Skip to main content

X-ray Peak Broadening Due to Inhomogeneous Dislocation Distributions

  • Chapter
Diffraction Analysis of the Microstructure of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 68))

Abstract

An overview of the theory of X-ray line broadening caused by dislocation is presented. It is shown that the properties of the tails of the profile are determined by the average dislocation density, the dislocation density fluctuation, and the dislocation—dislocation correlation length. The obtained asymptotic behaviour is compared with the predictions of earlier models. The influence of the finite coherent domain size is also analysed. For the determination of the statistical parameters characterising the dislocation ensemble investigated a generalised form of Wilson’s variance method is outlined. The proposed evaluation method is demonstrated on line profiles measured on plastically deformed Cu single and AlMg polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Amstrong, W. Kalceff: J. Appl. Cryst. 32, 600 (1999)

    Article  Google Scholar 

  2. N. Amstrong: this issue (2002)

    Google Scholar 

  3. A. Borbély, J.H. Driver, T. Ungár: Acta Mater. 48, 2005 (2000)

    Article  Google Scholar 

  4. A. Borbély, I. Groma: Appl. Phys. Letter 79, 1772 (2001)

    Article  ADS  Google Scholar 

  5. A. Borbély, G. Guinglianda, J.H. Driver: Z. Metallkunde 7, 689 (2002)

    Google Scholar 

  6. A. Borbély, G. Ribárik, J. Dragomir, T. Ungár; J. Appl. Cryst. (2002)

    Google Scholar 

  7. in preparation E.F. Bertaut: Acta Cryst. 3, 14 (1950)

    Article  Google Scholar 

  8. D. Breuer, P. Klimanek, W. Pantleon: J. Appl. Cryst. 33, 1284 (2000)

    Article  Google Scholar 

  9. I. Gaál, in Proceedings of 5th Int. Symp. Metall. Mater. Sci.. Ed. by N. Andersen, M. Eldrup, N. Hansen, D.J. Jensen, T. Leffer, H. Lilholt, O. Pedersen, B. Singer (Riso Nat. Lab, Roskilde, Denmark 1984) p. 245

    Google Scholar 

  10. I. Groma, T. Ungár, M. Wilkens: J. Appl. Cryst. 21, 47 (1988)

    Article  Google Scholar 

  11. I. Groma: Phys. Rev. B 57, 7535 (1998)

    Article  ADS  Google Scholar 

  12. I. Groma, F. Székely: J. Appl. Cryst. 33, 1328 (2000)

    Article  Google Scholar 

  13. I. Groma, G. Monnet: J. Appl. Cryst. 35, 589 (2002)

    Article  Google Scholar 

  14. M. Hacker, E. Thiele, C. Holste: Z. Metallkunde 88, 321 (1997)

    Google Scholar 

  15. V. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz: Phys. Rev. B 55, 1793 (1997)

    Article  ADS  Google Scholar 

  16. P. Klimanek, J. Kužel: J. Appl. Cryst. 21, 59 (1988)

    Article  Google Scholar 

  17. M. Krivoglaz, K. Ryaboshapka: Phys. Met. Metall. 15, 18 (1963)

    Google Scholar 

  18. M. Krivoglaz, in Theory of X-ray and thermal neutron scattering by real crystals (Plenum, New York 1969)p. 258

    Google Scholar 

  19. M. Krivoglaz, O. Martynenko, K. Ryaboshapka: Fiz. Met. Metall. 55, 1 (1983)

    Google Scholar 

  20. J. Langford: J. Appl. Cryst. 1, 48 (1968)

    Article  Google Scholar 

  21. J.I. Langford, D. Louer, P. Scardi: J. Appl. Cryst. 33, 964 (2000)

    Article  Google Scholar 

  22. T. Ungár, H. Mughrabi, D. Ronnpagel, M. Wilkens: Acta Met. 32, 333 (1984)

    Article  Google Scholar 

  23. T. Ungár, I. Groma, M. Wilkens: J. Appl. Cryst. 22, 26 (1989)

    Article  Google Scholar 

  24. T. Ungár, M. Zehetbauer: Scripta Mater. 35, 1467 (1996)

    Article  Google Scholar 

  25. T. Ungár, A. Borbély: Appl. Phys. Letter 69, 3173 (1996)

    Article  ADS  Google Scholar 

  26. T. Ungár, in Defect and microstructure analysis by diffraction. Ed. by R. Snyder, J. Fiala, H. Bunge (Oxford University Press, Place?? 1999) pp. ??

    Google Scholar 

  27. T. Ungár, J. Gubicza, P. Hanák, I: Alexandrov: Mat. Sci. Eng. A 319, 274 (2001)

    Article  Google Scholar 

  28. G. Ribarik, T. Ungár, J. Gubicza: J. Appl. Crys. 34, 669 (2001)

    Article  Google Scholar 

  29. P. Scardi, M. Leoni: J. Appl. Cryst. 32, 671 (1999)

    Article  Google Scholar 

  30. P. Scardi, M. Leoni, Y.H. Dong: European Phys. J. B 18, 23 (2000)

    Article  ADS  Google Scholar 

  31. P. Scardi, Y.H. Dong, M. Leoni: Materials Sci. Forum 378, 132 (2001)

    Article  Google Scholar 

  32. F. Székely, I. Groma, J. Lendvai: Phys. Rev. B 62, 3093 (2000)

    Article  ADS  Google Scholar 

  33. F. Székely, I. Groma, J. Lendvai: Mat. Sci. Eng. A 309, 352 (2001)

    Article  Google Scholar 

  34. F. Székely, I. Groma, J. Lendvai: Scripta Mater. 45, 55 (2001)

    Article  Google Scholar 

  35. B. Warren, B. Averbach: J. Appl. Phys. 21, 595 (1950)

    Article  ADS  Google Scholar 

  36. B. Warren, B. Averbach: J. Appl. Phys. 28, 497 (1952)

    Article  Google Scholar 

  37. M. Wilkens: Phys. Stat. Sol. 2, 807 (1962)

    Google Scholar 

  38. M. Wilkens: Acta. Met. 17, 1155 (1969)

    Article  Google Scholar 

  39. M. Wilkens, in Fundamental Aspects of Dislocation Theory. Ed. by J. Simmons, R. de Witt, R. Bullough. (Nat. Bur. Stand. No. II 317 (U.S.) Spec. Publ. 1969) p. 1105

    Google Scholar 

  40. M. Wilkens: Phys. Stat. Sol. a 2, 359 (1970)

    Article  ADS  Google Scholar 

  41. M. Wilkens: Kristall und Technik 11, 1159 (1976)

    Article  Google Scholar 

  42. M. Wilkens: Phys. Stat. Sol. a 104, 344 (1987)

    Article  Google Scholar 

  43. A. Wilson: I1 Nuovo Cimento 1, 277 (1955)

    Article  ADS  Google Scholar 

  44. A. Wilson: Mathematical Theory of X-ray Powder Diffractometry. (Centrex Publishing, Eindhoven 1963)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Groma, I., Borbély, A. (2004). X-ray Peak Broadening Due to Inhomogeneous Dislocation Distributions. In: Mittemeijer, E.J., Scardi, P. (eds) Diffraction Analysis of the Microstructure of Materials. Springer Series in Materials Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06723-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06723-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07352-6

  • Online ISBN: 978-3-662-06723-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics