Determination of Non-uniform Dislocation Distributions in Polycrystalline Materials

  • J.-D. Kamminga
  • L. J. Seijbel
  • R. Delhez
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 68)


Diffraction line broadening caused by dislocations is discussed for polycrystalline materials that consist of crystallites in which non-uniform dislocation distributions occur; i.e. not all glide systems contain the same density and/or type of dislocations. The discussion is illustrated by two practical examples. It is shown that for 111 textured Al layers sputter deposited on silicon, during deformation due to a biaxial stress, predominantly screw dislocations with Burgers vectors inclined to the specimen surface are formed. Whether one or more slip systems are active in each grain cannot be determined with the present experiments. It is also shown that in initially stressed Ni layers electrodeposited on steel the internal stress favours the annihilation of dislocations with Burgers vectors close to the maximum resolved shear stress.


Slip System Burger Vector Fourier Coefficient Diffraction Line Screw Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Scardi, M. Leoni, Y.H. Dong: Eur. Phys. J. B 18, 23 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    G. Ribárik, T. Ungár, J. Gubicza: J. Appl. Cryst. 34, 669 (2001)CrossRefGoogle Scholar
  3. 3.
    A.C. Vermeulen, R. Delhez, T.H. de Keijser, E.J. Mittemeijer: J. Appl. Phys. 77, 5026 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    J.-D. Kamminga, R. Delhez: Mater. Sci. Eng. A 309–310, 55 (2001)CrossRefGoogle Scholar
  5. 5.
    R.W. Cheary, E. Dooryhee, P. Lynch, N. Armstrong, S. Dligatch: J. Appl. Cryst. 33, 1271 (2000)CrossRefGoogle Scholar
  6. 6.
    T. Ungár, M. Zehetbauer: Scripta Mat. 35, 1467 (1996)CrossRefGoogle Scholar
  7. 7.
    M. Wilkens: Phys. Status Solidi A 2, 359 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    I. Groma: Phys. Rev. B 57, 7535 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    B.E. Warren: X-ray Diffraction (Addison-Wesley, Reading MA 1969) pp. 251–275Google Scholar
  10. 10.
    J.-D. Kamminga, L.J. Seijbel: J. Res. Natl. Inst. Stand. Technol. (2003), in pressGoogle Scholar
  11. 11.
    M. Wilkens: Fundamental Aspects of Dislocation Theory. Vol. II, ed. by J.A. Simmons, R. de Wit and R. Bullough (Nat. Bur. Stand. (US) Spec. Publ. No. 317 (1970) pp. 1191–1193, 1195–1221Google Scholar
  12. 12.
    J.-D. Kamminga, R. Delhez: J. Appl. Cryst. 33, 1122 (2000)CrossRefGoogle Scholar
  13. 13.
    F.R.N. Nabarro: Theory of Crystal Dislocations (Clarendon, Oxford 1967) pp. 230–231Google Scholar
  14. 14.
    J.-D. Kamminga, T.H. De Keijser, E.J. Mittemeijer, R. Delhez: J. Appl. Cryst. 33, 1059 (2000)CrossRefGoogle Scholar
  15. 15.
    L.J. Seijbel, J.-D. Kamminga, R. Delhez: Mater. Sci. Forum 404–407, 715 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J.-D. Kamminga
  • L. J. Seijbel
  • R. Delhez

There are no affiliations available

Personalised recommendations