Advertisement

Quantum Diffusion

  • Sushanta Dattagupta
  • Sanjay Puri
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 71)

Abstract

Our discussion of dissipative phenomena has been based on two distinct examples of stochastic processes, viz., the discrete jump process and the continuous diffusion process. From a microscopic perspective, the jump process is modeled in terms of a single magnetic spin in contact with a heat bath (see Chap. 1). This model is generalizable to the case of an interacting many-body system, described by an Ising model (see Chap. 2). In Chaps. 3–6, we discussed various examples of phase ordering systems, which are described by generalizations of kinetic Ising models and their coarse-grained counterparts. In Chap. 7, we encountered a natural extension of the jump process to the quantum domain, i.e., the spin-boson model, where a single spin is subjected to mutually perpendicular magnetic fields in order to generate non-commuting quantum dynamics. Additionally, the bath is taken to be quantum-mechanical in Chap. 8, and is described by non-interacting bosons.

Keywords

Landau Level Langevin Equation Heat Bath Jump Process Quantum Harmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 482.
    I.R. Senitzky, Phys. Rev. 119, 670 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 483.
    F. Schwabl and W. Thirring, Ergeb. Exakten. Naturwiss. 36, 219 (1964)MathSciNetADSCrossRefGoogle Scholar
  3. 484.
    G.W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6, 504 (1965)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 485.
    P. Ullersma, Physica 32, 27 (1966)MathSciNetADSCrossRefGoogle Scholar
  5. 486.
    A.O. Caldeira and A.J. Leggett, Phys. Rev. A 31, 1059 (1985)ADSCrossRefGoogle Scholar
  6. 487.
    F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985)ADSCrossRefGoogle Scholar
  7. 488.
    F. Haake and M. Zukowski, Phys. Rev. A 47, 2506 (1993)ADSCrossRefGoogle Scholar
  8. 489.
    G.W. Ford, J.T. Lewis and R.F. O’Connell, Phys. Rev. A 37, 4419 (1988)MathSciNetADSCrossRefGoogle Scholar
  9. 490.
    V. Hakim and V. Ambegaokar, Phys. Rev. A 32, 423 (1985)ADSCrossRefGoogle Scholar
  10. 491.
    B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D 45, 2843 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 492.
    G.-L. Ingold, in Quantum Transport and Dissipation ( Wiley-VCH, Weinheim 1998 )Google Scholar
  12. 493.
    S. Dattagupta and J. Singh, Pramana 47, 211 (1996)ADSCrossRefGoogle Scholar
  13. 494.
    S. Ichimaru, Basic Principles of Plasma Physics: A Statistical Approach ( Benjamin-Cummings, Reading, MA 1973 )Google Scholar
  14. 495.
    J.J. Sakurai, Modern Quantum Mechanics, Second Edition ( Addison-Wesley, Reading, MA 1994 )Google Scholar
  15. 496.
    L. Landau, Z. Phys. 64, 629 (1930)ADSMATHCrossRefGoogle Scholar
  16. 497.
    J.H. Van Vleck, Theory of Electric and Magnetic Susceptibilities (Oxford University Press, London 1932 )Google Scholar
  17. 498.
    Mesoscopic Phenomena in Solids, ed. by B.L. Altshuler, P.A. Lee and R.A. Webb (North-Holland, Amsterdam 1991)Google Scholar
  18. 499.
    T.M. Hong and J.M. Wheatley, Phys. Rev. B 42, 6492 (1990); Phys. Rev. B 43, 5702 (1991)CrossRefGoogle Scholar
  19. 500.
    S. Dattagupta and J. Singh, Phys. Rev. Lett. 79, 961 (1997)ADSCrossRefGoogle Scholar
  20. 501.
    N. Bohr, Ph.D. Thesis 1911, in Collected Works Vol. I ( North-Holland, Amsterdam 1972 )Google Scholar
  21. 502.
    H.J. van Leeuwen, J. Phys. (Paris) 2, 361 (1921)Google Scholar
  22. 503.
    R. Peierls, Surprises in Theoretical Physics ( Princeton University Press, Princeton 1979 )Google Scholar
  23. 504.
    C.G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930)Google Scholar
  24. 505.
    H. Grabert, P. Schramm and G.-L. Ingold, Phys. Rep. 168, 115 (1988)MathSciNetADSCrossRefGoogle Scholar
  25. 506.
    X.L. Li, G.W. Ford and R.F. O’Connell, Phys. Rev. A 41, 5287 (1990); Phys. Rev. E 53, 3359 (1996)Google Scholar
  26. 507.
    Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)ADSCrossRefGoogle Scholar
  27. 508.
    U. Merkt, Physica B 189, 165 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sushanta Dattagupta
    • 1
  • Sanjay Puri
    • 2
  1. 1.S.N. Bose National Centre for Basic SciencesSalt Lake KolkataIndia
  2. 2.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations