Advertisement

Dual Photon Imaging

  • David Hamilton
Chapter

Abstract

Dual photon emission tomography (DPET) overcomes one of main limitations of SPET, the effect of absorptive collimation; and enhances the accuracy of the activity representation in the tomographic image by allowing accurate correction for attenuation. Its main operational difference to SPET is that it relies on two photons, from the same annihilation event, being detected in coincidence. Removal of the absorptive collimation results in better detection sensitivity and spatial resolution which is independent of depth in the patient. Although spatial resolution, in SPET, can approach comparability with DPET using focussed, e.g. fanbeam, collimators; the detection sensitivity of SPET, even with multi-detector systems, cannot approach that of dedicated 3D DPET. A major barrier, to clinical implementation of DPET, is the high cost of dedicated systems (Dilsizian et al. 2001). This can be overcome using a coincidence y camera, which can operate as both a single photon and a coincidence system (Budinger 1998). These may be the most innovative devices introduced in nuclear medicine during the last few years but are complements to, rather than competitors of, dedicated systems (Kunze et al. 2000). To achieve the required functionality, the single photon y camera requires a number of modifications.

Keywords

Attenuation Correction Projection Line Random Coincidence Annihilation Photon Scatter Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2D

two dimensions

3D

three dimensions

ACF

attenuation correction factor

ADC

analogue to digital converter

BGO

bismuth germanate oxide

C-OS-EM

coincidence-list-ordered sets expectation-maximisation

CT

computed tomography

DPET

dual photon emission tomography

FBP

filtered back-projection

FDG

fluorodeoxyglucose

FORE

Fourier re-binning

FOV

field of view

FWHM

full width at half maximum

GSO

gadolinium oxyorthosilicate

LEHR

low energy high resolution

LSO

lutetium oxyorthosilicate

MSRB

multi-slice re-binning

NEC

noise equivalent count

OS-EM

ordered subset estimation maximisation

PHA

pulse height analyser

PMT

photomultiplier tube

SPET

single photon emission tomography

SSRB

single-slice re-binning

YSO

Y2SiO5(Ce)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam L-E, Zaers J, Ostertag H, Trojan H, Bellemann ME, Brix G (1997) Performance evaluation of the whole-body PET scanner ECAT EXACT HR following the IEC standard. IEEE Trans Nucl Sci 44:1172–1179CrossRefGoogle Scholar
  2. Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ (2001) Performance of a whole-body PET scanner using curve-plate Nal(Tl) detectors. J Nucl Med 42:1821–1830PubMedGoogle Scholar
  3. Akhurst T, Chisin R (2000) Hybrid PET/CT machines: optimized PET machines for the new millennium? J Nucl Med 41:961–962PubMedGoogle Scholar
  4. Bailey DL (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787PubMedCrossRefGoogle Scholar
  5. Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, Spinks TJ, Watson CC, Luk P, Peters AM, Jones T (1997) ECAT ART — a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15PubMedCrossRefGoogle Scholar
  6. Bar Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med XXX: 150–185Google Scholar
  7. Bartenstein P, Asenbaum S, Catafau A, Halldin C, Pilowski L, Pupi A Tatsch (2002) European Association of Nuclear Medicine procedure guidelines for brain imaging using [18F]FDG. Eur J Nucl Med 29:B43-B48Google Scholar
  8. Bendriem B, Casey M, Eriksson L, Schmand M, Eriksson M, Frey J, Nutt R (1999) From PET to PET/-SPECT. Rev Acomen 5:156–159Google Scholar
  9. Bergmann SR (1998) Cardiac positron emission tomography. Semin Nucl Med XXVIII: 320–340Google Scholar
  10. Bettinardi V, Pagani E, Gilardi MC, Landoni C, Riddell C, Rizzo G, Castiglioni I, Belluzzo D, Lucignahi G, Schubert S, Fazio F (1999) An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 26:447–458PubMedCrossRefGoogle Scholar
  11. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379PubMedGoogle Scholar
  12. Beyer T, Townsend DW, Blodgett TM (2002) Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 46:24–34PubMedGoogle Scholar
  13. Bird NJ, Old SE, Barber RW (2001) Gamma camera positron emission tomography. Br J Radiol 74: 303–306PubMedGoogle Scholar
  14. Blokland JA, Trindev P, Stokkel MP, Pauwels EK (2002) Positron emission tomography: a technical introduction for clinicians. Eur J Radiol 44:70–75PubMedCrossRefGoogle Scholar
  15. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdorfer F, Lorenz WJ (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 38:1614–1623PubMedGoogle Scholar
  16. Budinger TF (1998) PET Instrumentation: what are the limits? Semin Nucl Med XXVIII: 247–267Google Scholar
  17. Burger C, Berthold T (2000) Physical principles and practical aspects of clinical PET imaging. In: von Schulthness GK, Buck A, Engel-Bicik I, Steinert HC (eds) Clinical positron emission tomography. Correlation with morphological cross-sectional imaging. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  18. Cherry SR, Phelps ME (1996) Positron emission tomography: methods and instrumentation. In: Sandler MP, Patton JA, Coleman RE, Gottschalk A, Wackers FJT, Hoffer PB (eds) Diagnostic nuclear medicine, 3rd edn. Williams and Wilkins, Baltimore, pp 139–159Google Scholar
  19. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, Simcic V, Stearns CW, Adam LE, Kohlmyer S, Sossi V (2002) PET performance measurements using the NEMA NU 2–2001 standard. J Nucl Med 43:1398–1409PubMedGoogle Scholar
  20. Defrise M, Geissbuhler A, Townsend DW (1994) A performance study of 3D reconstruction algorithms for positron emission tomography. Phys Med Biol 39:305–320PubMedCrossRefGoogle Scholar
  21. Delbeke D, Sandler MP (2000) The role of hybrid cameras in oncology. Semin Nucl Med XXX: 268–280Google Scholar
  22. Delbeke D, Martin WH, Patton JA, Sandler MP (2001) Value of iterative reconstruction, attenuation correction, and image fusion in the interpretation of FDG PET images with an integrated dual-head coincidence camera and X-ray-based attenuation maps. Radiology 218:163–171PubMedGoogle Scholar
  23. Dilsizian V, Bacharach SL, Khin MM, Smith MF (2001) Fluorine-18-deoxyglucose SPECT and coincidence imaging for myocardial viability: clinical and technologic issues. J Nucl Cardiol 8:75–88PubMedCrossRefGoogle Scholar
  24. Fahey FH (2001) Positron emission tomography instrumentation. Radiol Clin North Am 39: 919–929PubMedCrossRefGoogle Scholar
  25. Fleming JS, Goatman KA, Julyan PJ, Boivin CM, Wilson MJ, Barber RW, Bird NJ, Fryer TD (2000) A comparison of performance of three gamma camera systems for positron emission tomography. Nucl Med Commun 21:1095–1102PubMedCrossRefGoogle Scholar
  26. Gemmell HG, McKiddie F, Davidson J, Chilcott F, Welch A, Egred M (2002) The use of a dual-headed gamma camera to image myocardial perfusion using NH3 — comparison with full-ring PET. Eur J Nucl Med 29:S176CrossRefGoogle Scholar
  27. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41:2757–2774PubMedCrossRefGoogle Scholar
  28. Hsu CH (2002) A study of lesion contrast recovery for iterative PET image reconstructions versus filtered backprojection using an anthropomorphic thoracic phantom. Comput Med Imaging Graph 26:119–127PubMedCrossRefGoogle Scholar
  29. Inoue T, Oriuchi N, Koyama K, Ichikawa A, Tomiyoshi K, Sato N, Matsubara K, Suzuki H, Aoki J, Endo K (2001) Usefulness of dual-head coincidence gamma camera with thick Nal crystals for nuclear oncology: comparison with dedicated PET camera and conventional gamma camera with thin Nal crystals. Ann Nucl Med 15:141–148PubMedCrossRefGoogle Scholar
  30. IPEM (2003) Report 86 quality control of gamma camera systems. Institute of Physics and Engineering in Medicine, LondonGoogle Scholar
  31. IPEM (2004) The basics of gamma camera PET. Institute of Physics and Engineering in Medicine, LondonGoogle Scholar
  32. Jarritt PH, Acton PD (1996) PET imaging using gamma camera systems: a review. Nucl Med Commun 17:758–766PubMedCrossRefGoogle Scholar
  33. Kamel E, Hany TF, Burger C, Treyer V, Lonn AHR, von Schulthness GK, Buck A (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med 29:346–350CrossRefGoogle Scholar
  34. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053PubMedCrossRefGoogle Scholar
  35. King MA, Tsui BMW, Pan T-S (1995) Attenuation compensation for cardiac single-photon emission computed tomographic imaging, part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 2:513–524PubMedCrossRefGoogle Scholar
  36. Kuge NTY, Katch C (2001) Current status and future of metabolic cardiac imaging (editorial). Nucl Med Commun 22:847–850PubMedCrossRefGoogle Scholar
  37. Kuikka JT, Sohlberg A, Husso-Saastamoinen M (2002) PET imaging using a triple-head gamma camera. Clin Physiol Funct Imaging 22:328–331PubMedCrossRefGoogle Scholar
  38. Kunze W-D, Baehre M, Richter E (2000) PET with a dual-head coincidence camera: spatial resolution, scatter fraction and sensitivity. J Nucl Med 41:1067–1074PubMedGoogle Scholar
  39. Lartizien C, Kinaham PE, Swensson R, Comtat C, Lin M, Villemagne V, Trebossen R (2003) Evaluating image reconstruction methods for tumor detection in 3-dimensional whole-body PET oncology imaging. J Nucl Med 44:276–290PubMedGoogle Scholar
  40. Levkovitz R, Falikman D, Zibulevsky M, Ben-Tal A, Nemirovski A (2001) The design and implementation of COSEM, an iterative algorithm for fully 3-D listmode data. IEEE Trans Med Imaging 20:633–642PubMedCrossRefGoogle Scholar
  41. Lewellen TK (1998) Time-of-flight PET. Semin Nucl Med XXVIII: 268–275Google Scholar
  42. Lewellen TK, Miyaoka RS, Swan WL (1999) PET imaging using dual-headed gamma cameras: an update. Nucl Med Commun 20:5–12PubMedCrossRefGoogle Scholar
  43. Muehllrhner G, Karp JS, Surti S (2002) Design considerations for PET scanners. Q J Nucl Med 46: 16–23PubMedGoogle Scholar
  44. Mullani NA (2000) Comparing diagnostic accuracy of y camera coincidence systems and PET for detection of lung lesions. J Nucl Med 41:959–960PubMedGoogle Scholar
  45. Patton JA (2000) Instrumentation for coincidence imaging with multihead scintillation cameras. Semin Nucl Med XXX: 239–254Google Scholar
  46. Patton JA, Turkington TG (1999) Coincidence imaging with a dual-head scintillation camera. J Nucl Med 40:432–441PubMedGoogle Scholar
  47. Patton JA, Delbeke D, Sandler MP (2000) Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J Nucl Med 41:1364–1368PubMedGoogle Scholar
  48. Paul AK, Tatsumi M, Fujino K, Hashikawa K, Nishimura T (2001) Feasibility of a short acquisition protocol for whole-body positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 28:1697–1701PubMedCrossRefGoogle Scholar
  49. Ramos CD, Erdi YE, Gonen M, Riedel E, Yeung HWD, Macapiniac HA, Chisin R, Larson SM (2001) FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med 28: 155–164PubMedCrossRefGoogle Scholar
  50. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911PubMedGoogle Scholar
  51. Stodilka RZ, Glick SJ (2001) Evaluation of geometric sensitivity for hybrid PET. J Nucl Med 42: 1116–1120PubMedGoogle Scholar
  52. Tarantola G, Zito F, Gerundini P (2003) PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med 44:756–769PubMedGoogle Scholar
  53. Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75: S24–S30PubMedGoogle Scholar
  54. Turkington TG (2000) Attenuation correction in hybrid positron emission tomography. Semin Nucl Med XXX: 255–267Google Scholar
  55. Vandenberghe S, d’Asseler Y, Kolthammer J, van de Walle R, Lemahieu I, Dierckx RA (2002) Phys Med Biol 47:289–303PubMedCrossRefGoogle Scholar
  56. Wahl RL (1999) To AC or not to AC: that is the question (editorial). J Nucl Med 40:2025–2028PubMedGoogle Scholar
  57. Xu EZ, Mullani NA, Gould KL, Anderson WL (1991) A segmented attenuation correction for PET. J Nucl Med 1990 32:161–165Google Scholar
  58. Yamaya T, Obi T, Yamaguchi M, Ohyama N (2000) High-resolution image reconstruction method for time-of-flight positron emission tomography. Phys Med Biol 45:3125–3134PubMedCrossRefGoogle Scholar
  59. Zaidi H (2000) Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 27:1813–1826PubMedCrossRefGoogle Scholar
  60. Zaidi H (2001) Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 22: 1181–1184PubMedCrossRefGoogle Scholar
  61. Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44:291–315PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • David Hamilton
    • 1
  1. 1.Riyadh Al Kharj Hospital ProgrammeX990 Military HospitalRiyadhSaudi Arabia

Personalised recommendations