Skip to main content

Single Photon Tomographic Imaging

  • Chapter
Diagnostic Nuclear Medicine
  • 276 Accesses

Abstract

Single Photon Emission Tomographic (SPET) imaging overcomes the loss of contrast suffered by planar images, which impairs the detectability of small lesions, particularly those which are deep lying and which exhibit reduced radionuclide accumulation. The reconstructed data can also be reoriented into, for example, coronal or sagittal sections, for better visualisation of the relative positions of activity distributions, which may help to localise the position of abnormalities more accurately. The technique also has the potential to quantify the regional distribution of activity, which allows representation of the activity distribution in units of MBq ml-1 rather than just counts per pixel, and thus better indicates organ function and radiation dosimetry (Rosenthal et al. 1995; Fleming and Alaamer 1996). A number of acquisition and processing factors are peculiar to SPET and, although software for single photon tomographic imaging was introduced in the mid 1980s, a range of imaging protocols are in use and are sometimes inappropriate, which demonstrates the on-going need to encourage the correct use of the instrumentation (Heikkinen et al. 1999). The image data is heavily and sophisticatedly processed. This includes attenuation correction and scatter compensation which can improve image resolution and contrast, significantly. It is possible to reconstruct images that are far from optimum. Artefacts, which would have been easily recognised in the raw images, can become camouflaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2D:

two dimension

3D:

three dimension

CT:

computed tomography

ERNA:

equilibrium radionuclide angiography

FOV:

field of view

FWHM:

full width at half maximum

LEGP:

low energy general purpose

LEHR:

low energy high resolution

LVEF:

left ventricular ejection fraction

MPI:

myocardial perfusion imaging

PHA:

pulse height analyser

ROI:

region of interest

SPET:

single photon emission tomography

TCR:

transmission count rate to emission crosstalk count rate

References

  • Abufadel A, Eisner RL, Schafer RW (2001) Differences due to collimator blurring in cardiac images with use of circular and elliptic camera orbits. J Nucl Cardiol 8:458–465

    Article  PubMed  CAS  Google Scholar 

  • Achtert AD, King MA, Dahlberg ST, Pretorius PH, LaCroix KJ, Tsui BM (1998) An investigation of the estimation of ejection fractions and cardiac volumes by a quantitative gated SPECT software package in simulated gated SPECT images. J Nucl Cardiol 5:144–152

    Article  PubMed  CAS  Google Scholar 

  • Almeida P, Bendriem B, de Dreuille O, Peltier A, Perrot C, Brulon V (1998) Dosimetry of transmission measurements in nuclear medicine: a study using anthropomorphic phantoms and thermoluminescent dosimeters. Eur J Nucl Med 25:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J (1999) Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol 6:406–411

    Article  PubMed  CAS  Google Scholar 

  • Araujo LI, Jimenez-Hoyuela JM, McClellan JR, Lin E, Viggiano J, Alavi A (2000) Improved uniformity in tomographic myocardial perfusion imaging with attenuation correction and enhanced acquisition and processing. J Nucl Med 41:1139–1144

    PubMed  CAS  Google Scholar 

  • Bai J, Hashimoto J, Suzuki T, Nakahara T, Kubo A, Iwanaga S, Mitamura H, Ogawa S (2001) Comparison of image reconstruction algorithms in myocardial perfusion scintigraphy. Ann Nucl Med 15:79–83

    Article  PubMed  CAS  Google Scholar 

  • Bailey DL, Meikle SR (2000) Does attenuation correction work? J Nucl Med 41:960–961

    PubMed  CAS  Google Scholar 

  • Bieszk JA, Hawman EG (1987) Evaluation of SPECT angular sampling effects: continuous versus step-and-shoot acquisition. J Nucl Med 28:1308–1314

    PubMed  CAS  Google Scholar 

  • Blocklet D, Seret A, Popa N, Schoutens A (1999) Maximum-likelihood reconstruction with ordered subsets in bone SPECT. J Nucl Med 40:1978–1984

    PubMed  CAS  Google Scholar 

  • Britten AJ, Jamali F, Gane JN, Joseph AE (1998) Motion detection and correction using multi-rotation 180 degrees single-photon emission tomography for thallium myocardial imaging. Eur J Nucl Med 25:1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Bruyant PP (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43: 1343–1358

    PubMed  Google Scholar 

  • Bural G, Ceri IO, Erkilic M, Tercan E, Saka O (2002) The change of cardiac axis in exercise and rest 99mTc MIBI scintigraphy: it’s effect on image quality during SPECT reconstruction. Eur J Nucl Med29:S177

    Google Scholar 

  • Burger C, Berthold T (2000) Physical principles and practical aspects of clinical PET imaging. In: von Schulthness GK, Buck A, Engel-Bicik I, Steinert HC (eds) Clinical positron emission tomography. Correlation with morphological cross-sectional imaging. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Cantinho GC, Pena HP, Monteiro JM, Daniel AD, Chester HC, Godinho FG (2002) Normal functional parameters of left ventricle in perfusion gated SPECT. Eur J Nucl Med 29: S206

    Google Scholar 

  • Cao Z, Holder LE, Chen CC (1996) Optimal number of views in 360 degrees SPECT imaging. J Nucl Med 37:1740–1744

    PubMed  CAS  Google Scholar 

  • Catafau AM (2001) Brain SPECT in clinical practice, part I perfusion. J Nucl Med 42:259–271

    PubMed  CAS  Google Scholar 

  • Cooper JA, Neumann PH, McCandless BK (1992) Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 33:1566–1571

    PubMed  CAS  Google Scholar 

  • Darcourt J, Buvat I (2000) Does attenuation correction work? J Nucl Med 41:961

    Google Scholar 

  • Dede F, Narin Y (2002) Comparison of left ventricular function at rest and post-stress Tc-99m MIBI gated SPECT in normal and ischaemic myocardium. Eur J Nucl Med 29: S210

    Google Scholar 

  • Delbeke D, Sandler MP (2000) The role of hybrid cameras in oncology. Semin Nucl Med XXX: 268–280

    Google Scholar 

  • DePuey EG (1994) How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 35: 699–702

    PubMed  Google Scholar 

  • DePuey EG, Garcia EV (2001) Updated imaging guidelines for nuclear cardiology procedures, part 1. American Society of Nuclear Cardiology. J Nucl Cardiol 8: G1–G58

    Google Scholar 

  • Dziuk M, Canizales A, Britton KE, Pietrzykowski J, Cholewa M (2002) The comparison of adenosine exercise Tc-99m tetrafosmin with treadmill MIBI gated SPECT. Eur J Nucl Med 29: S211

    Google Scholar 

  • Eisner RL, Nowak DJ, Pettigrew R, Fajman W (1986) Fundamentals of 180° acquisition and reconstruction in SPECT imaging. J Nucl Med 27:1717–1728

    PubMed  CAS  Google Scholar 

  • El Fakhri GN, Buvat I, Pelegrini M, Benali H, Almeida P, Bendriem B, Todd-Pokropek A, Di Paola R (1999) Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med 26:437–446

    Article  PubMed  Google Scholar 

  • El Fakhri G, Buvat I, Almeida P, Bendriem B, Todd-Pokropek A, Benali H (2000a) Should scatter be corrected in both transmission and emission data for accurate quantitation in cardiac SPET? Eur J Nucl Med 27:1356–1364

    Article  PubMed  Google Scholar 

  • El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R (2000b) Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 41:1400–1408

    PubMed  Google Scholar 

  • Fahey FH, Harkness BA, Keyes JW Jr, Madsen MT, Battisti C, Zito V (1992) Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med 33:1859–1863

    PubMed  CAS  Google Scholar 

  • Fleming JS, Alaamer AS (1996) The influence of collimator characteristics on quantitation in SPECT. J Nucl Med 37:1832–1835

    PubMed  CAS  Google Scholar 

  • Ford PV, Chatziioannou SN, Moore WH, Dhekne RD (2001) Overestimation of the LVEF by quantitative gated SPECT in simulated left ventricles. J Nucl Med 42:454–459

    PubMed  CAS  Google Scholar 

  • Forstrom LA, Dunn WL, O’Connor MK, Decklever TD, Hardyman TJ, Howarth DM (1996) Technical pitfalls in image acquisition, processing and display. Semin Nucl Med XXVI: 278–294

    Google Scholar 

  • Galt JR, Cullom SJ, Garcia EV (1992) SPECT quantification: a simplified method of scatter and attenuation correction for cardiac imaging. J Nucl Med 33:2232–2237

    PubMed  CAS  Google Scholar 

  • Galt JR, Cullom SJ, Garcia EV (1999) Attenuation and scatter compensation in myocardial perfusion SPECT. Semin Nucl Med XXIX: 204–220

    Google Scholar 

  • Garcia EV (1994) Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? (Where do we go from here?) J Nucl Cardiol 1:83–93

    Article  PubMed  CAS  Google Scholar 

  • Garin E, Devillers A, Girault S, Laffont S, Schill O, Bernard AM, Moisan A, Bourguet P (2001) Scinti-mammography: better detection of small-sized lesions with tomographic than planar images, a phantom study. Nucl Med Commun 22:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Gates GF (1996) Oblique angle bone SPECT imaging of the lumbar spine, pelvis, and hips. An anatomic study. Clin Nucl Med 21:359–362

    Article  PubMed  CAS  Google Scholar 

  • Germano G (2001) Technical aspects of myocardial SPECT imaging. J Nucl Med 42:1499–1507

    PubMed  CAS  Google Scholar 

  • Gilland DR, Tsui BMW, McCartney WH, Perry JR, Berg J (1988) Determination of the optimum filter function for SPECT imaging. J Nucl Med 29:643–650

    PubMed  CAS  Google Scholar 

  • Gillen GJ, Gilmore B, Elliott AT (1991) An investigation of the magnitude and causes of count loss artifacts in SPECT imaging. J Nucl Med 32:1771–1776

    PubMed  CAS  Google Scholar 

  • Gonzalez MJ, Ricart Y, Martin-Comin J, Pallares C, Beltran P, Gomez-Hospital J, Cequier A, Esplugas E, Ramos M (2002) LVEF, motility index and LV volumes. Gated-SPECT versus ventriculography performed within 24 hours. Eur J Nucl Med 29: S209

    Google Scholar 

  • Gustafsson A, Arlig A, Jacobsson L, Ljungberg M, Wikkelso C (2000) Dual-window scatter correction and energy window setting in cerebral blood flow SPECT: a Monte Carlo study. Phys Med Biol 45:3431–3440

    Article  PubMed  CAS  Google Scholar 

  • Hansen CL (2002) Digital image processing for clinicians, part II: filtering. J Nucl Cardiol 9:429–437

    Article  PubMed  Google Scholar 

  • Hansen CL, Kramer M (2000) Attenuation smear: a ‘paradoxical’ increase in counts due to attenuation artifact. Int J Card Imaging 16:455–460

    Article  PubMed  CAS  Google Scholar 

  • Harada M, Shimizu A, Murata M, Kubo M, Mitani R, Dairaku Y, Matsuzaki M (2002) Simultaneous evaluation of systolic and diastolic regional functions with quadruple contours display method using ECG-gated myocardial SPECT. Eur J Nucl Med 29: S211

    Google Scholar 

  • Harel F, Genin R, Daou D, Lebtahi R, Delahaye N, Helal BO, Le Guludec D, Faraggi M (2001) Clinical impact of combination of scatter, attenuation correction, and depth-dependent resolution recovery for 201T1 studies. J Nucl Med 42:1451–1456

    PubMed  CAS  Google Scholar 

  • Hashimoto J, Kubo A, Ogawa K, Amano T, Fukuuchi Y, Motomura N, Ichihara T (1997) Scatter and attenuation correction in technetium-99m brain SPECT. J Nucl Med 38:157–162

    PubMed  CAS  Google Scholar 

  • Heikkinen J, Kuikka JT, Ahonen A, Rautio P (1998) Quality of brain perfusion single-photon emission tomography images: multicentre evaluation using an anatomically accurate three-dimensional phantom. Eur J Nucl Med 25:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Heikkinen J, Ahonen A, Kuikka JT, Rautio P (1999) Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom. Eur J Nucl Med 26:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Heller EN, DeMan P, Liu YH, Dione DP, Zubal IG, Wackers FJ, Sinusas AJ (1997) Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission-emission approach. J Nucl Med 38:1882–1890

    PubMed  CAS  Google Scholar 

  • Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 9:135–143 and J Nucl Med 43:273–280

    Article  PubMed  Google Scholar 

  • Hillel PG, Hastings DL (1993) A three-dimensional second-derivative surface-detection algorithm for volume determination on SPECT images. Phys Med Biol 38:583–600

    Article  PubMed  CAS  Google Scholar 

  • Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (1999a) Recommendations for implementing SPECT instrumentation quality control. Nuclear Medicine Section — National Electrical Manufacturers Association (NEMA). Eur J Nucl Med 26: 527–532

    Article  PubMed  CAS  Google Scholar 

  • Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (1999b) National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med Technol 27:67–72

    PubMed  CAS  Google Scholar 

  • Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (2000) National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med 41:383–389

    PubMed  CAS  Google Scholar 

  • Hutton B (1996) Angular sampling necessary for clinical SPECT. J Nucl Med 37:1915–1916

    PubMed  CAS  Google Scholar 

  • Hyun IY, Kim DH, Seo JK, Kwan J, Park KS, Choe W-S, Lee WH (2002) Normal parameters of left ventricular volume and ejection fraction measured by gated myocardial perfusion SPECT: comparison of Tc-99m MIBI and Tl-201. Eur J Nucl Med 29: S205

    Google Scholar 

  • IAEA (1991) Tecdoc 602 quality control of nuclear medicine instruments. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, Kinoshita T, Ogawa T, Eberl S (1998) Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 39:181–189

    PubMed  CAS  Google Scholar 

  • IPSM (1985) Report 44 an introduction to emission computed tomography. Institute of Physical Sciences in Medicine, London

    Google Scholar 

  • Juni JE, Waxman AD, Devous MD Sr, Tikofsky RS, Ichise M, Van Heertum RL, Holman BL, Carretta RF, Chen CC (1998) Procedure guideline for brain perfusion SPECT using technetium-99m radiopharmaceuticals. Society of Nuclear Medicine. J Nucl Med 39:923–926

    PubMed  CAS  Google Scholar 

  • Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT (2000) Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction. Eur J Nucl Med 27:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Kelty NL, Cao Z-J, Holder LE (1997) Technical considerations for optimal orthopedic imaging. Semin Nucl Med XXVII: 328–333

    Google Scholar 

  • King MA, Tsui BMW, Pan T-S (1995) Attenuation compensation for cardiac single-photon emission computed tomographic imaging, part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2:513–524

    Article  PubMed  CAS  Google Scholar 

  • Knesaurek K, King MA, Glick SJ, Penney BC (1989) Investigation of causes of geometric distortion in 180° and 360° angular sampling in SPECT. J Nucl Med 30:1666–1675

    PubMed  CAS  Google Scholar 

  • Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H (1989) Effect of spatial resolution on SPECT quantification values. J Nucl Med 30:508–514

    PubMed  CAS  Google Scholar 

  • Kubo N, Morita K, Katoh C, Shiga T, Konno M, Tsukamoto E, Morita Y, Tamaki N (2000) A new dynamic myocardial phantom for the assessment of left ventricular function by gated single-photon emission tomography. Eur J Nucl Med 27:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • LaCroix KJ, Tsui BM, Hasegawa BH (1998) A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images. J Nucl Med 39:562–574

    PubMed  CAS  Google Scholar 

  • Lappi S, Lazzari S, Sarti G, Pieri P (2002) Assessment of geometrical distortion and activity distribution after attenuation correction: a SPECT phantom study. J Nucl Cardiol 9:508–514

    Article  PubMed  Google Scholar 

  • Lau YH, Hutton BF, Beekman FJ (2001) Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction. Eur J Nucl Med 28:39–47

    Article  PubMed  CAS  Google Scholar 

  • Li J, Jaszczack RJ, Turkington TG, Metz CE, Gilland DR, Greer KL, Coleman RE (1994) An evaluation of lesion detectability with cone-beam, fanbeam and parallel-beam collimation in SPECT by continuous ROC study. J Nucl Med 35:135–140

    PubMed  CAS  Google Scholar 

  • Links JM, DePuey EG, Taillefer R, Becker LC (2002) Attenuation correction and gating synergistical-ly improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 9:183–187

    Article  PubMed  Google Scholar 

  • Liu YH, Lam PT, Sinusas AJ, Wackers FJ (2002) Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med 43:1115–1124

    PubMed  Google Scholar 

  • Maniawski PJ, Morgan HT, Wackers FJT (1991) Orbit-related variation in spatial resolution as a source of artifactual defects in thallium-201 SPECT. J Nucl Med 32:871–875

    PubMed  CAS  Google Scholar 

  • Manrique A, Faraggi M, Vera P, Vilain D, Lebtahi R, Cribier A, Le Guludec D (1999) 201T1 and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 40:805–809

    PubMed  CAS  Google Scholar 

  • Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, Friedman JD, Germano G (2001) J Nucl Med 42:687–694

    PubMed  CAS  Google Scholar 

  • Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, Schwaiger M (1998) Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 39:411–416

    PubMed  CAS  Google Scholar 

  • Milo T (1996) Spect image display techniques. In: Henkin RE, Boles MA, Dillehay GL, Halama JR, Karesh SM, Wagner RH, Zimmer AM (eds) Nuclear medicine. Mosby, St Louis, pp 254–259

    Google Scholar 

  • Mueller SP, Polak JF, Kijewski MF, Holman BL (1986) Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med 27:1729–1738

    PubMed  CAS  Google Scholar 

  • Mullani NA (2000) Comparing diagnostic accuracy of y camera coincidence systems and PET for detection of lung lesions. J Nucl Med 41:959–960

    PubMed  CAS  Google Scholar 

  • Muylle K, Vanhove C, Maenhout A, Franken PR (2002) Comparison of 180-degree and 360-degree data acquisition in gated myocardial perfusion and in gated blood pool tomography. Eur J Nucl Med 29:S210

    Google Scholar 

  • Nakajima K, Taki J, Yamamoto W, Michigishi T, Tonami N (1998) Effect of 360 degrees and 180 degrees rotation SPET acquisitions on myocardial polar map: comparison of 201Tl-,99Tcm- and 123I-labelled radiopharmaceuticals. Nucl Med Commun 19:315–325

    Article  PubMed  CAS  Google Scholar 

  • O’Connor MK (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med XXVI: 256–277

    Google Scholar 

  • O’Connor MK, Bothun ED (1995) Effects of tomographic table attenuation on prone and supine cardiac imaging. J Nucl Med 36:1102–1106

    PubMed  Google Scholar 

  • O’Connor MK, Kelly BJ (1990) Evaluation of techniques for the elimination of “hot” bladder artifacts in SPECT of the pelvis. J Nucl Med 31:1872–1875

    PubMed  Google Scholar 

  • O’Connor MK, Brown ML, Hung JC, Hayostek RJ (1991) The art of bone scintigraphy — technical aspects. J Nucl Med 32:2332–2341

    PubMed  Google Scholar 

  • O’Connor MK, Caiati C, Christian TF, Gibbons RJ (1995) Effects of scatter correction on the measurement of infarct size from SPECT cardiac phantom studies. J Nucl Med 36:2080–2086

    PubMed  Google Scholar 

  • O’Connor MK, Kanal KM, Gebhard MW, Rossman PJ (1998) Comparison of four motion correction techniques in SPECT imaging of the heart: a cardiac phantom study. J Nucl Med 39:2027–2034

    PubMed  Google Scholar 

  • O’Connor MK, Leong LK, Gibbons RJ (2000) Assessment of infarct size and severity by quantitative myocardial SPECT: results from a multicenter study using a cardiac phantom. J Nucl Med 41: 1383–1390

    PubMed  Google Scholar 

  • Ohnishi H, Ota T, Takada M, Kida T, Noma K, Matsuo S, Masuda K, Yamamoto I, Morita R (1997) Two optimal prefilter cutoff frequencies needed for SPECT images of myocardial perfusion in a one-day protocol. J Nucl Med Technol 25:256–260

    PubMed  CAS  Google Scholar 

  • Pan TS, King MA, Der-Shan L, Dahlberg ST, Villegas BJ (1997) Estimation of attenuation maps from scatter and photopeak window single photon emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 4:42–51

    Article  PubMed  CAS  Google Scholar 

  • Patton JA (2000) Instrumentation for coincidence imaging with multihead scintillation cameras. Semin Nucl Med XXX: 239–254

    Google Scholar 

  • Pena HP, Cantinho GC, Veiga AV, Marona DM, Gomes PG, Godinho FG (2002) Perfusion gated SPECT — ejection fraction variability, as a function of the software. Eur J Nucl Med 29: S205

    Google Scholar 

  • Peters AM, Myers MJ (1998) Physiological measurements with radionuclides in clinical practice. Oxford University Press, Oxford

    Google Scholar 

  • Petersen CL, Kjoer A, Hviid AM (2002) Substantial difference in left ventricular architecture and perfusion can occur despite unchanged stroke volume. Eur J Nucl Med 29: S210

    Google Scholar 

  • Piepsz A (1995) Recent advances in pediatric nuclear medicine. Semin Nucl Med XXV: 165–182

    Google Scholar 

  • Pitman AG, Kalff V, van Every B, Risa B, Barnden LR, Kelly MJ (2002) Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med 43:1259–1267

    PubMed  Google Scholar 

  • Port SC (1999) Imaging guidelines for nuclear cardiology procedures, part 2. American Society of Nuclear Cardiology. J Nucl Cardiol 6: G53-G84

    Article  Google Scholar 

  • Prvulovich EM, Jarritt PH, Vivian GC, Clarke SE, Penneil DJ, Underwood SR (1998) Quality assurance in myocardial perfusion tomography: a collaborative BNCS/BNMS audit programme. British Nuclear Cardiology Society/British Nuclear Medicine Society. Nucl Med Commun 19: 831–838

    Article  PubMed  CAS  Google Scholar 

  • Rajabi H, Bitarafun AR, Yaghoobi N, Firouzabady H, Rustgou F (2002) Filter selection for Tc99m-sestamibi myocardial perfusion SPECT imaging. Eur J Nucl Med 29: S207

    Google Scholar 

  • Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the focus committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513

    PubMed  CAS  Google Scholar 

  • Rubio AR, Garcia-Burillo A, Gonzalez-Gonzalez JM, Oiler G, Canela T, Richart JA, Aguade S, Roca I, Castell J (2002) Interstudy repeatability of gated-SPECT quantitative parameters. Eur J Nucl Med 29:S208

    Google Scholar 

  • Sankaran S, Frey EC, Gilland KL, Tsui BMW (2002) Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 43:432–438

    PubMed  Google Scholar 

  • Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med XXXI: 3–16

    Google Scholar 

  • Schaefer WM, Namdar T, Koch K-C, Block S, Nowak B, Buell U (2002) Validation of left ventricular ejection fraction (LVEF) by gated-99mTc-tetrofosmin-SPECT (g-SPECT) in routine clinical practice. Eur J Nucl Med 29: S207

    Google Scholar 

  • Serrano M, Silva C, Serena A, Nogueiras JM, Vale I, Outomuro J, Campos L (2002) A simplified visual method for quantification of brain perfusion SPECT. Eur J Nucl Med 29: S194

    Google Scholar 

  • Shen MY, Liu YH, Sinusas AJ, Fetterman R, Bruni W, Drozhinin OE, Zaret BL, Wackers FJ (1999) Quantification of regional myocardial wall thickening on electrocardiogram-gated SPECT imaging. J Nucl Cardiol 6:583–595

    Article  PubMed  CAS  Google Scholar 

  • Starck SA, Carlsson S (1997) The determination of the effective attenuation coefficient from effective organ depth and modulation transfer function in gamma camera imaging. Phys Med Biol 42:1957–1964

    Article  PubMed  CAS  Google Scholar 

  • Stelter P, Junik R, Krzyminiewski R, Gembicki M, Sowinski J (2001) Semiquantitative analysis of SPECT images using 99Tcm-HMPAO in the treatment of brain perfusion after the attenuation correction by the Chang method and the application of the Butterworth filter. Nucl Med Commun 22:857–865

    Article  PubMed  CAS  Google Scholar 

  • Stodilka RZ, Kemp BJ, Msaki P, Prato FS, Nicholson RL (1998) The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification. Phys Med Biol 43: 2991–3008

    Article  PubMed  CAS  Google Scholar 

  • Stone CD, McCormick JW, Gilland DR, Greer KL, Coleman RE, Jaszczak RJ (1998) Effect of registration errors between transmission and emission scans on a SPECT system using sequential scanning. J Nucl Med 39:365–373

    PubMed  CAS  Google Scholar 

  • Strauss HW, Miller DD, Wittry MD, Cerqueira MD, Garcia EV, Iskandrian AS, Schelbert HR, Wackers FJ (1998) Procedure guideline for myocardial perfusion imaging. Society of Nuclear Medicine. J Nucl Med 39:918–923

    PubMed  CAS  Google Scholar 

  • Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, Pupi A (2002) European Association of Nuclear Medicine procedure guidelines for brain perfusion SPET using (99m)Tc-la-belled radiopharmaceuticals. Eur J Nucl Med 29:BP36–BP42

    Article  CAS  Google Scholar 

  • Taylor D (1994) Filter choice for reconstruction tomography. Nucl Med Commun 15:857–859

    Article  PubMed  CAS  Google Scholar 

  • Tsui BM, Frey EC, LaCroix KJ, Lalush DS, McCartney WH, King MA, Gullberg GT (1998) Quantitative myocardial perfusion SPECT. J Nucl Cardiol 5:507–522

    Article  PubMed  CAS  Google Scholar 

  • Turkington TG (2000) Attenuation correction in hybrid positron emission tomography. Semin Nucl Med XXX: 255–267

    Google Scholar 

  • Van Laere K, Koole M, Versijpt J, Dierckx R (2001a) Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers. Eur J Nucl Med 28:90–98

    Article  PubMed  Google Scholar 

  • Van Laere K, Koole M, Versijpt J, Vandenberghe S, Brans B, D’Asseler Y, De Winter O, Kalmar A, Dierckx R (2001b) Transfer of normal 99mTc-ECD brain SPET databases between different gamma cameras. Eur J Nucl Med 28:435–449

    Article  PubMed  Google Scholar 

  • Vanhove C, Franken PR, Defrise M, Deconinck F, Bossuyt A (2002) Reconstruction of gated myocardial perfusion SPET incorporating temporal information during iterative reconstruction. Eur J Nucl Med 29:465–472

    Article  CAS  Google Scholar 

  • Vines DC, Ichise M (1999) Evaluation of differential magnification during brain SPECT acquisition. J Nucl Med Technol 27:198–203

    PubMed  CAS  Google Scholar 

  • Wackers FJT (1999) Attenuation correction, or the emperor’s new clothes (editorial). J Nucl Med 40: 1310–1312

    PubMed  CAS  Google Scholar 

  • Wackers FJ (2002) Should SPET attenuation correction be more widely employed in routine clinical practice? Against. Eur J Nucl Med 29:412–415

    Article  Google Scholar 

  • Wells RG, Simkin PH, Judy PF, King MA, Pretorius H, Gifford HC (1999) Effect of filtering on the detection and localization of small Ga-67 lesions in thoracic single photon emission computed tomography images. Med Phys 26:1382–1388

    Article  PubMed  CAS  Google Scholar 

  • Wells RG, King MA, Simkin PH, Judy PF, Brill AB, Gifford HC, Licho R, Pretorius PH, Schneider PB, Seidin DW (2000) Comparing filtered backprojection and ordered-subsets expectation maximization for small-lesion detection and localization in 67Ga SPECT. J Nucl Med 41:1391–1399

    PubMed  CAS  Google Scholar 

  • Wright GA, McDade M, Keeble W, Martin W, Hutton I (2000) Quantitative SPECT myocardial perfusion imaging with 201T1: an assessment of the limitations. Nucl Med Commun 21:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Wright GA, McDade M, Martin W, Hutton I (2002) Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes. Phys Med Biol 47: N99–N105

    Article  PubMed  Google Scholar 

  • Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamilton, D. (2004). Single Photon Tomographic Imaging. In: Diagnostic Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06588-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06588-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05630-7

  • Online ISBN: 978-3-662-06588-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics