Single Photon Tomographic Imaging

  • David Hamilton
Chapter

Abstract

Single Photon Emission Tomographic (SPET) imaging overcomes the loss of contrast suffered by planar images, which impairs the detectability of small lesions, particularly those which are deep lying and which exhibit reduced radionuclide accumulation. The reconstructed data can also be reoriented into, for example, coronal or sagittal sections, for better visualisation of the relative positions of activity distributions, which may help to localise the position of abnormalities more accurately. The technique also has the potential to quantify the regional distribution of activity, which allows representation of the activity distribution in units of MBq ml-1 rather than just counts per pixel, and thus better indicates organ function and radiation dosimetry (Rosenthal et al. 1995; Fleming and Alaamer 1996). A number of acquisition and processing factors are peculiar to SPET and, although software for single photon tomographic imaging was introduced in the mid 1980s, a range of imaging protocols are in use and are sometimes inappropriate, which demonstrates the on-going need to encourage the correct use of the instrumentation (Heikkinen et al. 1999). The image data is heavily and sophisticatedly processed. This includes attenuation correction and scatter compensation which can improve image resolution and contrast, significantly. It is possible to reconstruct images that are far from optimum. Artefacts, which would have been easily recognised in the raw images, can become camouflaged.

Keywords

Attenuation Radionuclide Cardiol Radon Milo 

Abbreviations

2D

two dimension

3D

three dimension

CT

computed tomography

ERNA

equilibrium radionuclide angiography

FOV

field of view

FWHM

full width at half maximum

LEGP

low energy general purpose

LEHR

low energy high resolution

LVEF

left ventricular ejection fraction

MPI

myocardial perfusion imaging

PHA

pulse height analyser

ROI

region of interest

SPET

single photon emission tomography

TCR

transmission count rate to emission crosstalk count rate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abufadel A, Eisner RL, Schafer RW (2001) Differences due to collimator blurring in cardiac images with use of circular and elliptic camera orbits. J Nucl Cardiol 8:458–465PubMedCrossRefGoogle Scholar
  2. Achtert AD, King MA, Dahlberg ST, Pretorius PH, LaCroix KJ, Tsui BM (1998) An investigation of the estimation of ejection fractions and cardiac volumes by a quantitative gated SPECT software package in simulated gated SPECT images. J Nucl Cardiol 5:144–152PubMedCrossRefGoogle Scholar
  3. Almeida P, Bendriem B, de Dreuille O, Peltier A, Perrot C, Brulon V (1998) Dosimetry of transmission measurements in nuclear medicine: a study using anthropomorphic phantoms and thermoluminescent dosimeters. Eur J Nucl Med 25:1435–1441PubMedCrossRefGoogle Scholar
  4. Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J (1999) Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol 6:406–411PubMedCrossRefGoogle Scholar
  5. Araujo LI, Jimenez-Hoyuela JM, McClellan JR, Lin E, Viggiano J, Alavi A (2000) Improved uniformity in tomographic myocardial perfusion imaging with attenuation correction and enhanced acquisition and processing. J Nucl Med 41:1139–1144PubMedGoogle Scholar
  6. Bai J, Hashimoto J, Suzuki T, Nakahara T, Kubo A, Iwanaga S, Mitamura H, Ogawa S (2001) Comparison of image reconstruction algorithms in myocardial perfusion scintigraphy. Ann Nucl Med 15:79–83PubMedCrossRefGoogle Scholar
  7. Bailey DL, Meikle SR (2000) Does attenuation correction work? J Nucl Med 41:960–961PubMedGoogle Scholar
  8. Bieszk JA, Hawman EG (1987) Evaluation of SPECT angular sampling effects: continuous versus step-and-shoot acquisition. J Nucl Med 28:1308–1314PubMedGoogle Scholar
  9. Blocklet D, Seret A, Popa N, Schoutens A (1999) Maximum-likelihood reconstruction with ordered subsets in bone SPECT. J Nucl Med 40:1978–1984PubMedGoogle Scholar
  10. Britten AJ, Jamali F, Gane JN, Joseph AE (1998) Motion detection and correction using multi-rotation 180 degrees single-photon emission tomography for thallium myocardial imaging. Eur J Nucl Med 25:1524–1530PubMedCrossRefGoogle Scholar
  11. Bruyant PP (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43: 1343–1358PubMedGoogle Scholar
  12. Bural G, Ceri IO, Erkilic M, Tercan E, Saka O (2002) The change of cardiac axis in exercise and rest 99mTc MIBI scintigraphy: it’s effect on image quality during SPECT reconstruction. Eur J Nucl Med29:S177Google Scholar
  13. Burger C, Berthold T (2000) Physical principles and practical aspects of clinical PET imaging. In: von Schulthness GK, Buck A, Engel-Bicik I, Steinert HC (eds) Clinical positron emission tomography. Correlation with morphological cross-sectional imaging. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  14. Cantinho GC, Pena HP, Monteiro JM, Daniel AD, Chester HC, Godinho FG (2002) Normal functional parameters of left ventricle in perfusion gated SPECT. Eur J Nucl Med 29: S206Google Scholar
  15. Cao Z, Holder LE, Chen CC (1996) Optimal number of views in 360 degrees SPECT imaging. J Nucl Med 37:1740–1744PubMedGoogle Scholar
  16. Catafau AM (2001) Brain SPECT in clinical practice, part I perfusion. J Nucl Med 42:259–271PubMedGoogle Scholar
  17. Cooper JA, Neumann PH, McCandless BK (1992) Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 33:1566–1571PubMedGoogle Scholar
  18. Darcourt J, Buvat I (2000) Does attenuation correction work? J Nucl Med 41:961Google Scholar
  19. Dede F, Narin Y (2002) Comparison of left ventricular function at rest and post-stress Tc-99m MIBI gated SPECT in normal and ischaemic myocardium. Eur J Nucl Med 29: S210Google Scholar
  20. Delbeke D, Sandler MP (2000) The role of hybrid cameras in oncology. Semin Nucl Med XXX: 268–280Google Scholar
  21. DePuey EG (1994) How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 35: 699–702PubMedGoogle Scholar
  22. DePuey EG, Garcia EV (2001) Updated imaging guidelines for nuclear cardiology procedures, part 1. American Society of Nuclear Cardiology. J Nucl Cardiol 8: G1–G58Google Scholar
  23. Dziuk M, Canizales A, Britton KE, Pietrzykowski J, Cholewa M (2002) The comparison of adenosine exercise Tc-99m tetrafosmin with treadmill MIBI gated SPECT. Eur J Nucl Med 29: S211Google Scholar
  24. Eisner RL, Nowak DJ, Pettigrew R, Fajman W (1986) Fundamentals of 180° acquisition and reconstruction in SPECT imaging. J Nucl Med 27:1717–1728PubMedGoogle Scholar
  25. El Fakhri GN, Buvat I, Pelegrini M, Benali H, Almeida P, Bendriem B, Todd-Pokropek A, Di Paola R (1999) Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med 26:437–446PubMedCrossRefGoogle Scholar
  26. El Fakhri G, Buvat I, Almeida P, Bendriem B, Todd-Pokropek A, Benali H (2000a) Should scatter be corrected in both transmission and emission data for accurate quantitation in cardiac SPET? Eur J Nucl Med 27:1356–1364PubMedCrossRefGoogle Scholar
  27. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R (2000b) Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 41:1400–1408PubMedGoogle Scholar
  28. Fahey FH, Harkness BA, Keyes JW Jr, Madsen MT, Battisti C, Zito V (1992) Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med 33:1859–1863PubMedGoogle Scholar
  29. Fleming JS, Alaamer AS (1996) The influence of collimator characteristics on quantitation in SPECT. J Nucl Med 37:1832–1835PubMedGoogle Scholar
  30. Ford PV, Chatziioannou SN, Moore WH, Dhekne RD (2001) Overestimation of the LVEF by quantitative gated SPECT in simulated left ventricles. J Nucl Med 42:454–459PubMedGoogle Scholar
  31. Forstrom LA, Dunn WL, O’Connor MK, Decklever TD, Hardyman TJ, Howarth DM (1996) Technical pitfalls in image acquisition, processing and display. Semin Nucl Med XXVI: 278–294Google Scholar
  32. Galt JR, Cullom SJ, Garcia EV (1992) SPECT quantification: a simplified method of scatter and attenuation correction for cardiac imaging. J Nucl Med 33:2232–2237PubMedGoogle Scholar
  33. Galt JR, Cullom SJ, Garcia EV (1999) Attenuation and scatter compensation in myocardial perfusion SPECT. Semin Nucl Med XXIX: 204–220Google Scholar
  34. Garcia EV (1994) Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? (Where do we go from here?) J Nucl Cardiol 1:83–93PubMedCrossRefGoogle Scholar
  35. Garin E, Devillers A, Girault S, Laffont S, Schill O, Bernard AM, Moisan A, Bourguet P (2001) Scinti-mammography: better detection of small-sized lesions with tomographic than planar images, a phantom study. Nucl Med Commun 22:1045–1054PubMedCrossRefGoogle Scholar
  36. Gates GF (1996) Oblique angle bone SPECT imaging of the lumbar spine, pelvis, and hips. An anatomic study. Clin Nucl Med 21:359–362PubMedCrossRefGoogle Scholar
  37. Germano G (2001) Technical aspects of myocardial SPECT imaging. J Nucl Med 42:1499–1507PubMedGoogle Scholar
  38. Gilland DR, Tsui BMW, McCartney WH, Perry JR, Berg J (1988) Determination of the optimum filter function for SPECT imaging. J Nucl Med 29:643–650PubMedGoogle Scholar
  39. Gillen GJ, Gilmore B, Elliott AT (1991) An investigation of the magnitude and causes of count loss artifacts in SPECT imaging. J Nucl Med 32:1771–1776PubMedGoogle Scholar
  40. Gonzalez MJ, Ricart Y, Martin-Comin J, Pallares C, Beltran P, Gomez-Hospital J, Cequier A, Esplugas E, Ramos M (2002) LVEF, motility index and LV volumes. Gated-SPECT versus ventriculography performed within 24 hours. Eur J Nucl Med 29: S209Google Scholar
  41. Gustafsson A, Arlig A, Jacobsson L, Ljungberg M, Wikkelso C (2000) Dual-window scatter correction and energy window setting in cerebral blood flow SPECT: a Monte Carlo study. Phys Med Biol 45:3431–3440PubMedCrossRefGoogle Scholar
  42. Hansen CL (2002) Digital image processing for clinicians, part II: filtering. J Nucl Cardiol 9:429–437PubMedCrossRefGoogle Scholar
  43. Hansen CL, Kramer M (2000) Attenuation smear: a ‘paradoxical’ increase in counts due to attenuation artifact. Int J Card Imaging 16:455–460PubMedCrossRefGoogle Scholar
  44. Harada M, Shimizu A, Murata M, Kubo M, Mitani R, Dairaku Y, Matsuzaki M (2002) Simultaneous evaluation of systolic and diastolic regional functions with quadruple contours display method using ECG-gated myocardial SPECT. Eur J Nucl Med 29: S211Google Scholar
  45. Harel F, Genin R, Daou D, Lebtahi R, Delahaye N, Helal BO, Le Guludec D, Faraggi M (2001) Clinical impact of combination of scatter, attenuation correction, and depth-dependent resolution recovery for 201T1 studies. J Nucl Med 42:1451–1456PubMedGoogle Scholar
  46. Hashimoto J, Kubo A, Ogawa K, Amano T, Fukuuchi Y, Motomura N, Ichihara T (1997) Scatter and attenuation correction in technetium-99m brain SPECT. J Nucl Med 38:157–162PubMedGoogle Scholar
  47. Heikkinen J, Kuikka JT, Ahonen A, Rautio P (1998) Quality of brain perfusion single-photon emission tomography images: multicentre evaluation using an anatomically accurate three-dimensional phantom. Eur J Nucl Med 25:1415–1422PubMedCrossRefGoogle Scholar
  48. Heikkinen J, Ahonen A, Kuikka JT, Rautio P (1999) Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom. Eur J Nucl Med 26:1289–1297PubMedCrossRefGoogle Scholar
  49. Heller EN, DeMan P, Liu YH, Dione DP, Zubal IG, Wackers FJ, Sinusas AJ (1997) Extracardiac activity complicates quantitative cardiac SPECT imaging using a simultaneous transmission-emission approach. J Nucl Med 38:1882–1890PubMedGoogle Scholar
  50. Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 9:135–143 and J Nucl Med 43:273–280PubMedCrossRefGoogle Scholar
  51. Hillel PG, Hastings DL (1993) A three-dimensional second-derivative surface-detection algorithm for volume determination on SPECT images. Phys Med Biol 38:583–600PubMedCrossRefGoogle Scholar
  52. Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (1999a) Recommendations for implementing SPECT instrumentation quality control. Nuclear Medicine Section — National Electrical Manufacturers Association (NEMA). Eur J Nucl Med 26: 527–532PubMedCrossRefGoogle Scholar
  53. Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (1999b) National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med Technol 27:67–72PubMedGoogle Scholar
  54. Hines H, Kayayan R, Colsher J, Hashimoto D, Schubert R, Fernando J, Simcic V, Vernon P, Sinclair RL (2000) National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med 41:383–389PubMedGoogle Scholar
  55. Hutton B (1996) Angular sampling necessary for clinical SPECT. J Nucl Med 37:1915–1916PubMedGoogle Scholar
  56. Hyun IY, Kim DH, Seo JK, Kwan J, Park KS, Choe W-S, Lee WH (2002) Normal parameters of left ventricular volume and ejection fraction measured by gated myocardial perfusion SPECT: comparison of Tc-99m MIBI and Tl-201. Eur J Nucl Med 29: S205Google Scholar
  57. IAEA (1991) Tecdoc 602 quality control of nuclear medicine instruments. International Atomic Energy Agency, ViennaGoogle Scholar
  58. Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, Kinoshita T, Ogawa T, Eberl S (1998) Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 39:181–189PubMedGoogle Scholar
  59. IPSM (1985) Report 44 an introduction to emission computed tomography. Institute of Physical Sciences in Medicine, LondonGoogle Scholar
  60. Juni JE, Waxman AD, Devous MD Sr, Tikofsky RS, Ichise M, Van Heertum RL, Holman BL, Carretta RF, Chen CC (1998) Procedure guideline for brain perfusion SPECT using technetium-99m radiopharmaceuticals. Society of Nuclear Medicine. J Nucl Med 39:923–926PubMedGoogle Scholar
  61. Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT (2000) Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction. Eur J Nucl Med 27:1380–1386PubMedCrossRefGoogle Scholar
  62. Kelty NL, Cao Z-J, Holder LE (1997) Technical considerations for optimal orthopedic imaging. Semin Nucl Med XXVII: 328–333Google Scholar
  63. King MA, Tsui BMW, Pan T-S (1995) Attenuation compensation for cardiac single-photon emission computed tomographic imaging, part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2:513–524PubMedCrossRefGoogle Scholar
  64. Knesaurek K, King MA, Glick SJ, Penney BC (1989) Investigation of causes of geometric distortion in 180° and 360° angular sampling in SPECT. J Nucl Med 30:1666–1675PubMedGoogle Scholar
  65. Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H (1989) Effect of spatial resolution on SPECT quantification values. J Nucl Med 30:508–514PubMedGoogle Scholar
  66. Kubo N, Morita K, Katoh C, Shiga T, Konno M, Tsukamoto E, Morita Y, Tamaki N (2000) A new dynamic myocardial phantom for the assessment of left ventricular function by gated single-photon emission tomography. Eur J Nucl Med 27:1525–1530PubMedCrossRefGoogle Scholar
  67. LaCroix KJ, Tsui BM, Hasegawa BH (1998) A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images. J Nucl Med 39:562–574PubMedGoogle Scholar
  68. Lappi S, Lazzari S, Sarti G, Pieri P (2002) Assessment of geometrical distortion and activity distribution after attenuation correction: a SPECT phantom study. J Nucl Cardiol 9:508–514PubMedCrossRefGoogle Scholar
  69. Lau YH, Hutton BF, Beekman FJ (2001) Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction. Eur J Nucl Med 28:39–47PubMedCrossRefGoogle Scholar
  70. Li J, Jaszczack RJ, Turkington TG, Metz CE, Gilland DR, Greer KL, Coleman RE (1994) An evaluation of lesion detectability with cone-beam, fanbeam and parallel-beam collimation in SPECT by continuous ROC study. J Nucl Med 35:135–140PubMedGoogle Scholar
  71. Links JM, DePuey EG, Taillefer R, Becker LC (2002) Attenuation correction and gating synergistical-ly improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 9:183–187PubMedCrossRefGoogle Scholar
  72. Liu YH, Lam PT, Sinusas AJ, Wackers FJ (2002) Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med 43:1115–1124PubMedGoogle Scholar
  73. Maniawski PJ, Morgan HT, Wackers FJT (1991) Orbit-related variation in spatial resolution as a source of artifactual defects in thallium-201 SPECT. J Nucl Med 32:871–875PubMedGoogle Scholar
  74. Manrique A, Faraggi M, Vera P, Vilain D, Lebtahi R, Cribier A, Le Guludec D (1999) 201T1 and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 40:805–809PubMedGoogle Scholar
  75. Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, Friedman JD, Germano G (2001) J Nucl Med 42:687–694PubMedGoogle Scholar
  76. Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, Schwaiger M (1998) Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 39:411–416PubMedGoogle Scholar
  77. Milo T (1996) Spect image display techniques. In: Henkin RE, Boles MA, Dillehay GL, Halama JR, Karesh SM, Wagner RH, Zimmer AM (eds) Nuclear medicine. Mosby, St Louis, pp 254–259Google Scholar
  78. Mueller SP, Polak JF, Kijewski MF, Holman BL (1986) Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med 27:1729–1738PubMedGoogle Scholar
  79. Mullani NA (2000) Comparing diagnostic accuracy of y camera coincidence systems and PET for detection of lung lesions. J Nucl Med 41:959–960PubMedGoogle Scholar
  80. Muylle K, Vanhove C, Maenhout A, Franken PR (2002) Comparison of 180-degree and 360-degree data acquisition in gated myocardial perfusion and in gated blood pool tomography. Eur J Nucl Med 29:S210Google Scholar
  81. Nakajima K, Taki J, Yamamoto W, Michigishi T, Tonami N (1998) Effect of 360 degrees and 180 degrees rotation SPET acquisitions on myocardial polar map: comparison of 201Tl-,99Tcm- and 123I-labelled radiopharmaceuticals. Nucl Med Commun 19:315–325PubMedCrossRefGoogle Scholar
  82. O’Connor MK (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med XXVI: 256–277Google Scholar
  83. O’Connor MK, Bothun ED (1995) Effects of tomographic table attenuation on prone and supine cardiac imaging. J Nucl Med 36:1102–1106PubMedGoogle Scholar
  84. O’Connor MK, Kelly BJ (1990) Evaluation of techniques for the elimination of “hot” bladder artifacts in SPECT of the pelvis. J Nucl Med 31:1872–1875PubMedGoogle Scholar
  85. O’Connor MK, Brown ML, Hung JC, Hayostek RJ (1991) The art of bone scintigraphy — technical aspects. J Nucl Med 32:2332–2341PubMedGoogle Scholar
  86. O’Connor MK, Caiati C, Christian TF, Gibbons RJ (1995) Effects of scatter correction on the measurement of infarct size from SPECT cardiac phantom studies. J Nucl Med 36:2080–2086PubMedGoogle Scholar
  87. O’Connor MK, Kanal KM, Gebhard MW, Rossman PJ (1998) Comparison of four motion correction techniques in SPECT imaging of the heart: a cardiac phantom study. J Nucl Med 39:2027–2034PubMedGoogle Scholar
  88. O’Connor MK, Leong LK, Gibbons RJ (2000) Assessment of infarct size and severity by quantitative myocardial SPECT: results from a multicenter study using a cardiac phantom. J Nucl Med 41: 1383–1390PubMedGoogle Scholar
  89. Ohnishi H, Ota T, Takada M, Kida T, Noma K, Matsuo S, Masuda K, Yamamoto I, Morita R (1997) Two optimal prefilter cutoff frequencies needed for SPECT images of myocardial perfusion in a one-day protocol. J Nucl Med Technol 25:256–260PubMedGoogle Scholar
  90. Pan TS, King MA, Der-Shan L, Dahlberg ST, Villegas BJ (1997) Estimation of attenuation maps from scatter and photopeak window single photon emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 4:42–51PubMedCrossRefGoogle Scholar
  91. Patton JA (2000) Instrumentation for coincidence imaging with multihead scintillation cameras. Semin Nucl Med XXX: 239–254Google Scholar
  92. Pena HP, Cantinho GC, Veiga AV, Marona DM, Gomes PG, Godinho FG (2002) Perfusion gated SPECT — ejection fraction variability, as a function of the software. Eur J Nucl Med 29: S205Google Scholar
  93. Peters AM, Myers MJ (1998) Physiological measurements with radionuclides in clinical practice. Oxford University Press, OxfordGoogle Scholar
  94. Petersen CL, Kjoer A, Hviid AM (2002) Substantial difference in left ventricular architecture and perfusion can occur despite unchanged stroke volume. Eur J Nucl Med 29: S210Google Scholar
  95. Piepsz A (1995) Recent advances in pediatric nuclear medicine. Semin Nucl Med XXV: 165–182Google Scholar
  96. Pitman AG, Kalff V, van Every B, Risa B, Barnden LR, Kelly MJ (2002) Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med 43:1259–1267PubMedGoogle Scholar
  97. Port SC (1999) Imaging guidelines for nuclear cardiology procedures, part 2. American Society of Nuclear Cardiology. J Nucl Cardiol 6: G53-G84CrossRefGoogle Scholar
  98. Prvulovich EM, Jarritt PH, Vivian GC, Clarke SE, Penneil DJ, Underwood SR (1998) Quality assurance in myocardial perfusion tomography: a collaborative BNCS/BNMS audit programme. British Nuclear Cardiology Society/British Nuclear Medicine Society. Nucl Med Commun 19: 831–838PubMedCrossRefGoogle Scholar
  99. Rajabi H, Bitarafun AR, Yaghoobi N, Firouzabady H, Rustgou F (2002) Filter selection for Tc99m-sestamibi myocardial perfusion SPECT imaging. Eur J Nucl Med 29: S207Google Scholar
  100. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M (1995) Quantitative SPECT imaging: a review and recommendations by the focus committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 36:1489–1513PubMedGoogle Scholar
  101. Rubio AR, Garcia-Burillo A, Gonzalez-Gonzalez JM, Oiler G, Canela T, Richart JA, Aguade S, Roca I, Castell J (2002) Interstudy repeatability of gated-SPECT quantitative parameters. Eur J Nucl Med 29:S208Google Scholar
  102. Sankaran S, Frey EC, Gilland KL, Tsui BMW (2002) Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 43:432–438PubMedGoogle Scholar
  103. Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med XXXI: 3–16Google Scholar
  104. Schaefer WM, Namdar T, Koch K-C, Block S, Nowak B, Buell U (2002) Validation of left ventricular ejection fraction (LVEF) by gated-99mTc-tetrofosmin-SPECT (g-SPECT) in routine clinical practice. Eur J Nucl Med 29: S207Google Scholar
  105. Serrano M, Silva C, Serena A, Nogueiras JM, Vale I, Outomuro J, Campos L (2002) A simplified visual method for quantification of brain perfusion SPECT. Eur J Nucl Med 29: S194Google Scholar
  106. Shen MY, Liu YH, Sinusas AJ, Fetterman R, Bruni W, Drozhinin OE, Zaret BL, Wackers FJ (1999) Quantification of regional myocardial wall thickening on electrocardiogram-gated SPECT imaging. J Nucl Cardiol 6:583–595PubMedCrossRefGoogle Scholar
  107. Starck SA, Carlsson S (1997) The determination of the effective attenuation coefficient from effective organ depth and modulation transfer function in gamma camera imaging. Phys Med Biol 42:1957–1964PubMedCrossRefGoogle Scholar
  108. Stelter P, Junik R, Krzyminiewski R, Gembicki M, Sowinski J (2001) Semiquantitative analysis of SPECT images using 99Tcm-HMPAO in the treatment of brain perfusion after the attenuation correction by the Chang method and the application of the Butterworth filter. Nucl Med Commun 22:857–865PubMedCrossRefGoogle Scholar
  109. Stodilka RZ, Kemp BJ, Msaki P, Prato FS, Nicholson RL (1998) The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification. Phys Med Biol 43: 2991–3008PubMedCrossRefGoogle Scholar
  110. Stone CD, McCormick JW, Gilland DR, Greer KL, Coleman RE, Jaszczak RJ (1998) Effect of registration errors between transmission and emission scans on a SPECT system using sequential scanning. J Nucl Med 39:365–373PubMedGoogle Scholar
  111. Strauss HW, Miller DD, Wittry MD, Cerqueira MD, Garcia EV, Iskandrian AS, Schelbert HR, Wackers FJ (1998) Procedure guideline for myocardial perfusion imaging. Society of Nuclear Medicine. J Nucl Med 39:918–923PubMedGoogle Scholar
  112. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, Pupi A (2002) European Association of Nuclear Medicine procedure guidelines for brain perfusion SPET using (99m)Tc-la-belled radiopharmaceuticals. Eur J Nucl Med 29:BP36–BP42CrossRefGoogle Scholar
  113. Taylor D (1994) Filter choice for reconstruction tomography. Nucl Med Commun 15:857–859PubMedCrossRefGoogle Scholar
  114. Tsui BM, Frey EC, LaCroix KJ, Lalush DS, McCartney WH, King MA, Gullberg GT (1998) Quantitative myocardial perfusion SPECT. J Nucl Cardiol 5:507–522PubMedCrossRefGoogle Scholar
  115. Turkington TG (2000) Attenuation correction in hybrid positron emission tomography. Semin Nucl Med XXX: 255–267Google Scholar
  116. Van Laere K, Koole M, Versijpt J, Dierckx R (2001a) Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers. Eur J Nucl Med 28:90–98PubMedCrossRefGoogle Scholar
  117. Van Laere K, Koole M, Versijpt J, Vandenberghe S, Brans B, D’Asseler Y, De Winter O, Kalmar A, Dierckx R (2001b) Transfer of normal 99mTc-ECD brain SPET databases between different gamma cameras. Eur J Nucl Med 28:435–449PubMedCrossRefGoogle Scholar
  118. Vanhove C, Franken PR, Defrise M, Deconinck F, Bossuyt A (2002) Reconstruction of gated myocardial perfusion SPET incorporating temporal information during iterative reconstruction. Eur J Nucl Med 29:465–472CrossRefGoogle Scholar
  119. Vines DC, Ichise M (1999) Evaluation of differential magnification during brain SPECT acquisition. J Nucl Med Technol 27:198–203PubMedGoogle Scholar
  120. Wackers FJT (1999) Attenuation correction, or the emperor’s new clothes (editorial). J Nucl Med 40: 1310–1312PubMedGoogle Scholar
  121. Wackers FJ (2002) Should SPET attenuation correction be more widely employed in routine clinical practice? Against. Eur J Nucl Med 29:412–415CrossRefGoogle Scholar
  122. Wells RG, Simkin PH, Judy PF, King MA, Pretorius H, Gifford HC (1999) Effect of filtering on the detection and localization of small Ga-67 lesions in thoracic single photon emission computed tomography images. Med Phys 26:1382–1388PubMedCrossRefGoogle Scholar
  123. Wells RG, King MA, Simkin PH, Judy PF, Brill AB, Gifford HC, Licho R, Pretorius PH, Schneider PB, Seidin DW (2000) Comparing filtered backprojection and ordered-subsets expectation maximization for small-lesion detection and localization in 67Ga SPECT. J Nucl Med 41:1391–1399PubMedGoogle Scholar
  124. Wright GA, McDade M, Keeble W, Martin W, Hutton I (2000) Quantitative SPECT myocardial perfusion imaging with 201T1: an assessment of the limitations. Nucl Med Commun 21:1147–1151PubMedCrossRefGoogle Scholar
  125. Wright GA, McDade M, Martin W, Hutton I (2002) Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes. Phys Med Biol 47: N99–N105PubMedCrossRefGoogle Scholar
  126. Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • David Hamilton
    • 1
  1. 1.Riyadh Al Kharj Hospital ProgrammeX990 Military HospitalRiyadhSaudi Arabia

Personalised recommendations