Skip to main content

Instrumentation and Data Acquisition

  • Chapter
Diagnostic Nuclear Medicine

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

Abstract

Nuclear medical images are formed by the detection of gamma-rays, X-rays or annihilation quanta (in the case of positron imaging). The camera detects the density of gamma rays per unit area, their energy and their direction of flight. If single photon emitters are used the direction of flight has to be determined by geometric collimation. In contrast, coincidence detection uses the unique feature of positron annihilation which results in two high-energy gamma rays simultaneously emitted back-to-back. The detection of both gamma rays within a very short time window defines the line of response in space and thus the direction of flight. Scintigraphic instrumentation consists of scintillation crystals to convert gamma-ray energy into visible light, suitable light sensors, readout electronics and image processing units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anger H (1958) Scintillation camera. Rev Sci Instr 29:27–33

    Article  CAS  Google Scholar 

  • Anger H, Davis D (1964) Gamma-ray detection efficiency and image resolution in sodium iodide. Rev Sci Instr 35:693–697

    Article  CAS  Google Scholar 

  • Bacharach SL, Buvat I (1995) Attenuation correction in cardiac positron emission tomography and single-photon emission computed tomography. J Nucl Cardiol 2:246–255

    Article  PubMed  CAS  Google Scholar 

  • Bailey D (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787

    Article  PubMed  CAS  Google Scholar 

  • Bailey D, Young H, Bloomfield P et al. (1997) ECAT ART — a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15

    Article  PubMed  CAS  Google Scholar 

  • Bedigian M, Benard F, Smith R et al. (1998) Whole-body positron emission tomography for oncology imaging using singles transmission scanning with segmentation and ordered subsets-expecteation maximization (OS-EM) reconstruction. J Nucl Med 25:659–661

    CAS  Google Scholar 

  • Bendriem B, Townsend D (1998) The theory and practice of 3D PET. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Bengel F, Ziegler S, Avril N et al. (1997) Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 24:1091–1098

    PubMed  CAS  Google Scholar 

  • Beyer T, Kinahan P, Townsend D (1997) Optimization of transmission and emission scan duration in 3D whole-body PET. Trans Nucl Sci 44:2400–2407

    Article  Google Scholar 

  • Budinger T (1996) Single photon emission computed tomography. In: Sandler M, Patton J, Coleman R et al. (eds) Diog-nostic nuclear medicine, vol 1. Williams and Wilkins, Baltimore, pp 121–138

    Google Scholar 

  • Budinger T (1998) PET Instrumentation: what are the limits? Semin Nucl Med 28:247–267

    Article  PubMed  CAS  Google Scholar 

  • Budinger T, Derenzo S, Greenberg W et al. (1978) Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19:309–315

    PubMed  CAS  Google Scholar 

  • Butler J, Lingren C, Friesenhahn S et al. (1998) CdZnTe Solid-state gamma camera. IEEE Trans Nucl Sci 45:359–363

    Article  CAS  Google Scholar 

  • Casey M, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Article  Google Scholar 

  • Casey M, Eriksson L, Schmand M et al. (1997) Investigation of LSO crystals for high resolution positron emission tomography. IEEE Trans Nucl Sci 44:1109–1113

    Article  CAS  Google Scholar 

  • Celler A, Sitek A, Stoub E et al. (1998) Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med 39:2183–2189

    PubMed  CAS  Google Scholar 

  • Chen E, Maclntyre W, Go R et al. (1997) Myocardial viability studies using fluorine- 18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 38:582–586

    PubMed  CAS  Google Scholar 

  • Cherry S, Dahlbom M, Hoffman E (1992) High sensitivity, total body PET scanning using 3D data acquisition and reconstruction. IEEE Trans Nucl Sci 39:1088–1092

    Article  CAS  Google Scholar 

  • Clack R, Townsend D, Jeavons A (1984) Increased sensitivity and field of view for a rotating positron camera. Phys Med Biol 29:1421–1431

    Article  PubMed  CAS  Google Scholar 

  • Coleman R (1997) Camera-based PET: the best is yet to come. J Nucl Med 38:1796–1797

    PubMed  CAS  Google Scholar 

  • Dahlbom M, Cutler P, Digby W et al. (1994) Characterization of sampling schemes for whole body PET imaging. IEEE Trans Nucl Sci 41:1571–1576

    Article  Google Scholar 

  • Dahlbom M, Hoffman E, Hoh C et al. (1992) Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med 33:1191–1199

    PubMed  CAS  Google Scholar 

  • Dahlbom M, MacDonald L, Eriksson L et al. (1997) Performance of a YSO/LSO detector block for use in a PET/SPECT system. IEEE Trans Nucl Sci 44:1114–1119

    Article  CAS  Google Scholar 

  • deKemp RA, Nahmias C (1994) Attenuation correction in PET using single photon transmission measurement. Med Phys 21:771–778

    Article  PubMed  CAS  Google Scholar 

  • Ferreira N, Trebossen R, Bendriem B (1998) Assessment of 3-D PET quantitation: influence of out of the field of view radioactive sources and of attenuating media. IEEE Trans Nucl Sci 45:1670–1675

    Article  CAS  Google Scholar 

  • Ficaro EP, Fessier JA, Rogers WL et al. (1994) Comparison of americium-241 and technetium-99 m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 35:652–663

    PubMed  CAS  Google Scholar 

  • Freifelder R, Karp J (1997) Dedicated PET scanners for breast imaging. Phys Med Biol 42:2463–2480

    Article  PubMed  CAS  Google Scholar 

  • Germano G, Kavanagh P, Kiat H et al. (1994) Temporal image fractionation: rejection of motion artifacts in myocardial SPECT. J Nucl Med 35:1193–1197

    PubMed  CAS  Google Scholar 

  • Gruber G, Moses W, Derenzo S et al. (1998) A discrete scintillation camera module using silicon photodiode readout of CsI(Tl) crystals for breast cancer imaging. IEEE Nucl Instr Methods 45:1063–1068

    CAS  Google Scholar 

  • Guerrero T, Hoffman E, Dahlbom M et al. (1990) Characterization of a whole body imaging technique for PET. IEEE Trans Nucl Sci 37:676–679

    Article  Google Scholar 

  • Hoffman E, Huang S, Plummer D et al. (1982) Quantitation in positron emission computed tomography: effect of nonuniform resolution. J Comput Assist Tomogr 6:987–999

    Article  PubMed  CAS  Google Scholar 

  • Huber J, Moses W, Derenzo S et al. (1997) Characterization of a 64 channel PET detector using photodiodes for crystal identification. IEEE Trans Nucl Sci 44:1197–1201

    Article  CAS  Google Scholar 

  • Huesman R (1977) The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22:511–521

    Article  PubMed  CAS  Google Scholar 

  • Imran M, Kubota K, Yamada S et al. (1998) Lesion-to-background ratio in nonattenuation-corrected whole-body FDG PET images. J Nucl Med 39:1219–1223

    PubMed  CAS  Google Scholar 

  • Karp J, Muehllehner G, Mankoff D et al. (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:617–627

    PubMed  CAS  Google Scholar 

  • Karp JS, Muehllehner G, Qu H et al. (1995) Singles transmission in volume-imaging PET with a 137 Cs source. Phys Med Biol 40:929–944

    Article  PubMed  CAS  Google Scholar 

  • Kipper M, Yeung D, Halpern S et al. (1998) Quality of planar images using a solid-state (CdZnTe) gamma camera, compared with conventional gamma scintillation cameras. J Nucl Med 39:P 132

    Google Scholar 

  • Kojima A, Matsumoto M, Takahashi M et al. (1993) Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 20:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Lecomte R, Cadorette J, Rodrigue S et al. (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957

    Article  Google Scholar 

  • Levin C, Hoffman E, Tornai M et al. (1997) PSPMT and photo-diode designs of a small scintillation camera for imaging malignant breast tumors. IEEE Trans Nucl Sci 44:1513–1520

    Article  CAS  Google Scholar 

  • Macfarlane D, Cotton L, Ackermann R et al. (1995) Triple-head SPECT with 2- [fluorine-18] fluoro-2-deoxy-D-glucose (FDG): initial evaluation in oncology and comparison with FDG PET. Radiology 194:425–429

    PubMed  CAS  Google Scholar 

  • Mankoff D, Muehllehner G, Miles G (1990) A local coincidence triggering system for PET tomographs composed of large-area positron-sensitive detectors. IEEE Trans Nucl Sci 37:730–736

    Article  Google Scholar 

  • Melcher CL, Schweitzer JS (1992) A promising new scintillator: cerium- doped lutetium oxyorthosilicate. Nucl Instr Methods 314:212–214

    Article  Google Scholar 

  • Muehllehner G (1979) Effect of crystal thickness on scintillation camera performance. J Nucl Med 20:992–993

    PubMed  CAS  Google Scholar 

  • Muehllehner G (1985) Effect of resolution improvement on required count density in ECT imaging: a computer simulation. Phys Med Biol 30:163–173

    Article  PubMed  CAS  Google Scholar 

  • Muehllehner G, Karp J (1986) A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27:90–98

    PubMed  CAS  Google Scholar 

  • Muehllehner G, Colsher J, Stoub E (1980) Correction for field nonuniformity in scintillation cameras through removal of spatial distortion. J Nucl Med 21:771–776

    PubMed  CAS  Google Scholar 

  • Mueller S, Foley Kijewski M, Moore S et al. (1990) Maximum-likelihood estimation: a mathematical model for quantitation in nuclear medicine. J Nucl Med 31:1693–1701

    Google Scholar 

  • NEMA (1986) Performance measurements of scintillation cameras, National Electrical Manufacturers Association

    Google Scholar 

  • NEMA (1994) Performance measurements of positron emission tomographs, National Electrical Manufacturers Association

    Google Scholar 

  • O’Connor M (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 26:256–277

    Article  PubMed  Google Scholar 

  • Patt B, Iwanczyk J, Tull C et al. (1998) High resolution CsI(Tl)/Si-PIN detector development for breast imaging. IEEE Trans Nucl Sci 45:2126–2131

    Article  Google Scholar 

  • Robar J, Thompson C, Murthy K et al. (1997) Construction and calibration of detectors for high-resolution metabolic breast cancer imaging. Nucl Instr Methods A 392:402–406

    Article  CAS  Google Scholar 

  • Schmand M, Dahlbohm M, Eriksson L et al. (1998a) Performance of a LSO/NaI(Tl) phoswich detector for a combined PET/SPECT imaging system. J Nucl Med 39:9P

    Google Scholar 

  • Schmand M, Eriksson L, Casey M et al. (1998b) Detector design of a LSO based positron emission tomograph with depth of interaction capability for high resolution brain imaging. J Nucl Med 39:133P

    Google Scholar 

  • Schmelz C, Bradbury SM, Holl I et al. (1995) Feasibility study of an avalanche photodiode readout for high resolution PET with nsec time resolution. IEEE Trans Nucl Sci 42:1080–1084

    Article  Google Scholar 

  • Shreve P, Steventon R, Deters E et al. (1998) Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-D-glucose imaging: dual head coincidence gamma camera versus positron emission tomographic scanner. Radiology 207:431–437

    PubMed  CAS  Google Scholar 

  • Smith R, Karp J, Muehllehner G et al. (1997) Singles transmission scans performed post-injection for quantitative whole body PET imaging. IEEE Trans Nucl Sci 44:1329–1335

    Article  CAS  Google Scholar 

  • Sossi V, Barney J, Harrison R (1995) Effect of scatter from radioactivity outside of the field of view in 3-D PET. IEEE Trans Nucl Sci 42:1157–1161

    Article  Google Scholar 

  • Spinks T, Jones T, Heather J et al. (1989) Quality control procedures in positron tomography. Eur J Nucl Med 15:736–740

    Article  PubMed  CAS  Google Scholar 

  • Tan P, Bailey DL, Meikle SR et al. (1993) A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34:1752–1760

    PubMed  CAS  Google Scholar 

  • Thompson C, Murthy K, Picard Y et al. (1995) Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE Trans Nucl Sci 42:1012–1017

    Article  Google Scholar 

  • Townsend D, Wensveen M, Byars L et al. (1993) A rotating PET scanner using BGO block detectors: Design, performance and applications. J Nucl Med 34:1367–1376

    PubMed  CAS  Google Scholar 

  • Tung CH, Gullberg GT, Zeng GL et al. (1992) Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 39:1134–1143

    Article  CAS  Google Scholar 

  • van Lingen A, Huijgens PC, Visser FC et al. (1992) Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 19(5):315–321

    Article  PubMed  Google Scholar 

  • Weinberg I, Malewski S, Weisenberger A et al. (1996) Preliminary results for positron emission mammography: realtime functional breast imaging in a cenventional mammography gantry. Eur J Nucl Med 23:804–806

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Nahmias C (1995) Single-photon transmission measurements in positron emission tomography using 137Cs. Phys Med Biol 40:1255–1266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, S.I. (2000). Instrumentation and Data Acquisition. In: Schiepers, C. (eds) Diagnostic Nuclear Medicine. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06590-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06590-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06592-1

  • Online ISBN: 978-3-662-06590-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics