Assessment of Myocardial Viability by Radionuclide Techniques

  • R. Campisi
  • F. Y. J. Keng
  • H. R. Schelbert
Part of the Diagnostic Imaging book series (MEDRAD)


Ischemic cardiomyopathy associated with poor left ventricular (LV) function often presents a clinical management problem. There is overwhelming evidence that such patients have a poor prognosis when treated medically. Heart transplantation has now become a therapeutic alternative. However, the limited number of donor hearts makes this approach available to only the most qualified patients. On the other hand, it has been well documented that the long-term benefit of myocardial revascularization in this patient population is significantly better than medical treatment (Alderman et al. 1993). Because operative mortality remains high in these patients, the main concern is in the selection of those patients who will really benefit from revascularization.


Myocardial Blood Flow Perfusion Defect Myocardial Viability Regional Myocardial Blood Flow Dobutamine Echocardiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderman EL, Corley SD, Fisher LD, Chaitman BR, Faxon DP, Foster ED, Killip T, Sosa JA, Bourassa MG. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J Am Coll Cardiol 1993;22:1141–1154PubMedGoogle Scholar
  2. Alfieri O, La Canna G, Giubbini R, Pardini A, Zogno M, Fucci C. Recovery of myocardial function. The ultimate target of coronary revascularization. Eur J Cardiothorac Surg 1993;7:325–330PubMedGoogle Scholar
  3. Altehoefer C, Kaiser HJ, Deorr R, Feinendegen C, Beilin I, Ue-bis R, Buell U. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 1992;19:334–342PubMedGoogle Scholar
  4. Altehoefer C, Dahl J vom, Biedermann M, Uebis R, Beilin I, Sheehan F, Hanrath P, Buell U. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994;35:569–574PubMedGoogle Scholar
  5. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, Vivie ER de, Schicha H, Erdmann E, Sechtem U. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60–69PubMedGoogle Scholar
  6. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, Boersma E, Teule GJ, Visser CA. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 1996a;28:558–564PubMedGoogle Scholar
  7. Bax JJ, Cornel JH, Visser FC, Huybregts MA, Van Lingen A. Prediction of reversibility of wall motion abnormalities after revascularization using F18-fluorodeoxyglucose single photon emission computed tomography [letter]. Eur Heart J 1996b;17:480–481PubMedGoogle Scholar
  8. Bax JJ, Visser FC, Blanksma PK, Veening MA, Tan ES, Willem-sen TM, van Lingen A, Teule GJ, Vaalburg W, Lie KI, Visser CA. Comparison of myocardial uptake of fluorine-18-fluo-rodeoxyglucose imaged with PET and SPECT in dyssyner-gic myocardium. J Nucl Med 1996c;37:1631–1636PubMedGoogle Scholar
  9. Bax JJ, Visser FC, Cornel JH, van Lingen A, Fioretti PM, Visser CA. Improved detection of viable myocardium with fluo-rodeoxyglucose-labeled single-photon emission computed tomography in a patient with hibernating myocardium: comparison with rest-redistribution thallium 201-labeled single-photon emission computed tomography. J Nucl Cardiol 1997a;4:178–179PubMedGoogle Scholar
  10. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Huitink JM, Kamp O, Nijland F, Roelandt JR, Visser CA. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18 fluorodeoxyglucose single-photon emission computed tomography. J Am Coll Cardiol 1997b;30:377–383PubMedGoogle Scholar
  11. Beanlands RS, Dawood F, Wen WH, McLaughlin PR, Butany J, D’Amati G, Liu PP. Are the kinetics of technetium-99 m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802–1814PubMedGoogle Scholar
  12. Beanlands RS, deKemp R, Scheffel A, Nahmias C, Garnett ES, Coates G, Johansen HL, Fallen E. Can nitrogen-13 ammonia kinetic modeling define myocardial viability independent of fluorine-18 fluorodeoxyglucose? J Am Coll Cardiol 1997;29:537–543PubMedGoogle Scholar
  13. Beanlands RS, Hendry PJ, Masters RG, de Kemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98:1151–1156Google Scholar
  14. Beller GA. Comparison of 201T1 scintigraphy and low-dose dobutamine echocardiography for the noninvasive assessment of myocardial viability [editorial; comment]. Circulation 1996;94:2681–2684PubMedGoogle Scholar
  15. Berry J, Baker J, Pieper K, Hanson M, Hoffman J, Coleman R. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13- ammonia in normal volunteers. J Nucl Med. 1991;32:1518–1525PubMedGoogle Scholar
  16. Bisi G, Sciagraa R, Santoro GM, Fazzini PR Rest technetium-99 m sestamibi tomography in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J Am Coll Cardiol 1994;24:1282–1289PubMedGoogle Scholar
  17. Bobba K, Botvinick EH, Sciammarella MG, Starsken NF, Zhu YY, Lapidus A, Dae MW Is there any advantage to the acquisition of 24-hour thallium images, in the presence of persistent perfusion defects at 4 h after reinjection? Eur J Nucl Med 1998;25:509–514PubMedGoogle Scholar
  18. Bolli R. Myocardial,tunning’ in man. Circulation 1992; 86:1671–1691PubMedGoogle Scholar
  19. Bolli R. Basic and clinical aspects of myocardial stunning. Prog Cardiovasc Dis 1998;40:477–516PubMedGoogle Scholar
  20. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose [see comments]. Circulation 1991;83:26–37PubMedGoogle Scholar
  21. Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 1995;90:44–46PubMedGoogle Scholar
  22. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149PubMedGoogle Scholar
  23. Brosius FC, Nguyen N, Egert S, Lin Z, Deeb GM, Haas F, Schwaiger M, Sun D. Increased sarcolemmal glucose transporter abundance in myocardial ischemia. Am J Cardiol 1997;80:77A-84AGoogle Scholar
  24. Caner B, Beller GA. Are technetium-99m-labeled myocardial perfusion agents adequate for detection of myocardial viability? Clin Cardiol 1998;21:235–242PubMedGoogle Scholar
  25. Carli M di, Schelbert HR, Asgarzadie F, Rokshar S, Mody F, Cz-ernin J, Brunken R, Laks H, Phelphs ME, Maddahi J. Is there a relationship between myocardial viability and change in heart failure post revascularization in patients with poor LV function? J Nucl Med 1994;35Google Scholar
  26. Carli MF di, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, Maddahi J. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–3444PubMedGoogle Scholar
  27. Carli MF di, Maddahi J, Rokhsar S, Schelbert HR, Bianco-Batlles D, Brunken RC, Fromm B. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 1998;116:997–1004PubMedGoogle Scholar
  28. Carrel T, Jenni R, Haubold-Reuter S, Schulthess G von, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg. 1992;6:479–484PubMedGoogle Scholar
  29. Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, Piwnica-Worms D. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 1992;33:1516–1522PubMedGoogle Scholar
  30. Charney R, Schwinger ME, Chun J, Cohen MV, Nanna M, Menegus MA, Wexler J, Franco HS, Greenberg MA. Dobutamine echocardiography and resting-redistribution thalli-um-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 1994;128:864–869PubMedGoogle Scholar
  31. Chen E, Maclntyre J, Go R, Brunken R, Saha G, Wong C, Neumann D, Cook S, Khandekar S. Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med. 1997;38:582–586PubMedGoogle Scholar
  32. Choi Y, Brunken RC, Hawkins RA, Huang S-C, Buxton DB, Hoh CK, Phelps ME, Schelbert HR. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med. 1993;20:308–318PubMedGoogle Scholar
  33. Chua T, Kiat H, Germano G, Maurer G, van Train K, Friedman J, Berman D. Gated technetium-99 m sestamibi for simultaneous assessment of stress myocardial perfusion, postex-ercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 1994;23:1107–1114PubMedGoogle Scholar
  34. Conversano A, Walsh JF, Geltman EM, Perez JE, Bergmann SR, Gropler RJ. Delineation of myocardial stunning and hibernation by positron emission tomography in advanced coronary artery disease. Am Heart J 1996;131:440–450PubMedGoogle Scholar
  35. Cuocolo A, Maurea S, Pace L, Nicolai E, Nappi A, Imbriaco M, Tri-marco B, Salvatore M. Resting technetium-99 m methoxy-isobutylisonitrile cardiac imaging in chronic coronary artery disease: comparison with rest-redistribution thallium-201 scintigraphy. Eur J Nucl Med 1993;20:1186–1192PubMedGoogle Scholar
  36. Cuocolo A, Pace L, Ricciardelli B, Chiariello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: comparison of thallium-201 scintigraphy with reinjection and technetium-99m-methoxyisobutyl isonitrile [see comments]. J Nucl Med 1992;33:505–511PubMedGoogle Scholar
  37. Dahl J vom, Eitzman D, Al-Aouar A, Kanter H, Hicks R, Deeb G, Kirsh M, Schwaiger M. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994;90:2356–2366Google Scholar
  38. Dahl J vom, Altehoefer C, Sheehan F, Buechin P, Uebis R, Mess-mer B, Buell U, Hanrath P. Recovery of regional left ventricular dysfunction after coronary revascularization: impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996a;28:948–958Google Scholar
  39. Dahl J vom, Altehoefer C, Büchin P, Sheehan F, Schwarz E, Koch K, Schulz G, Uebis R, Schöndube F, Messmer B, Büll U, Hanrath P. Effect of myocardial viability and coronary revascularization on clinical outcome and prognosis: a follow-up study of 161 patients with coronary heart disease. Z Kardi-ol 1996b;85:868–881Google Scholar
  40. Dakik HA, Howell JF, Lawrie GM, Espada R, Weilbaecher DG, He ZX, Mahmarian JJ, Verani MS. Assessment of myocardial viability with 99mTc-sestamibi tomography before coronary bypass graft surgery: correlation with histopathology and postoperative improvement in cardiac function. Circulation 1997;96:2892–2898PubMedGoogle Scholar
  41. Depré C, Vanoverschelde J-LJ, Melin J, Borgers M, Bol A, Ausma J, Dion R, Wijns W. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995;268:H1265-H1275Google Scholar
  42. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging [see comments]. N Engl J Med 1990;323:141–146PubMedGoogle Scholar
  43. Dilsizian V, Smeltzer WR, Freedman NM, Dextras R, Bonow RO. Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation 1991;83:1247–1255PubMedGoogle Scholar
  44. Dilsizian V, Arrighi JA, Diodati JG, Quyyumi AA, Alavi K, Bacharach SL, Marin-Neto JA, Katsiyiannis PT, Bonow RO. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose [published errata appears in Circulation 91:3026]. Circulation 1994;89:578–587PubMedGoogle Scholar
  45. Dondi M, Tartagni F, Fallani F, Fanti S, Marengo M, DiTomma-so I, Zheng QF, Monetti N. A comparison of rest sestamibi and rest-redistribution thallium single photon emission tomography: possible implications for myocardial viability detection in infarcted patients. Eur J Nucl Med 1993;20:26–31PubMedGoogle Scholar
  46. Duong T, Hendi P, Fonarow G, Asgarzadie F, Stevenson L, Carli M di, Hage A, Moriguchi J, Kobashigawa J, Brunken R, Cz-ernin J, Blitz A, Laks H, Phelps M, Schelbert H, Maddahi J. Role of positron emission tomographic assessment of myocardial viability in the management of patients who are referred for cardiac transplantation. Circulation 1995;92:1–123Google Scholar
  47. Edwards NC, Sinusas AJ, Bergin JD, Watson DD, Ruiz M, Beller GA. Influence of subendocardial ischemia on transmural myocardial function. Am J Physiol 1992;262:H568-H576Google Scholar
  48. Eitzman D, Al-Aouar Z, Dahl J vom, Kirsh M, Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565PubMedGoogle Scholar
  49. Elsässer A, Schlepper M, Kleovekorn WP, Cai WJ, Zimmermann R, Meuller KD, Strasser R, Kostin S, Gagel C, Meunkel B, Schaper W, Schaper J. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–2931PubMedGoogle Scholar
  50. Fath-Ordoubadi F, Pagano D, Marinho NV, Keogh BE, Bonser RS, Camici PG. Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J Cardiol 1998;82:26–31PubMedGoogle Scholar
  51. Feigl E, Neat G, Huang A. Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol 1990;22:375–390PubMedGoogle Scholar
  52. Flameng W, Suy R, Schwarz F, Borgers M, Piessens J, Thone F, Van Ermen H, De Geest H. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy post-revascularization surgery. Am Heart J 1981;102:846–857PubMedGoogle Scholar
  53. Flameng WJ, Shivalkar B, Spiessens B, Maes A, Nuyts J, Van-Haecke J, Mortelmans L. PET scan predicts recovery of left ventricular function after coronary artery bypass operation. Ann Thorac Surg 1997;64:1694–1701PubMedGoogle Scholar
  54. Franken P, DeGeeter F, Dendale P, Demoor D, Block P, Bossuyt A. Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 1994;35:1758–1765PubMedGoogle Scholar
  55. Franken P, Dendale P, DeGeeter F, Demoor D, Bossuyt A, Block P. Prediction of functional outcome after myocardial infarction using BMIPP and sestamibi scintigraphy. J Nucl Med 1996;37:718–722PubMedGoogle Scholar
  56. Fujiwara S, Takeishi Y, Atsumi H, Chiba J, Takahashi K, Tomoike H. Quantitative assessment of myocardial 99mTc-sestamibi uptake during exercise: usefulness of response rate for assessing severity of coronary artery disease. Jpn Circ J 1998;62:592–598PubMedGoogle Scholar
  57. Galassi AR, Tamburino C, Grassi R, Foti R, Mammana C, Virgilio A, Licciardello G, Musumeci S, Giuffrida G. Comparison of technetium 99m-tetrofosmin and thallium-201 single photon emission computed tomographic imaging for the assessment of viable myocardium in patients with left ventricular dysfunction. J Nucl Cardiol 1998;5:56–63PubMedGoogle Scholar
  58. Gewirtz H, Fischman A, Abraham S, Gilson M, Strauss H, Alpert N. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol 1994;23:851–859PubMedGoogle Scholar
  59. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, Beller GA. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983;1:804–815PubMedGoogle Scholar
  60. Gimple LW, Beller GA. Myocardial viability. Assessment by cardiac scintigraphy. Cardiol Clin 1994;12:317–332PubMedGoogle Scholar
  61. Gioia G, Powers J, Heo J, Iskandrian AS. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol 1995;75:759–762PubMedGoogle Scholar
  62. Goodman M, Knapp F, Elmaleh D, Strauss H. Synthesis and evaluation of radioiodinated terminal p-iodophenyl-sub-stituted alpha- and beta-methyl-branched fatty acids. J Med Chem 1984;25:390Google Scholar
  63. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A, Sobel BE, Bergmann SR, Siegel BA. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–1597PubMedGoogle Scholar
  64. Gutman J, Berman DS, Freeman M, Rozanski A, Maddahi J, Waxman A, Swan HJ. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: relationship to the degree of coronary artery stenosis. Am H J 1983;106:989–995Google Scholar
  65. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, Schwaiger M. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease [see comments]. J Am Coll Cardiol 1997;30:1693–1700PubMedGoogle Scholar
  66. Hansen C, Corbett J, Pippin J. Iodine-123 phenylpentadecanoic acid and single photon emission computed tomography in identifying heart disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 1988; 12:78PubMedGoogle Scholar
  67. Haque T, Furukawa T, Takahashi M, Kinoshita M. Identification of hibernating myocardium by dobutamine stress echocardiography: comparison with thallium-201 reinjection imaging. Am Heart J 1995;130:553–563PubMedGoogle Scholar
  68. Hariharan R, Bray M, Ganim R, Doenst T, Goodwin G, Taegt-meyer H. Fundamental limitations of [18F]2-deoxy-2-fluo-ro-D-glucose for assessing myocardial glucose uptake. Circulation 1995;91:2435–2444PubMedGoogle Scholar
  69. Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, Tadamura E, Tamaki N, Konishi J, Sasayama S. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction: usefulness of low-dose dobutamine infusion. Circulation 1996;94:1834–1841PubMedGoogle Scholar
  70. Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 1998;39:1696–1702PubMedGoogle Scholar
  71. Heyndrickx G, Millard R, McRitchie R et al. Regional myocardial functional and electrophysiological alterations after brief coronary occlusion in conscious dogs. J Clin Invest 1975;56:978–985PubMedGoogle Scholar
  72. Hicks R, Herman W, Kalff V, Molina E, Wolfe E, Hutchins G, Schwaiger M. Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol 1991; 18:101–111PubMedGoogle Scholar
  73. Iskandrian A, Powers J, Cave V, Wasserleben V, Cassell D, Heo J. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: comparison with rest-redistribution thallium 201 imaging. J Nucl Cardiol. 1995;2:101–109PubMedGoogle Scholar
  74. Iskandrian AS, Hakki AH, Kane SA, Goel IP, Mundth ED, Segal BL. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol 1983;51:1312–1316PubMedGoogle Scholar
  75. Kauffman GJ, Boyne TS, Watson DD, Smith WH, Beller GA. Comparison of rest thallium-201 imaging and rest tech-netium-99 m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction [see comments]. J Am Coll Cardiol 1996;27:1592–1597PubMedGoogle Scholar
  76. Kawamoto M, Tamaki N, Yonekura Y, Tadamura E, Fujibayashi Y, Magata Y, Nohara R, Sasayamas, Ikekubo K, Kato H et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium: comparison with thallium redistribution and glucose metabolism. Ann Nucl Med 1994;8:47–54PubMedGoogle Scholar
  77. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozan-ski A, Friedman J. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12:1456–1463PubMedGoogle Scholar
  78. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501–508PubMedGoogle Scholar
  79. Kitsiou AN, Bacharach SL, Bartlett ML, Srinivasan G, Summers RM, Quyyumi AA, Dilsizian V. 13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. J Am Coll Cardiol 1999;33:678–686PubMedGoogle Scholar
  80. Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation 1998;97:1848–1867PubMedGoogle Scholar
  81. Knapp F, Ambrose K, Goodman M. New radioiodinated methyl-branched fatty acids for cardiac studies. Eur J Nucl Med 1986;12:S39Google Scholar
  82. Knuuti M, Nuutila P, Ruotsalainen U, Saraste M, Härkonen R, Ahonen A, Teräs M, Haaparanta M, Wegelius U, Haapanen A, Hartiala J, Voipio-Pulkki L-M. Euglycemic hyperinsu-linemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262PubMedGoogle Scholar
  83. Knuuti M, Saraste M, Nuutila P, Härkonen R, Wegelius U, Haapanen A. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 1994;127:785–796PubMedGoogle Scholar
  84. Koplan BA, Beller GA, Ruiz M, Yang JY, Watson DD, Glover DK. Comparison between thallium-201 and technetium-99m-tetrofosmin uptake with sustained low flow and profound systolic dysfunction. J Nucl Med 1996;37:1398–1402PubMedGoogle Scholar
  85. Krivokapich J, Huang SC, Phelps ME, Barrio JR, Watanabe CR, Selin CE, Shine KI. Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. Am J Physiol 1982;243:H884-H895Google Scholar
  86. Lee K, Marwick T, Cook S, Go R, Fix J, James K, Sapp S, Macln-tyre W, Thomas J. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Circulation 1994;90:2687–2694PubMedGoogle Scholar
  87. Lopaschuk G, Stanley W. Glucose metabolism in the ischemic heart. Circulation 1997;95:313–315PubMedGoogle Scholar
  88. Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L, Credico G di, Vanoli G, Rossetti C, Mariani MA, Gilardi MC, Colombo F, Grossi A, Fazio F. Presurgical identification of hibernating myocardium by combined use of technetium-99 m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–881PubMedGoogle Scholar
  89. Machulla HJ, Stocklin G, Kupfernagel CH, Freundlieb CH, Hock A, Vyska K, Feinendegen LE. Comparative evaluation of fatty acids with C-11, C1–34 m, Br-77,I-23, for metabolic studies of the myocardium: concise communication. J Nucl Med 1978;19:298–302PubMedGoogle Scholar
  90. Maddahi J, Schelbert H, Brunken R, Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med 1994;35:707–715PubMedGoogle Scholar
  91. Maes A, Flameng W, Nuyts J, Borgers M, Shivalkar B, Ausma J, Bormans G, Schiepers C, De Roo M, Mortelmans L. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994;90:735–745PubMedGoogle Scholar
  92. Maes A, Flameng W, Borgers M, Nuyts J, Ausma J, Bormans G, Van de Werf F, De Roo M, Mortelmans L. Regional myocardial blood flow, glucose utilization and contractile function before and after revascularization and ultrastructural findings in patients with chronic coronary artery disease. Eur J Nucl Med 1995;22:1299–1305PubMedGoogle Scholar
  93. Maes AF, Borgers M, Flameng W, Nuyts JL, van de Werf F, Aus-ma JJ, Sergeant P, Mortelmans LA. Assessment of myocardial viability in chronic coronary artery disease using tech-netium-99 m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 1997;29:62–68PubMedGoogle Scholar
  94. Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737–744PubMedGoogle Scholar
  95. Marwick T, Nemec J, Lafont A, Salcedo E, Maclntyre W. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 1992;69:854–859PubMedGoogle Scholar
  96. Marwick T, Zuchowski C, Lauer M, Secknus M-A, Williams M, Lytle B. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 1999;33:750–758PubMedGoogle Scholar
  97. Marzullo P, Sambuceti G, Parodi O. The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability [see comments]. J Nucl Med 1992;33:1925–1930PubMedGoogle Scholar
  98. Marzullo P, Parodi O, Reisenhofer B, Sambuceti G, Picano E, Distante A, Gimelli A, L’Abbate A. Value of rest thallium-201/technetium-99 m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993;71:166–172PubMedGoogle Scholar
  99. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, Hirai J, Saga T, Ichiyanagi K, Hisada K. Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease. J Nucl Med 1995;36:1961–1967PubMedGoogle Scholar
  100. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, Hirai J, Saga T, Yamamoto S, Tonami N. Quantitative rest technetium-99 m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201. J Am Coll Cardiol 1997;29:1226–1233PubMedGoogle Scholar
  101. Matsunari I, Boening G, Ziegler S, Nekolla S, Stollfuss J, Kosa I, Ficaro E, Schwaiger M. Attenuation-corrected 99mTc-tetro-fosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglu-cose. J Am Coll Cardiol 1998;32:927–935PubMedGoogle Scholar
  102. Maunoury C, Chen CC, Chua KB, Thompson CJ. Quantification of left ventricular function with thallium-201 and tech-netium-99m-sestamibi myocardial gated SPECT [published errata appears in J Nucl Med 38:1834]. J Nucl Med 1997;38:958–961Google Scholar
  103. Mori T, Minamiji K, Kurogane H, Ogawa K, Yoshida Y. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991;32:1718–1724PubMedGoogle Scholar
  104. Nishimura T, Nishimura S, Kajiya T, Sugihara H, Kitahara K, Ia-mai K, Muramatsu T, Takahashi N, Yoshida H, Osada T, Ter-ada K, Ito T, Narusa H, Iwabuchi M. Prediction of functional recovery and prognosis in patients with acute myocardial infarction by 123I-BMIPP and 201T1 myocardial single photon emission computed tomography: a multicenter trial. Ann Nucl Med 1998;12:237–248PubMedGoogle Scholar
  105. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, Konishi J. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990;66:394–399PubMedGoogle Scholar
  106. Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardio-vasc Surg 1998;115:791–799Google Scholar
  107. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation 1997;96:793–800PubMedGoogle Scholar
  108. Palmas W, Friedman JD, Diamond GA, Silber H, Kiat H, Berman DS. Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99 m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardiol 1995;25:1024–1031PubMedGoogle Scholar
  109. Paolini G, Lucignani G, Zuccari M, Landoni C, Vanoli G, Credi-co G di, Rossetti C, Mariani MA, Fazio F, Grossi A. Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardiothorac Surg 1994;8:139–144PubMedGoogle Scholar
  110. Perrone-Filardi P, Pace L, Prastaro M, Squame F, Betocchi S, Soricelli A, Piscione F, Indolfi C, Crisci T, Salvatore M, Chiariello M. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201T1 tomography versus dobutamine echocardiography [see comments]. Circulation 1996;94:2712–2719PubMedGoogle Scholar
  111. Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetium-tetrofosmin. I. Uptake into isolated adult rat ventricular myocytes and subcellular localization [published errata appears in J Nucl Cardiol 2:560]. J Nucl Cardiol 1995;2:317–326Google Scholar
  112. Pohost G, Zir L, Moor R. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after single dose of Tl-201. Circulation 1977;55:294PubMedGoogle Scholar
  113. Qureshi U, Nagueh SF, Afridi I, Vaduganathan P, Blaustein A, Ve-rani MS, Winters WL Jr, Zoghbi WA. Dobutamine echocardiography and quantitative rest-redistribution 201T1 tomography in myocardial hibernation. Relation of contractile reserve to 201T1 uptake and comparative prediction of recovery of function. Circulation 1997;95:626–635PubMedGoogle Scholar
  114. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201T1 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–1641PubMedGoogle Scholar
  115. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1987;72:V123-V135Google Scholar
  116. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–586PubMedGoogle Scholar
  117. Rhodes CG, Camici PG, Taegtmeyer H, Doenst T. Variability of the lumped constant for [18F]2-deoxy-2-fluoroglucose and the experimental isolated rat heart model: clinical perspectives for the measurement of myocardial tissue viability in humans [letter]. Circulation 1999;99:1275–1276PubMedGoogle Scholar
  118. Rocco TP, Dilsizian V, Strauss HW, Boucher CA. Technetium-99 m isonitrile myocardial uptake at rest. II. Relation to clinical markers of potential viability [see comments]. J Am Coll Cardiol 1989;14:1678–1684PubMedGoogle Scholar
  119. Rubin P, Lee D, Davila-Roman V, Geltman E, Schechtman K, Bergmann S, Gropler R. Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. Am J Cardiol 1996;78:1230–1236PubMedGoogle Scholar
  120. Sandler MP, Bax JJ, Patton JA, Visser FC, Martin WH, Wijns W. Fluorine-18-fluorodeoxyglucose cardiac imaging using a modified scintillation camera. J Nucl Med 1998;39:2035–2043PubMedGoogle Scholar
  121. Sawada SG, Allman KC, Muzik O, Beanlands RS, Wolfe ER Jr, Gross M, Fig L, Schwaiger M. Positron emission tomography detects evidence of viability in rest technetium-99 m sestamibi defects. J Am Coll Cardiol 1994;23:92–98PubMedGoogle Scholar
  122. Schelbert H. Principles of positron emission tomography. In: Skorton D, Schelbert H, Wolf G, Brundage B (eds) Marcus’ cardiac imaging, 2nd edn. Saunders, Philadelphia, 1996, pp 1063–1092Google Scholar
  123. Schelbert H, Demer L. Evaluation of myocardial blood flow in cardiac disease. In: Skorton D, Schelbert H, Wolf G, Brundage B (eds) Marcus’ cardiac imaging, 2nd edn. Saunders, Philadelphia, 1996, pp 1093–1112Google Scholar
  124. Schneider CA, Voth E, Gawlich S, Baer FM, Horst M, Schicha H, Erdmann E, Sechtem U. Significance of rest technetium-99 m sestamibi imaging for the prediction of improvement of left ventricular dysfunction after Q wave myocardial infarction: importance of infarct location adjusted thresholds. J Am Coll Cardiol 1998;32:648–654PubMedGoogle Scholar
  125. Schóder H, Campisi R, Ohtake T, Hoh CK, Moon DH, Czernin J, Schelbert HR. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33:1328–1337PubMedGoogle Scholar
  126. Schwarz ER, Schaper J, Dahl J vom, Altehoefer C, Grohmann B, Schoendube F, Sheehan FH, Uebis R, Buell U, Messmer BJ, Schaper W, Hanrath P. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol 1996;27:1577–1585PubMedGoogle Scholar
  127. Sciagraa R, Bisi G, Santoro GM, Agnolucci M, Zoccarato O, Fazzini PR Influence of the assessment of defect severity and intravenous nitrate administration during tracer injection on the detection of viable hibernating myocardium with data-based quantitative technetium 99m-labeled sestamibi single-photon emission computed tomography. J Nucl Cardiol 1996;3:221–230Google Scholar
  128. Sciagraa R, Bisi G, Santoro GM, Zerauschek F, Sestini S, Peden-ovi P, Pappagallo R, Fazzini PR Comparison of baseline-nitrate technetium-99 m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol 1997;30:384–391Google Scholar
  129. Soufer R, Dey HM, Ng CK, Zaret BL. Comparison of sestamibi single-photon emission computed tomography with positron emission tomography for estimating left ventricular myocardial viability. Am J Cardiol 1995;75:1214–1219PubMedGoogle Scholar
  130. Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of 99mTc-tetrofosmin, sestamibi, and 201T1 in a model of acute coronary reperfusion. Circulation 1996;94:2605–2613PubMedGoogle Scholar
  131. Tamaki N, Ohtani H, Yonekura Y, Nohara R, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. Significance of fill-in after thallium-201 reinjection following delayed imaging: comparison with regional wall motion and angiographic findings [see comments]. J Nucl Med 1990;31:1617–1623PubMedGoogle Scholar
  132. Tamaki N, Ohtani H, Yonekura Y, Shindo M, Nohara R, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. Viable myocardium identified by reinjection thallium-201 imaging: comparison with regional wall motion and metabolic activity on FDG-PET. J Cardiol 1992;22:283–293PubMedGoogle Scholar
  133. Tamaki N, Kawamoto M, Takahashi N, Yonekura Y, Magata Y, Nohara R, Kambara H, Sasayama S, Hirata K, Ban T, Konishi J. Prognostic value of an increase in fluorine-18 deoxyglu-cose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol 1993;22:1621–1627PubMedGoogle Scholar
  134. Tamaki N, Tadamura E, Kudoh T, Hattori N, Yonekura Y, Nohara R, Sasayama S, Ikekubo K, Kato H, Konishi J. Prognostic value of iodine-123 labelled BMIPP fatty acid analogue imaging in patients with myocardial infarction. Eur J Nucl Med 1996;23:272–279PubMedGoogle Scholar
  135. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888PubMedGoogle Scholar
  136. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, Shea NL, Oates E, Konstam MA. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201T1 and 99mTc-ses-tamibi. Circulation 1994;89:2552–2561PubMedGoogle Scholar
  137. Vanoverschelde JL, Melin JA, Bol A, Vanbutsele R, Cogneau M, Labar D, Robert A, Michel C, Wijns W. Regional oxidative metabolism in patients after recovery from reperfused anterior myocardial infarction. Relation to regional blood flow and glucose uptake. Circulation 1992;85:9–21PubMedGoogle Scholar
  138. Vanoverschelde JL, Wijns W, Deprae C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium [see comments]. Circulation 1993;87:1513–1523PubMedGoogle Scholar
  139. Vanoverschelde JL, D’Hondt AM, Marwick T, Gerber BL, De Kock M, Dion R, Wijns W, Melin JA. Head-to-head comparison of exercise-redistribution-reinjection thallium single-photon emission computed tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction [see comments]. J Am Coll Cardiol 1996;28:432–442PubMedGoogle Scholar
  140. Watson D. Quantitative analysis of Tl-201 redistribution at 24 hours compared to 2 and 4 hours post-injection (Abstract). J Nucl Med 1990;31:763Google Scholar
  141. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56:188–191PubMedGoogle Scholar
  142. Wolpers H, Burchert W, van den Hoff J, Weinhardt R, Meyer G, Lichtlen P. Assessment of myocardial viability by use of1 1C-acetate and positron emission tomography. Circulation 1997;95:1417–1424PubMedGoogle Scholar
  143. Yamamoto K, Asada S, Masuyama T, Nanto S, Matsumura Y, Naito J, Hirayama A, Mishima M, Naka M, Sasaki J et al. Myocardial hibernation in the infarcted region cannot be assessed from the presence of stress-induced ischemia: usefulness of delayed image of exercise thallium-201 scintigraphy. Am Heart J 1993;125:33–40PubMedGoogle Scholar
  144. Young L, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman G, Sinusas A. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–422PubMedGoogle Scholar
  145. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, Sridhara BS, Jain D, Itti R, Serafini AN et al. Myocardial perfusion imaging with 99mTc tetrofosmin. Comparison to 201T1 imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group [see comments]. Circulation 1995;91:313–319PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • R. Campisi
    • 1
  • F. Y. J. Keng
    • 1
  • H. R. Schelbert
    • 1
  1. 1.Department of Molecular and Medical PharmacologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations