Advertisement

Instrumentation and Data Acquisition

  • S. I. Ziegler
Part of the Diagnostic Imaging book series (MEDRAD)

Abstract

Nuclear medical images are formed by the detection of gamma-rays, X-rays or annihilation quanta (in the case of positron imaging). The camera detects the density of gamma rays per unit area, their energy and their direction of flight. If single photon emitters are used the direction of flight has to be determined by geometric collimation. In contrast, coincidence detection uses the unique feature of positron annihilation which results in two high-energy gamma rays simultaneously emitted back-to-back. The detection of both gamma rays within a very short time window defines the line of response in space and thus the direction of flight. Scintigraphic instrumentation consists of scintillation crystals to convert gamma-ray energy into visible light, suitable light sensors, readout electronics and image processing units.

Keywords

Positron Emission Tomography Scanner Scatter Fraction Camera Head Scintillation Crystal Count Rate Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger H (1958) Scintillation camera. Rev Sci Instr 29:27–33CrossRefGoogle Scholar
  2. Anger H, Davis D (1964) Gamma-ray detection efficiency and image resolution in sodium iodide. Rev Sci Instr 35:693–697CrossRefGoogle Scholar
  3. Bacharach SL, Buvat I (1995) Attenuation correction in cardiac positron emission tomography and single-photon emission computed tomography. J Nucl Cardiol 2:246–255PubMedCrossRefGoogle Scholar
  4. Bailey D (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787PubMedCrossRefGoogle Scholar
  5. Bailey D, Young H, Bloomfield P et al. (1997) ECAT ART — a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15PubMedCrossRefGoogle Scholar
  6. Bedigian M, Benard F, Smith R et al. (1998) Whole-body positron emission tomography for oncology imaging using singles transmission scanning with segmentation and ordered subsets-expecteation maximization (OS-EM) reconstruction. J Nucl Med 25:659–661Google Scholar
  7. Bendriem B, Townsend D (1998) The theory and practice of 3D PET. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  8. Bengel F, Ziegler S, Avril N et al. (1997) Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 24:1091–1098PubMedGoogle Scholar
  9. Beyer T, Kinahan P, Townsend D (1997) Optimization of transmission and emission scan duration in 3D whole-body PET. Trans Nucl Sci 44:2400–2407CrossRefGoogle Scholar
  10. Budinger T (1996) Single photon emission computed tomography. In: Sandler M, Patton J, Coleman R et al. (eds) Diog-nostic nuclear medicine, vol 1. Williams and Wilkins, Baltimore, pp 121–138Google Scholar
  11. Budinger T (1998) PET Instrumentation: what are the limits? Semin Nucl Med 28:247–267PubMedCrossRefGoogle Scholar
  12. Budinger T, Derenzo S, Greenberg W et al. (1978) Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19:309–315PubMedGoogle Scholar
  13. Butler J, Lingren C, Friesenhahn S et al. (1998) CdZnTe Solid-state gamma camera. IEEE Trans Nucl Sci 45:359–363CrossRefGoogle Scholar
  14. Casey M, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463CrossRefGoogle Scholar
  15. Casey M, Eriksson L, Schmand M et al. (1997) Investigation of LSO crystals for high resolution positron emission tomography. IEEE Trans Nucl Sci 44:1109–1113CrossRefGoogle Scholar
  16. Celler A, Sitek A, Stoub E et al. (1998) Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med 39:2183–2189PubMedGoogle Scholar
  17. Chen E, Maclntyre W, Go R et al. (1997) Myocardial viability studies using fluorine- 18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 38:582–586PubMedGoogle Scholar
  18. Cherry S, Dahlbom M, Hoffman E (1992) High sensitivity, total body PET scanning using 3D data acquisition and reconstruction. IEEE Trans Nucl Sci 39:1088–1092CrossRefGoogle Scholar
  19. Clack R, Townsend D, Jeavons A (1984) Increased sensitivity and field of view for a rotating positron camera. Phys Med Biol 29:1421–1431PubMedCrossRefGoogle Scholar
  20. Coleman R (1997) Camera-based PET: the best is yet to come. J Nucl Med 38:1796–1797PubMedGoogle Scholar
  21. Dahlbom M, Cutler P, Digby W et al. (1994) Characterization of sampling schemes for whole body PET imaging. IEEE Trans Nucl Sci 41:1571–1576CrossRefGoogle Scholar
  22. Dahlbom M, Hoffman E, Hoh C et al. (1992) Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med 33:1191–1199PubMedGoogle Scholar
  23. Dahlbom M, MacDonald L, Eriksson L et al. (1997) Performance of a YSO/LSO detector block for use in a PET/SPECT system. IEEE Trans Nucl Sci 44:1114–1119CrossRefGoogle Scholar
  24. deKemp RA, Nahmias C (1994) Attenuation correction in PET using single photon transmission measurement. Med Phys 21:771–778PubMedCrossRefGoogle Scholar
  25. Ferreira N, Trebossen R, Bendriem B (1998) Assessment of 3-D PET quantitation: influence of out of the field of view radioactive sources and of attenuating media. IEEE Trans Nucl Sci 45:1670–1675CrossRefGoogle Scholar
  26. Ficaro EP, Fessier JA, Rogers WL et al. (1994) Comparison of americium-241 and technetium-99 m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 35:652–663PubMedGoogle Scholar
  27. Freifelder R, Karp J (1997) Dedicated PET scanners for breast imaging. Phys Med Biol 42:2463–2480PubMedCrossRefGoogle Scholar
  28. Germano G, Kavanagh P, Kiat H et al. (1994) Temporal image fractionation: rejection of motion artifacts in myocardial SPECT. J Nucl Med 35:1193–1197PubMedGoogle Scholar
  29. Gruber G, Moses W, Derenzo S et al. (1998) A discrete scintillation camera module using silicon photodiode readout of CsI(Tl) crystals for breast cancer imaging. IEEE Nucl Instr Methods 45:1063–1068Google Scholar
  30. Guerrero T, Hoffman E, Dahlbom M et al. (1990) Characterization of a whole body imaging technique for PET. IEEE Trans Nucl Sci 37:676–679CrossRefGoogle Scholar
  31. Hoffman E, Huang S, Plummer D et al. (1982) Quantitation in positron emission computed tomography: effect of nonuniform resolution. J Comput Assist Tomogr 6:987–999PubMedCrossRefGoogle Scholar
  32. Huber J, Moses W, Derenzo S et al. (1997) Characterization of a 64 channel PET detector using photodiodes for crystal identification. IEEE Trans Nucl Sci 44:1197–1201CrossRefGoogle Scholar
  33. Huesman R (1977) The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22:511–521PubMedCrossRefGoogle Scholar
  34. Imran M, Kubota K, Yamada S et al. (1998) Lesion-to-background ratio in nonattenuation-corrected whole-body FDG PET images. J Nucl Med 39:1219–1223PubMedGoogle Scholar
  35. Karp J, Muehllehner G, Mankoff D et al. (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:617–627PubMedGoogle Scholar
  36. Karp JS, Muehllehner G, Qu H et al. (1995) Singles transmission in volume-imaging PET with a 137 Cs source. Phys Med Biol 40:929–944PubMedCrossRefGoogle Scholar
  37. Kipper M, Yeung D, Halpern S et al. (1998) Quality of planar images using a solid-state (CdZnTe) gamma camera, compared with conventional gamma scintillation cameras. J Nucl Med 39:P 132Google Scholar
  38. Kojima A, Matsumoto M, Takahashi M et al. (1993) Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 20:1107–1113PubMedCrossRefGoogle Scholar
  39. Lecomte R, Cadorette J, Rodrigue S et al. (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957CrossRefGoogle Scholar
  40. Levin C, Hoffman E, Tornai M et al. (1997) PSPMT and photo-diode designs of a small scintillation camera for imaging malignant breast tumors. IEEE Trans Nucl Sci 44:1513–1520CrossRefGoogle Scholar
  41. Macfarlane D, Cotton L, Ackermann R et al. (1995) Triple-head SPECT with 2- [fluorine-18] fluoro-2-deoxy-D-glucose (FDG): initial evaluation in oncology and comparison with FDG PET. Radiology 194:425–429PubMedGoogle Scholar
  42. Mankoff D, Muehllehner G, Miles G (1990) A local coincidence triggering system for PET tomographs composed of large-area positron-sensitive detectors. IEEE Trans Nucl Sci 37:730–736CrossRefGoogle Scholar
  43. Melcher CL, Schweitzer JS (1992) A promising new scintillator: cerium- doped lutetium oxyorthosilicate. Nucl Instr Methods 314:212–214CrossRefGoogle Scholar
  44. Muehllehner G (1979) Effect of crystal thickness on scintillation camera performance. J Nucl Med 20:992–993PubMedGoogle Scholar
  45. Muehllehner G (1985) Effect of resolution improvement on required count density in ECT imaging: a computer simulation. Phys Med Biol 30:163–173PubMedCrossRefGoogle Scholar
  46. Muehllehner G, Karp J (1986) A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27:90–98PubMedGoogle Scholar
  47. Muehllehner G, Colsher J, Stoub E (1980) Correction for field nonuniformity in scintillation cameras through removal of spatial distortion. J Nucl Med 21:771–776PubMedGoogle Scholar
  48. Mueller S, Foley Kijewski M, Moore S et al. (1990) Maximum-likelihood estimation: a mathematical model for quantitation in nuclear medicine. J Nucl Med 31:1693–1701Google Scholar
  49. NEMA (1986) Performance measurements of scintillation cameras, National Electrical Manufacturers AssociationGoogle Scholar
  50. NEMA (1994) Performance measurements of positron emission tomographs, National Electrical Manufacturers AssociationGoogle Scholar
  51. O’Connor M (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 26:256–277PubMedCrossRefGoogle Scholar
  52. Patt B, Iwanczyk J, Tull C et al. (1998) High resolution CsI(Tl)/Si-PIN detector development for breast imaging. IEEE Trans Nucl Sci 45:2126–2131CrossRefGoogle Scholar
  53. Robar J, Thompson C, Murthy K et al. (1997) Construction and calibration of detectors for high-resolution metabolic breast cancer imaging. Nucl Instr Methods A 392:402–406CrossRefGoogle Scholar
  54. Schmand M, Dahlbohm M, Eriksson L et al. (1998a) Performance of a LSO/NaI(Tl) phoswich detector for a combined PET/SPECT imaging system. J Nucl Med 39:9PGoogle Scholar
  55. Schmand M, Eriksson L, Casey M et al. (1998b) Detector design of a LSO based positron emission tomograph with depth of interaction capability for high resolution brain imaging. J Nucl Med 39:133PGoogle Scholar
  56. Schmelz C, Bradbury SM, Holl I et al. (1995) Feasibility study of an avalanche photodiode readout for high resolution PET with nsec time resolution. IEEE Trans Nucl Sci 42:1080–1084CrossRefGoogle Scholar
  57. Shreve P, Steventon R, Deters E et al. (1998) Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-D-glucose imaging: dual head coincidence gamma camera versus positron emission tomographic scanner. Radiology 207:431–437PubMedGoogle Scholar
  58. Smith R, Karp J, Muehllehner G et al. (1997) Singles transmission scans performed post-injection for quantitative whole body PET imaging. IEEE Trans Nucl Sci 44:1329–1335CrossRefGoogle Scholar
  59. Sossi V, Barney J, Harrison R (1995) Effect of scatter from radioactivity outside of the field of view in 3-D PET. IEEE Trans Nucl Sci 42:1157–1161CrossRefGoogle Scholar
  60. Spinks T, Jones T, Heather J et al. (1989) Quality control procedures in positron tomography. Eur J Nucl Med 15:736–740PubMedCrossRefGoogle Scholar
  61. Tan P, Bailey DL, Meikle SR et al. (1993) A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34:1752–1760PubMedGoogle Scholar
  62. Thompson C, Murthy K, Picard Y et al. (1995) Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE Trans Nucl Sci 42:1012–1017CrossRefGoogle Scholar
  63. Townsend D, Wensveen M, Byars L et al. (1993) A rotating PET scanner using BGO block detectors: Design, performance and applications. J Nucl Med 34:1367–1376PubMedGoogle Scholar
  64. Tung CH, Gullberg GT, Zeng GL et al. (1992) Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 39:1134–1143CrossRefGoogle Scholar
  65. van Lingen A, Huijgens PC, Visser FC et al. (1992) Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 19(5):315–321PubMedCrossRefGoogle Scholar
  66. Weinberg I, Malewski S, Weisenberger A et al. (1996) Preliminary results for positron emission mammography: realtime functional breast imaging in a cenventional mammography gantry. Eur J Nucl Med 23:804–806PubMedCrossRefGoogle Scholar
  67. Yu S, Nahmias C (1995) Single-photon transmission measurements in positron emission tomography using 137Cs. Phys Med Biol 40:1255–1266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • S. I. Ziegler
    • 1
  1. 1.Nuklearmedizinische Klinik und PoliklinikKlinikum rechts der Isar der TU MünchenMunichGermany

Personalised recommendations