We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Biological Effects of Radiation | SpringerLink
Skip to main content

Biological Effects of Radiation

  • Chapter
Diagnostic Nuclear Medicine
  • 280 Accesses

Abstract

The radiation that has to be used in diagnostic nuclear medicine is, unfortunately, of sufficiently high energy to be ionising. Thus, although there is a benefit to the patient, there is also a risk to both the patient and the community as a whole. Recommendations on controlling this risk are made by a number of organisations, based on an evaluation of the detriment to the individual caused by the absorbed radiation dose. Of prime importance, in this, is the estimation of the radiation dose and hence the likely biological consequences, resulting from the interaction of the radiation with matter. It has been stated that: a key factor in sustaining the growth in nuclear medicine while retaining the confidence of the referring clinician, the patient and the public, is for practitioners to maintain an up to date knowledge of the radiation risks associated with the procedures, an understanding of the methodology used to assess these risks and an appreciation of the associated limitations (Mountford 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BEIR:

United States National Academy of Sciences Biological Effects of Ionizing Radiation committee

BSS:

basic safety standards

DNA:

deoxyribose nucleic acid

HVT:

half-value thickness

IACRS:

Inter-Agency Committee on Radiation Safety

IAEA:

International Atomic Energy Agency

ICRP:

International Commission on Radiological Protection

ICRU:

International Commission on Radiation Units and Measurements

LET:

linear energy transfer

MIRD:

Medical Internal Radiation Dose committee

RBE:

relative biological effectivenesses

SI:

specific ionisation

TVT:

tenth-value thickness

WHO:

World Health Organization

References

  • Bardies M, Myers MJ (1996) Computational methods in radionuclide dosimetry. Phys Med Biol 41: 1941–1955

    Article  PubMed  CAS  Google Scholar 

  • Clairand I, Ricard M, Gouriou J, di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523

    PubMed  CAS  Google Scholar 

  • Clairand I, Bouchet LG, Ricard M, Durigon M, di Paola M, Aubert B (2000) Improvement of internal dose calculations using mathematical models of different adult heights. Phys Med Biol 45: 2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Delacroix D, Guerre JP, Leblanc P, Hickman C (1998) Radionuclide and radiation protection data handbook. Rad Prot Dos 76:1–2

    Article  Google Scholar 

  • Gadd R, Mountford PJ, Oxtoby JW (1999) Effective dose to children and adolescents from radiopharmaceuticals. Nucl Med Commun 20:569–573

    Article  PubMed  CAS  Google Scholar 

  • Groenewald W, Wasserman H (1990) Constants for calculating ambient and directional dose equivalents from radioactive point sources. Health Phys 58:655–658

    PubMed  CAS  Google Scholar 

  • Harding K, Thomson WH (1997) Radiological protection and safety in medicine — ICRP 73. Eur J Nucl Med 24:1207–1209

    PubMed  CAS  Google Scholar 

  • Howell RW, Wessels BW, Loevinger R in collaboration with the Medical Internal Radiation Dose Committee Watson EE, Bolch WE, Brill AB, Charkes ND, Fisher DR, Hays MT, Howell RW, Robertson JS, Siegel JA, Thomas SR, Wessels BW (1999) The MIRD perspective 1999. J Nucl Med 40: 3S–10S

    Google Scholar 

  • IAEA (1996) International Atomic Energy Agency international basic safety standards for protection against ionizing radiation and for the safety of radiation sources: a safety standard. IAEA, Vienna (International Atomic Energy Agency safety series 115)

    Google Scholar 

  • ICRP (1977) International Commission on Radiological Protection publication 26; 1977 recommendations of the International Commission on Radiological Protection. Pergamon, Oxford

    Google Scholar 

  • ICRP (1991) International Commission on Radiological Protection publication 60; 1990 recommendations of the International Commission on Radiological Protection. Pergamon, Oxford

    Google Scholar 

  • ICRP (1992) International Commission on Radiological Protection publication 60 — user’s edn; 1990 recommendations of the International Commission on Radiological Protection. Pergamon, Oxford

    Google Scholar 

  • ICRP (1996) International Commission on Radiological Protection publication 73 radiological protection and safety in medicine. Pergamon, Oxford

    Google Scholar 

  • Johansson L (2003) Hormesis, an update of the present position. Eur J Nucl Med 30:921–933

    Article  Google Scholar 

  • Loevinger R, Budinger TF, Watson EE (eds) (1988) MIRD primer for absorbed dose calculations. Society of Nuclear Medicine, New York

    Google Scholar 

  • Loevinger R, Budinger TF, Watson EE (eds) (1991) MIRD primer for absorbed dose calculations, revised. Society of Nuclear Medicine, New York

    Google Scholar 

  • Mountford PJ (1996) Internal dosimetry: developments and limitations. Eur J Nucl Med 23:491–493

    Article  PubMed  CAS  Google Scholar 

  • Mountford PJ (1997) Risk assessment of the nuclear medicine patient. Br J Radiol 70:671–684

    PubMed  CAS  Google Scholar 

  • NCRP (1983) National Council on Radiation Protection and Measurements report 73. Protection in nuclear medicine and ultrasound diagnostic procedures in children. NCRP, Bethesda, Maryland

    Google Scholar 

  • Ott RJ (1996) Imaging technologies for radionuclide dosimetry. Phys Med Biol 41:1885–1894

    Article  PubMed  CAS  Google Scholar 

  • Overbeek F, Pauwels EKJ, Broerse JJ (1994) Carcinogenic risk in diagnostic nuclear medicine: biological and epidemiological considerations. Eur J Nucl Med 21:997–1012

    Article  PubMed  CAS  Google Scholar 

  • Parker RP, Smith PHS, Taylor DM (1984) Basic science of nuclear medicine. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Simpkin DJ (1999) Radiation interactions and internal dosimetry in nuclear medicine. Radiographics 19:155–167

    PubMed  CAS  Google Scholar 

  • Sont WN, Zielinski JM, Ashmore JP, Jiang H, Krewski D, Fair ME, Band PR, Letourneau EG (2001) First analysis of cancer incidence and occupational radiation exposure based on the national dose registry of Canada. Am J Epidemiol 153:309–317

    Article  PubMed  CAS  Google Scholar 

  • Sorenson JA, Phelps ME (1987) Physics in nuclear medicine, 2nd edn. Grune and Stratton, New York

    Google Scholar 

  • Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    PubMed  CAS  Google Scholar 

  • Stabin MG, Gelfand MJ (1998) Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 42:93–112

    PubMed  CAS  Google Scholar 

  • Stabin MG, Tagesson M, Thomas SR, Ljungberg M, Strand SE (1999) Radiation dosimetry in nuclear medicine. Appl Radiat Isot 50:73–87

    Article  PubMed  CAS  Google Scholar 

  • Thierens HM, Monsieurs MA, Brans B, van Driessche T, Christiaens I, Dierckx RA (2001) Dosimetry from organ to cellular dimensions. Comput Med Imaging Graph 25:187–193

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Maxon HR III, Kereiakes JG (1988) Techniques for quantitation of in vivo radioactivity. In: Gelfand MJ, Thomas SR (eds) Effective use of computers in nuclear medicine. McGraw-Hill, New York, pp 348–383

    Google Scholar 

  • Toohey RE, Stabin MG, Watson EE (2000) The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 20:533–546

    PubMed  CAS  Google Scholar 

  • Van Wyngaarden KE, Pauwels EKJ (1995) Hormesis: are low doses of radiation harmful or beneficial? Eur J Nucl Med 22:481–486

    Article  PubMed  Google Scholar 

  • Watson EE, Stabin MG, Siegel JA (1993) MIRD formulation. Med Phys 20:511–514

    Article  PubMed  CAS  Google Scholar 

  • Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315

    PubMed  Google Scholar 

  • Zanzonico PB (2000) Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. J Nucl Med 41:297–308

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamilton, D. (2004). Biological Effects of Radiation. In: Diagnostic Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06588-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06588-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05630-7

  • Online ISBN: 978-3-662-06588-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics