Riesenberg R (1988) Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection. Brain Res 461:127–142

    Article  PubMed  CAS  Google Scholar 

  • Overton P, Clark D (1992) Iontophoretically administered drugs acting and the N-methyl-D-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse 10:131–140

    Article  PubMed  CAS  Google Scholar 

  • Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334

    Article  PubMed  CAS  Google Scholar 

  • Paden C, Wilson CJ, Groves PM (1976) Amphetamine-induced release of dopamine from the substantia nigra in vitro. Life Sci 19:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Paladini CA, Tepper JM (1999) GABAA and GABAB antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse 32:165–176

    Article  PubMed  CAS  Google Scholar 

  • Paladini CA, Celada P, Tepper JM (1999a) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience 89:799–812

    Article  PubMed  CAS  Google Scholar 

  • Paladini CA, Iribe Y, Tepper JM (1999b) GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Res 832:145–151

    Article  PubMed  CAS  Google Scholar 

  • Paladini CA, Fiorillo CD, Morikawa H, Williams JT (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci 4: 275–281

    Article  PubMed  CAS  Google Scholar 

  • Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and the interfascicular nucleus: A horseradish peroxidase study in the rat. J Comp Neurol 187:117–144

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Beckley SC, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 225:373–385

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind A, Hokfelt T (1994) Distribution of alpha-1 adrenoceptors in rat brain reveal;ed by in sitgu hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252–4268

    PubMed  CAS  Google Scholar 

  • Ping H, Shepard PD (1996) Apamine-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. NeuroReport 73:809–814

    Article  Google Scholar 

  • Pinnock RD, Dray A (1982) Differential sensitivity of presumed dopaminergic and non-dopaminergic neurones in rat substantia nigra to electrophoretically applied substance P. Neurosci Lett 29:153–158

    Article  PubMed  CAS  Google Scholar 

  • Plantje JF, Dijcks FA, Verheijden PFHM, Stoof JC (1985) Stimulation of D-2 dopamine receptors in rat mesocortical areas inhibits the release of [3H]dopamine. Eur J Pharmacol 114:401–402

    Article  PubMed  CAS  Google Scholar 

  • Plantje JF, Steinbusch HWM, Schipper J, Dijcks FA, Verheijden PFHM, Stoof JC (1987) D-2 dopamine-receptors regulate the release of {3H} dopamine in rat cortical regions showing dopamine immunoreactive fibers. Neuroscience 20:157–168

    Article  PubMed  CAS  Google Scholar 

  • Precht W, Yoshida M (1971) Monosynaptic inhibition of neurons of the substantia nigra by caudatonigral fibers. Brain Res 32:225–228

    Article  PubMed  Google Scholar 

  • Pucak ML, Grace AA (1994) Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors. J Pharmacol Exp Ther 271:1181–1192

    PubMed  CAS  Google Scholar 

  • Pucak ML, Grace AA (1996) Effects of haloperidol on the activity and membrane physiology of substantia nigra dopamine neurons recorded in vitro. Brain Res 713:44–52

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Diana M (2001) Drug dependence as a disorder of neural plasticity: focus on dopamine and glutamate. Neurosci Rev 12:41–59

    Google Scholar 

  • Rasmussen K, Czachura JF (1995) Nicotine withdrawal leads to increased firing rates of midbrain dopamine neurons. Neuroreport 7:329–332

    PubMed  CAS  Google Scholar 

  • Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res 116:287–298

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Vaughn JE, Roberts E (1980) GABAergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways. Brain Res 192:413–420

    Article  PubMed  CAS  Google Scholar 

  • Robledo P, Féger J (1990) Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data. Brain Res 518:47–54

    Article  PubMed  CAS  Google Scholar 

  • Roth RH, Salzman PM, Nowycky MC (1978) Impulse flow and short-term regulation of transmitter biosynthesis in central catecholaminergic neurons. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: A Generation of Progress. New York, Raven Press, pp 185–198

    Google Scholar 

  • Rothman RB, Herkenham M, Pert CB, Liang T, Cascieri MA (1984) Visualization of rat brain receptors for the neuropeptide, substance P. Brain Res 309:47–54

    Article  PubMed  CAS  Google Scholar 

  • Rye DB, Saper CB, Lee RJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 252:483–528

    Article  Google Scholar 

  • Santiago M, Westerink BHC (1992) The role of GABA receptors in the control of nigrostriatal dopaminergic neurons: dual probe microdialysis study in awake rats. Eur J Pharmacol 219:175–181

    Article  PubMed  CAS  Google Scholar 

  • Scarnati E, Pacitti C (1982) Neuronal responses to iontophoretically applied dopamine, glutamate, and GABA of identified dopaminergic cells in the rat substantia nigra after kainic acid-induced destruction of the striatum. Exp Brain Res 46:377–382

    Article  PubMed  CAS  Google Scholar 

  • Scarnati E, Campana E, Pacitti C (1984) Pedunculopontine-evoked excitation of substantia nigra neurons in the rat. Brain Res 304:351–361

    Article  PubMed  CAS  Google Scholar 

  • Schwyn RC, Fox CA (1974) The primate substantia nigra: A golgi and electron microscopic study. Journal Fur Hirnforschung 15:95–126

    PubMed  CAS  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320: 145–160

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    PubMed  CAS  Google Scholar 

  • Seutin V, Verbanck P, Massotte L, Dresse A (1990) Evidence for the presence of N-methyl-D-aspartate receptors in the ventral tegmental area of the rat: an electrophysiological in vitro study. Brain Res 514:147–150

    Article  PubMed  CAS  Google Scholar 

  • Shafer RA, Levant B (1998) The D3 dopamine receptor in cellular and organismal function. Psychopharmacology (Berl). 135:1–16

    Article  CAS  Google Scholar 

  • Shen RY, Chiodo LA (1993) Acute withdrawal after repeated ethanol treatment reduces the number of spontaneously active dopaminergic neurons in the ventral tegmental area. Brain Res 622:289–293

    Article  PubMed  CAS  Google Scholar 

  • Shen KZ, Johnson SW (1997) Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. J Physiol (Lond) 505:153–163

    Article  CAS  Google Scholar 

  • Shepard PD, German DC (1984) A subpopulation of mesocortical dopamine neurons possesses autoreceptors. Eur J Pharmacol 98:455–456

    Article  PubMed  CAS  Google Scholar 

  • Shepard PD, Bunney BS (1988) Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res 463:380–384

    Article  PubMed  CAS  Google Scholar 

  • Shepard PD, Connelly ST (1999) Pertussis toxin lesions of the rat substantia nigra block the inhibitory effects of the γ-hydroxybutyrate agent, S(-)HA-966 without affecting the basal firing properties of dopamine neurons. Neuropsychopharmacology 21:650–661

    Article  PubMed  CAS  Google Scholar 

  • Shim SS, Bunney BS, Shi W-X (1996) Effects of lesions in the medial prefrontal cortex on the activity of midbrain dopamine neurons. Neuropsychopharmacology 15: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Sibley DR, Monsma JFJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    Article  PubMed  CAS  Google Scholar 

  • Silva NL, Pechura CM, Barker JL (1990) Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. J Neurophysiol 64:262–272

    PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1988) Differential effects after repeated treatment with haloperidol, clozapine, thioridazine and tefludazine on SNC and VTA dopamine neurones in rats. Life Sci 42:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1995) Differential effects of repeated administration of novel antipsychotic drugs on the activity of midbrain dopamine neurons in the rat. Eur J Pharmacol 281:289–294

    Article  PubMed  CAS  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  PubMed  CAS  Google Scholar 

  • Skirboll SR, Grace AA, Hommer DW, Goldstein M, Hokfelt T, Bunney BS (1981) Peptide-monoamine coexistence: Studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons. Neuroscience 6:2111–2124

    Article  PubMed  CAS  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci (USA) 93:11202–11207

    Article  CAS  Google Scholar 

  • Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12:287–303

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493:160–167

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate- enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Bolam JP, Totterdell S, Smith AD (1981) Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones. Brain Res 217:245–263

    Article  PubMed  CAS  Google Scholar 

  • Sorenson EM, Shiroyama T, Kitai ST (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience 87:659–73

    Article  PubMed  CAS  Google Scholar 

  • Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16:7566–7573

    PubMed  CAS  Google Scholar 

  • Stanwood GD, Artymyshyn RP, Kung M-P, Kung HF, Lucki I, McGonigle P (2000) Quantitative autoradiographic mapping of rat brain dopamine D3 binding with [125I]7-OH-PIPAT: Evidence for the presence of D3 receptors on dopaminergic and nondopaminergic cell bodies and terminals. J Pharmacol Exp Ther 295:1223–1231

    PubMed  CAS  Google Scholar 

  • Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    PubMed  CAS  Google Scholar 

  • Stockton ME, Rasmussen K (1996) Olanzapine, a novel atypical antipsychotic, reverses d-amphetamine- induced inhibition of midbrain dopamine cells. Psychopharma-cology 124:50–56

    Article  CAS  Google Scholar 

  • Sugimoto T, Hattori T (1984) Organization and efferent projections of nucleus tegmenti pedunculopontinus pars compacta with special reference to its cholinergic aspect. Neuroscience 11:931–946

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, Johnson SW, North RA (1992) Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci Lett 134:207–211

    Article  PubMed  CAS  Google Scholar 

  • Suppes T, Pinnock RD (1987) Sensitivity of neuronal dopamine response in the substantia nigra and ventral tegmentum to clozapine, metoclopramide and SCH 23390. Neuropharmacology 26:331–337

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Kitai ST (1993) D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. In: Arbuthnott GW, Emson PC (ed) Progress in Brain Research. Vol. 99 Elsevier Science Publishers B.V., pp 309–324

    Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci (USA) 89:10178–10182

    Article  CAS  Google Scholar 

  • Surmeier DJ, Song W-J, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591

    PubMed  CAS  Google Scholar 

  • Svensson TH, Tung C-S (1989) Local cooling of prefrontal cortex induced pacemakerlike firing of dopaminergic neurons in rat ventral tegmental area in vivo. Acta Physiol Scand 136:135–136

    Article  PubMed  CAS  Google Scholar 

  • Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371:345–361

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mul opioid receptor mechanism. Science 276:2048–2050

    Article  PubMed  CAS  Google Scholar 

  • Tepper JM, Groves PM (1990) In vivo electrophysiology of central nervous system terminal autoreceptors. In: Kalsner S, Westfall TC (eds) Presynaptic Autoreceptors and the Question of the Autor emulation of Neurotransmitter Release. Ann New York Acad Sci 604:470–487

    Google Scholar 

  • Tepper JM, Nakamura S, Spanis CW, Squire LR, Young SJ, Groves PM (1982) Sub-sensitivity of catecholaminergic neurons to direct acting agonists after single or repeated electroconvulsive shock. Biol Psych 17:1059–1079

    CAS  Google Scholar 

  • Tepper JM, Nakamura S, Young SJ, Groves PM (1984a) Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of striatal drug infusions. Brain Res 309:317–333

    Article  PubMed  CAS  Google Scholar 

  • Tepper JM, Young SJ, Groves PM (1984b) Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of increases in impulse flow. Brain Res 309:309–316

    Article  PubMed  CAS  Google Scholar 

  • Tepper JM, Groves PM, Young SJ (1985) The neuropharmacology of the autoinhibition of monoamine release. Trends Pharmacol Sci 6:251–256

    Article  CAS  Google Scholar 

  • Tepper JM, Gariano RF, Groves PM (1987a) The neurophysiology of dopamine nerve terminal autoreceptors. In: Chiodo LA, Freeman AS (eds) Neurophysiology of Dopaminergic Systems — Current Status and Clinical Perspectives. Grosse Point, Lakeshore Publishing Co., pp 93–127

    Google Scholar 

  • Tepper JM, Sawyer SF, Groves PM (1987b) Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: Light-microscopic analysis. J Neurosci 7:2794–2800

    PubMed  CAS  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of nigrostriatal dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    PubMed  CAS  Google Scholar 

  • Tepper JM, Sun B-C, Martin LP, Creese I (1997) Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J Neurosci 17:2519–2530

    PubMed  CAS  Google Scholar 

  • Tepper JM, Celada P, Iribe Y, Paladini CA (2002) Afferent control of nigral dopaminergic neurons — The role of GABAergic inputs. In: Graybiel AM et al. (eds) The Basal Ganglia VI, Kluwer Academic Publishers, Norwell (in press)

    Google Scholar 

  • Teranishi T, Negishi K, Kato S (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301:243–246

    Article  PubMed  CAS  Google Scholar 

  • Tersigni TJ, Rosenberg HC (1996) Local pressure application of cannabinoid agonists increases spontaneous activity of rat substantia nigra pars reticulata neurons without affecting response to iontophoretically-applied GABA. Brain Res 733: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Tong Z-Y, Overton PG, Clark D (1996) Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 22:195–208

    Article  PubMed  CAS  Google Scholar 

  • Trent F, Tepper JM (1991) Dorsal raphé stimulation modifies striatal-evoked antidromic invasion of nigral dopaminergic neurons in vivo. Exp Brain Res 84: 620–630

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Patrick SL, Walker JM (1995) Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol 280:R13–15

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    PubMed  CAS  Google Scholar 

  • Usiello A, Balk J-H, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Article  PubMed  CAS  Google Scholar 

  • Usunoff KG (1984) Tegmentonigral projections in the cat: Electron microscopic observations. In: Hassler RG, Christ JF (eds) Advances in Neurology Vol. 40, Raven Press, New York, pp 55–61

    Google Scholar 

  • Usunoff KG, Romansky KV, Malinov GB, Ivanov DP, Blagov ZA, Galabov GP (1982) Electron microscopic evidence for the existence of a corticonigral tract in the cat. J Hirnforsch 23:23–29

    PubMed  CAS  Google Scholar 

  • Vallar L, Meldolesi J (1989) Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci 10:74–77

    Article  PubMed  CAS  Google Scholar 

  • Walters JR, Roth RH (1976) Dopaminergic Neurons: An in vivo system for measuring drug interactions with presynaptic receptors. Naunyn Schmiedebergs Arch Pharmacol 296:5–14

    Article  PubMed  CAS  Google Scholar 

  • Wang RY (1981a) Dopaminergic neurons in the rat ventral tegmental area. I. Identification and characterization. Brain Res Rev 3:123–140

    Article  CAS  Google Scholar 

  • Wang RY (1981b) Dopaminergic neurons in the rat ventral tegmental area. II. Evidence for autoregulation. Brain Res Rev 3:141–151

    Article  CAS  Google Scholar 

  • Wang RY (1981c) Dopaminergic neurons in the rat ventral tegmental area. III. Effects of D- and L-amphetamine. Brain Res Rev 3:152–165

    Google Scholar 

  • Wang T, French ED (1993) L-Glutamate excitation of A10 dopamine neurons is preferentially mediated by activation of NMDA receptors: extra- and intracellular electrophysiological studies in brain slices. Brain Res 627:299–306

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input. Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6:2125–2139

    Article  PubMed  CAS  Google Scholar 

  • Werkman TR, Kruse CG, Nievelstein H, Long SK, Wadman WJ (2000) Neurotensin attenuates the quinpirole-induced inhibition of the firing rate of dopamine neurons in the rat substantia nigra pars compacta and ventral tegmental area. Neuroscience 95:417–423

    Article  PubMed  CAS  Google Scholar 

  • White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Ann Rev Neurosci 19:405–436

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221:1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Callaway JCV (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084–3100

    PubMed  CAS  Google Scholar 

  • Wilson CJ, Young SJ, Groves PM (1977) Statistical properties of neuronal spike trains in the substantia nigra: cell types and their interactions. Brain Res 136:243–260

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Fenster GA, Young SJ, Groves PM (1979) Haloperidol-induced alteration of post-firing inhibition in dopaminergic neurons of rat substantia nigra. Brain Res 179:165–170

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. In: Kalsner S, Westfall TC (eds) Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter Release. Ann NY Acad Sci 604:232–343

    Google Scholar 

  • Wu T, Wang H-L (1994) CCK-8 excites substantia nigra dopaminergic neurons by increasing a cationic conductance. Neurosci Lett 170:229–232

    Article  PubMed  CAS  Google Scholar 

  • Wu X, French ED (2000) Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology 39:391–398

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Precht W (1971) Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res 32:225–228

    Article  PubMed  CAS  Google Scholar 

  • Yung WH, Hausser MA, Jack JJB (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol (Lond) 436:643–667

    CAS  Google Scholar 

  • Zhang H, Lee TH, Ellinwood EH Jr (1992a) The progressive changes of neuronal activities of the nigral dopaminergic neurons upon withdrawal from continuous infusion of cocaine. Brain Res 594:315–318

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chiodo LA, Freeman AS (1992b) Electrophysiological effects of MK-801 on rat nigrostriatal and mesoaccumbal dopaminergic neurons. Brain Res 590:153–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chiodo LA, Freeman AS (1993) Effects of phencyclidine, MK-801 and 1,3-di(tolyl)guanidine on non-dopaminergic midbrain neurons. Eur J Pharmacol 230:371–374

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chiodo LA, Freeman AS (1994) Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopamin-ergic neurons in rat substantia nigra. J Pharmacol Exp Ther 269:313–321

    PubMed  CAS  Google Scholar 

  • Zhang W, Tilson H, Stachowiak MK, Hong JS (1989) Repeated haloperidol administration changes basal release of striatal dopamine and subsequent response to haloperidol challenge. Brain Res 484:389–892

    Article  PubMed  CAS  Google Scholar 

  • Zhang XF, Hu XT, White FJ, Wolf ME (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 281:699–706

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diana, M., Tepper, J.M. (2002). Electrophysiological Pharmacology of Mesencephalic Dopaminergic Neurons. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics