Advertisement

Die Onkologie pp 1953-1973 | Cite as

Chronische myeloische Leukämie

  • R. Hehlmann
  • A. Hochhaus
  • U. Berger

Zusammenfassung

Die chronische myeloische Leukämie (CML) ist eine klonale myeloproliferative Erkrankung mit zum Teil sehr hohen Leukozytenzahlen, die von der pluripotenten hämatopoetischen Stammzelle ausgeht. Sie wurde erstmals von Virchow und Bennett im Jahre 1845 beschrieben und hat zur Prägung der Bezeichnung Leukämie („weißes Blut“) geführt (Virchow 1845). Die CML wird definiert durch:

Leukozytose von in der Regel mehr als 30×109/1 mit Auftreten myeloischer Vorstufen (Linksverschiebung) bis zu den Myeloblasten im Differentialblutbild

  • Splenomegalie

  • hyperzelluläres Knochenmark, vereinbar mit einer chronischen myeloproliferativen Erkrankung

  • erniedrigte oder nicht nachweisbare Aktivität der alkalischen Leukozytenphosphatase (ALP)

  • Vorliegen der Philadelphia-Translokation t(9;22)(g34;g11) und/oder Nachweis des bcr-Rearrangements bzw. eines bcr/ab/-mRNATranskripts (in etwa 94% der Fälle)

  • Zeichen des Hypermetabolismus (Fieber, Gewichtsverlust, erhöhte Werte für LDH und Harnsäure)

  • Fehlen der Kriterien für das Vorliegen anderer myeloproliferativer Erkrankungen (Osteomyelofibrose, essentielle Thrombozythämie, Polycythaemia vera) oder einer chronischen myelomonozytären Leukämie (CMML).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allan NC, Richards SM, Shepherd PC (1995) UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response.The UK Medical Research Council’s Working Parties for Therapeutic Trials in Adult Leukaemia. Lancet 345: 1392–1397CrossRefPubMedGoogle Scholar
  2. Aricò M, Biondi A, Pui CH (1997) Juvenile myelomonocytic leukemia. Blood 90: 479–488PubMedGoogle Scholar
  3. Asimakopoulos FA, Shteper PJ, Krichevsky S et al. (1999) ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 94: 2452–2460PubMedGoogle Scholar
  4. Baccarani M, Rosti G, De Vivo A et al. for the Italian Cooperative Study Group on Chronic Myeloid Leukemia (2002) A randomized study of interferon-a versus interferon-a and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood 99: 1527–1535Google Scholar
  5. Beatty PG, Anasetti C, Hansen JA et al. (1993) Marrow transplantation from unrelated donors for treatment of hematologic malignancies:effect of mismatching for one HLA locus. Blood 81: 249–253PubMedGoogle Scholar
  6. Ben Neriah Y, Daley GQ, Mes Masson AM, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212–214CrossRefGoogle Scholar
  7. Bennett JM, Catovsky D, Daniel MT et al. (1994) The chronic myeloid leukaemias:guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol 87: 746–754Google Scholar
  8. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 88: 3118–3122Google Scholar
  9. Bonifazi F, De Vivo A, Rosti G et al. for the European Study Group on Interferon in Chronic Myeloid Leukemia. (2001) Chronic myeloid leukemia and cc Interferon. A study of complete cytogenetic responders. Blood 98: 3074–3081Google Scholar
  10. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92: 3362–3367PubMedGoogle Scholar
  11. Boultwood J, Fidler C, Shepherd P et al. (1999) Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia. Am J Hematol 61: 5–9CrossRefPubMedGoogle Scholar
  12. BrümmendorfTH,HolyoakeTL,Rufer N et al. (2000) Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 95: 1883–1890Google Scholar
  13. Canaani E, Gale RP, Steiner Saltz D,Berrebi A,Aghai E,Januszewicz E (1984) Altered transcription of an oncogene in chronic myeloid leukaemia. Lancet 1: 593–595Google Scholar
  14. Carella AM, Podesta M, Frassoni F et al. (1993) Collection of„normal” blood repopulating cells during early hemopoietic recovery after intensive conventional chemotherapy in chronic myelogenous leukemia. Bone Marrow Transplant 12: 267–271PubMedGoogle Scholar
  15. Carella AM, Lerma E,Corsetti MT etal. (1999) Autografting with Philadelphia chromosome-negative mobilized hematopoietic progenitor cells in chronic myelogenous leukemia. Blood 93: 1534–1539Google Scholar
  16. Chissoe SL, Bodenteich A, Wang YF et al. (1995) Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation.Genomics 27: 67–82Google Scholar
  17. Chronic Myeloid Leukemia Trialist’s Collaborative Group (1997) Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J Natl Cancer Inst 89: 1616–1620CrossRefGoogle Scholar
  18. Clift RA, Storb R (1996) Marrow transplantation for CML: the Seattle experience. Bone Marrow Transplant 17 [Suppl 3[: S1 - S3Google Scholar
  19. Corsetti MT, Lerma E, Dejana A et al. (1999) Quantitative competitive reverse transcriptase-polymerase chain reaction for BCR-ABL on Philadelphia-negative leukaphereses allows the selection of low-contaminat-ed peripheral blood progenitor cells for autografting in chronic myelogenous leukemia. Leukemia 13: 999–1008CrossRefPubMedGoogle Scholar
  20. Cross NCP, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM (1993) Competitive polymerase chain reaction to estimate the number of BCRABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 82: 1929–1936PubMedGoogle Scholar
  21. Cross NCP, Melo JV, Feng L, Goldman JM (1994) An optimized multiplex polymerase chain reaction ( PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 8: 186–189Google Scholar
  22. Cross NCP, Reiter A (2002) Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia 16: 1207–1212CrossRefPubMedGoogle Scholar
  23. Cunningham I, Gee T, Dowling M et al. (1979) Results of treatment of Ph+ chronic myelogenous leukemia with an intensive treatment regimen (L-5 protocol). Blood 53: 375–395PubMedGoogle Scholar
  24. Daley GQ, van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830CrossRefPubMedGoogle Scholar
  25. Druker BJ, Tamura S, Buchdunger E et al. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Medic 2: 561–566CrossRefGoogle Scholar
  26. Druker BJ, Sawyers CL, Kantarjian H et al. (2001 a) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042Google Scholar
  27. Druker BJ,Talpaz M, Resta DJ et al. (2001 b) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037Google Scholar
  28. Emig M, Saussele S, Wittor H et al. (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13: 1825–1832CrossRefPubMedGoogle Scholar
  29. Fader) S,Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341: 164–172CrossRefGoogle Scholar
  30. Gale RP, Hehlmann R, Zhang M-J et al. (1998) Survival with bone marrow transplantation versus hydroxyurea or interferon for chronic myelogenous leukemia. Blood 91: 1810–1819PubMedGoogle Scholar
  31. Galton DA (1953) Myleran in chronic myeloid leukaemia. Lancet (6753): 208–213Google Scholar
  32. Gewirtz AM (1992) Therapeutic applications of antisense DNA in the treatment of human leukemia. Ann NY Acad Sci 660: 178–187CrossRefPubMedGoogle Scholar
  33. GotoT, Nishikori M, Arlin Z et al. (1982) Growth characteristics of leukemic and normal hematopoietic cells in Ph+ chronic myelogenous leukemia and effects of intensive treatment. Blood 59: 793–808Google Scholar
  34. Gratwohl A, Hermans J, Goldman JM et al. (1998) Risk assessment for patients with chronic myeloid leukemia before allogeneic blood or marrow transplantation. Lancet 352: 1087–1092CrossRefPubMedGoogle Scholar
  35. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99CrossRefPubMedGoogle Scholar
  36. Guilhot F, Chastang C, Michallet M et al. (1997) Interferon alpha2b ( IFN) combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl J Med 337: 223–229Google Scholar
  37. Gunsilius E, Duba HC, Petzer AL et al. (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrowderived endothelial cells. Lancet 355: 1688–1691CrossRefPubMedGoogle Scholar
  38. Hansen JA,GooleyTA,Martin Pi et al. (1998) Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 338: 962–968CrossRefGoogle Scholar
  39. Hasford J, Baccarani M, Hehlmann R, Ansari H, Tura S, Zuffa E (1996) Interferon-a and hydroxyurea in early chronic myeloid leukemia:a comparative analysis of the Italian and German chronic myeloid leukemia trials with interferon-a. Blood 88: 5384–5391Google Scholar
  40. Hasford J, Pfirrmann M, Hehlmann R et al. (1998) A new prognostic score for the survival of patients with chronic myeloid leukemia treated with interferon alfa.) Natl Cancer Inst 90: 850–858Google Scholar
  41. Hehlmann R (1998) A chance of cure for every patient with CML? N Engl J Med 338: 980–982CrossRefPubMedGoogle Scholar
  42. Hehlmann R (2000) Trial of IFN or STI571 before proceeding to allografting for CML? Leukemia 14: 1560–1562CrossRefPubMedGoogle Scholar
  43. Hehlmann R (2003) Current CML therapy: Progress and dilemma. Leukemia 17: 1010–1012CrossRefPubMedGoogle Scholar
  44. Hehlmann R, Heimpel H (1996) Current aspects of drug therapy in Philadelphia-positive CML: Correlation of tumor burden with survival. Leuk Lymphoma 22: 161–167Google Scholar
  45. Hehlmann R, Hochhaus A (1999) The changing nature of conventional therapy in chronic myelogenous leukemia (CML),In:Talpaz M, Kantarjian H (eds) Medical management of chronic myelogenous leukemia. Marcel Dekker, New York, pp 113–139Google Scholar
  46. Hehlmann R, Heimpel H, Hasford J et al. (1993) Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: Prolongation of survival by hydroxyurea. Blood 82: 398–407Google Scholar
  47. Hehlmann R, Heimpel H, Hasford J et al. (1994) Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. Blood 84: 4064–4077PubMedGoogle Scholar
  48. Hehlmann R, Hochhaus A, Kolb Hi et al. (1999) Interferon-a before allogeneic bone marrow transplantation in chronic myelogenous leukemia does not affect outcome adversely, provided it is discontinued at least 90 days before the procedure. Blood 94: 3668–3677PubMedGoogle Scholar
  49. Hehlmann R, Hochhaus A, Berger U, Reiter A (2000) Current trends in the management of chronic myelogenous leukemia. Ann Hematol 79: 345–354CrossRefPubMedGoogle Scholar
  50. Hehlmann R, Berger U, Pfirrmann M, Hochhaus A et al.(2003) Randomized comparison of interferon a and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-Study 11): prolongation of survival by the combination of interferon a and hydroxyurea. Leukemia (in press)Google Scholar
  51. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344: 251–253CrossRefPubMedGoogle Scholar
  52. Hellriegel KP (1981) Therapie der Blastenkrise der chronischen myeloischen Leukämie. Ergebnisse einer Phase-11-Studie mit Vindesin. Folia Haematol 108: 699–706Google Scholar
  53. Hochhaus A, Kreil S, Corbin AS et al. (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16: 2190–2196CrossRefPubMedGoogle Scholar
  54. Hochhaus A, Lin F, Reiter A et al. (1995) Variable numbers of BCR-ABL transcripts persist in CML patients who achieve complete cytogenetic remission with interferon-a. Br J Haematol 91: 126–131CrossRefPubMedGoogle Scholar
  55. Hochhaus A, Lin F, Reiter A et al. (1996a) Quantification of residual disease in chronic myelogenous leukemia patients on interferon-a therapy by competitive polymerase chain reaction. Blood 87: 1549–1555PubMedGoogle Scholar
  56. Hochhaus A, Reiter A,Skladny H et al. (1996b) A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome negative chronic myelogenous leukemia. Blood 88: 2236–2240PubMedGoogle Scholar
  57. Hochhaus A, Reiter A, Saussele S et al. (2000) Molecular heterogeneity in complete cytogenetic responders after interferon alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. Blood 95: 62–66PubMedGoogle Scholar
  58. Kantarjian HM, O’Brien S,Anderlini P,Talpaz M (1996) Treatment of chronic myelogenous leukemia: Current status and investigational options. Blood 87: 3069–3081Google Scholar
  59. Kantarjian H, Sawyers C, Hochhaus A et al. on behalf of the International STI571 CML Study Group (2002) Imatinib mesylate (Gleevec) induces hematologic and cytogenetic responses in the majority of patients with chronic myeloid leukemia in chronic phase: results of a phase II study. N Engl J Med 346: 645–652Google Scholar
  60. Kantarjian HM,Vellekoop L,McCredie KB et al. (1985) Intensive combination chemotherapy (ROAP 10) and splenectomy in the management of chronic myelogenous leukemia. J Clin Oncol 3: 192–200Google Scholar
  61. Kennedy BJ,Yarbro JW (1966) Metabolic and therapeutic effects of hydrox- yurea in chronic myelogenous Ieukemia.JAMA 195: 1038–1043Google Scholar
  62. Kolb HJ, Schattenberg A, Goldman JM et al. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients.European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86: 2041–2050PubMedGoogle Scholar
  63. Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042CrossRefPubMedGoogle Scholar
  64. Krämer A, Hörner S, Willer A, Fruehauf S, Hochhaus A, Hallek M, Hehlmann R (1999) Adhesion to fibronectin stimulates proliferation of wild type and bcr/abl-transfected murine hematopoietic cells.Proc Natl Acad Sci USA 96: 2087–2092Google Scholar
  65. Kronenwett R, Haas R, Sczakiel G (1996) Kinetic selectivity of complementary nucleic acids: bcr/ab/-directed antisense RNA and ribozymes. J Mol Biol 259: 632–644CrossRefPubMedGoogle Scholar
  66. Lange W, Cantin EM, Finke J, Dolken G (1993) In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia 7: 1786–1794PubMedGoogle Scholar
  67. Lion T, Henn T,Gaiger A, Kalhs P,Gadner H (1993) Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 341: 275–276CrossRefPubMedGoogle Scholar
  68. Mahon FX, Deininger MWN, Schultheis B et al. (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96: 1070–1079PubMedGoogle Scholar
  69. Mahon FX, Montastruc M, Faberes C, Reiffers J (1994) Predicting complete cytogenetic response in chronic myelogenous leukemia patients treated with recombinant interferon-a. Blood 84: 3592–3594PubMedGoogle Scholar
  70. Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, Fialkow PJ (1980) Involvement of the B-Iymphoid system in chronic myelogenous leukaemia. Nature 287: 49–50CrossRefPubMedGoogle Scholar
  71. McWhirter JR, Wang JY (1993) An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 12: 1533–1546PubMedGoogle Scholar
  72. Medical Research Council’s Working Party for Therapeutic Trials in Leukaemia (1968) Chronic Granulocytic Leukemia: Comparison of radiotherapy and busulphan therapy. Br Med J 1: 201–208CrossRefGoogle Scholar
  73. Melo JV, Gordon DE,Tuszynski A, Dhut S,Young BD,Goldman JM (1993) Expression of the ABL-BCR fusion gene in Philadelphia-positive acute lymphoblastic leukemia. Blood 81: 2488–2491Google Scholar
  74. Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88: 2375–2384PubMedGoogle Scholar
  75. Mensink E, van de LA, Schattenberg A, Linders E, Schaap N, Geurts vK, de WitteT (1998) Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol 102: 768–774CrossRefPubMedGoogle Scholar
  76. Minot GR, Buckman TE, Isaacs R (1924) Chronic myelogenous leukemia. J Am Med Assoc 82: 1489–1494CrossRefGoogle Scholar
  77. Niemeyer C, Aricò M, Basso G et al. (1997) Chronic myelomonocytic leukemia in childhood:A retrospective analysis of 110 cases. Blood 89: 3534PubMedGoogle Scholar
  78. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497–1501Google Scholar
  79. O’Brien S, Kantarjian H, Keating M et al. (1995) Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 86: 3322–3326PubMedGoogle Scholar
  80. O’Brien S,Kantarjian H, Koller C et al. (1999) Sequential homoharringtonine and interferon-a in the treatment of early chronic phase chronic myelogenous leukemia. Blood 93: 4149–4153Google Scholar
  81. O’Brien SG, Guilhot F, Larson RA et al. (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348: 994–1004CrossRefPubMedGoogle Scholar
  82. Ohnishi K,Ohno R,Tomonaga M et al. (1995) A randomized trial comparing interferon-alpha with busulfan for newly diagnosed chronic myelogenous leukemia in chronic phase. Blood 86: 906–916Google Scholar
  83. Pane F,Frigeri F, Sindona M et al. (1996) Neutrophilic-chronic myelogenous leukemia (CML-N): a distinct disease with a specific marker (BCR-ABL with c3a2 junction). Blood 88: 2410–2414Google Scholar
  84. Prendergast GC (2000) Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospects. Curr Opin Cell Biol 12: 166–173CrossRefPubMedGoogle Scholar
  85. Raanani P, Dazzi F, Sohal Jet al. (1997) The rate and kinetics of molecular response to donor leucocyte transfusions in chronic myeloid leukaemia patients treated for relapse after allogeneic bone marrow transplantation. Br J Haematol 99: 945–950CrossRefPubMedGoogle Scholar
  86. Reiter A,Skladny H,HochhausA et al. (1997) Molecular response of CML patients treated with interferon alpha monitored by quantitative Southern blot analysis. Br Haematol 97: 86–93CrossRefGoogle Scholar
  87. Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293CrossRefPubMedGoogle Scholar
  88. Rushing D, Goldman A, Gibbs G, Howe R, Kennedy BJ (1982) Hydroxyurea versus busulfan in the treatment of chronic myelogenous leukemia. Am J Clin Oncol 5: 307–313CrossRefPubMedGoogle Scholar
  89. Salgia R, Li JL, Lo SH et al. (1995) Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by p2105CR/ABL J Biol Chem 270: 5039–5047Google Scholar
  90. Sattler M, Salgia R (1998) Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12: 637–644CrossRefPubMedGoogle Scholar
  91. Sawyers CL, McLaughlin J, Goga A, Havilk M, Witte O (1994) The nuclear tyrosine kinase c-abl negatively regulates cell growth. Cell 77: 121–131CrossRefPubMedGoogle Scholar
  92. Sawyers CL, Hochhaus A, Feldman E (2002) Glivec (imatinib mesylate) induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: Results of a phase II study. Blood 99: 3530–3539Google Scholar
  93. Schiffer CA, Hehlmann R, Larson R (2003) Perspectives on the treatment of chronic phase and advanced phase CML and Philadelphia chromosome positive ALL. Leukemia 17: 691–699CrossRefPubMedGoogle Scholar
  94. Schoch C, Schnittger S, Bursch Set al. (2002) Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia:A study on 350 cases. Leukemia 16: 53–59CrossRefPubMedGoogle Scholar
  95. Shtivelman E,Lifshitz B,Gale RP,Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 315: 550–554CrossRefGoogle Scholar
  96. Sill H,Goldman JM,Cross NCP (1995) Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 85: 2013–2016Google Scholar
  97. Silver RT, Woolf SH, Hehlmann R et al. (1999) Review: An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allo-Google Scholar
  98. geneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 94:1517–1536Google Scholar
  99. Simonsson B, Oberg G, Bjoreman M et al. for the Danish-Swedish CML group (1996) Intensive treatment in order to minimize the Ph-positive clone in CML. Bone MarrowTranspl 17: [Suppl 3]: S63–S64Google Scholar
  100. Sinclair PB, Nacheva EP, Leversha M et al. (2000) Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 95: 738–743PubMedGoogle Scholar
  101. Snyder DS,Wu Y,Wang JL, Rossi JJ, Swiderski P, Kaplan BE, Forman SJ (1993) Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 82: 600–605Google Scholar
  102. Sokal JE, Cox EB, Baccarani M et al. (1984) Prognostic discrimination in „good-risk“ chronic granulocytic leukemia. Blood 63: 789–799PubMedGoogle Scholar
  103. Statistisches Bundesamt (1997) Sterbefälle nach Todesursachen in Deutschland. Einzelnachweis.Statistisches Bundesamt,WiesbadenGoogle Scholar
  104. Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU (1991) Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Ann Intern Med 114: 532–538CrossRefPubMedGoogle Scholar
  105. Talpaz M, Silver RT,Druker BJ et al. (2002) Imatinib induces hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of a phase II study. Blood 99: 1928–1937Google Scholar
  106. The Benelux CML Study Group (1998) Randomized study on hydroxyurea alone versus hydroxyurea combined with low-dose interferon-alb for chronic myeloid leukemia. Blood 91: 2713–2721Google Scholar
  107. The Italian Cooperative Study Group on Chronic Myeloid Leukemia (1994) Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 330: 820825Google Scholar
  108. The Italian Cooperative Study Group on Chronic Myeloid Leukemia (1998) Long-term follow-up of the Italian trial of interferon-a versus conventional chemotherapy in chronic myeloid leukemia. Blood 92: 15411548Google Scholar
  109. Thomas DE, Clift RA (1989) Indications for marrow transplantation in chronic myelogenous leukemia. Blood 73: 861–864PubMedGoogle Scholar
  110. van Denderen J, ten Hacken P, Berendes P, Zegers N, Boersma W, Grosveld G, van Ewijk W (1992) Antibody recognition of the tumor-specific ó3a2 junction of bcr-abl chimeric proteins in Philadelphia-chromosome-positive leukemias. Leukemia 6: 1107–1112PubMedGoogle Scholar
  111. van Rhee F, Hochhaus A, Lin F, Melo JV,Goldman JM, Cross NCP (1996) p190Google Scholar
  112. BCR-ABL mRNA is expressed at low levels in p210-positive chronicGoogle Scholar
  113. myeloid and acute lymphoblastic leukemias. Blood 87:5213–5217 Virchow R (1845) Weisses Blut. Frorieps Notizen 36: 151–156Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Hehlmann
  • A. Hochhaus
  • U. Berger

There are no affiliations available

Personalised recommendations