Skip to main content

Die Bedeutung der Lipide und der Membranbiogenese bei der Schleimsekretion

  • Conference paper
Der Magen
  • 38 Accesses

Zusammenfassung

Die intrazelluläre Verschiebung der für die Zelloberfläche oder für Organellen distal des endoplasmatischen Retikulums bestimmten Proteine wird durch vesikulären Transport gewährleistet [1–3]. Sowohl der biosynthetische wie der sekretorische und der endozytotische Transportweg beinhalten eine Verpakkung der Proteine in Transportvesikel, die von einer Membran abgeschnürt und mit einer anderen fusioniert werden. Die bei diesen komplexen Prozessen beteiligten molekularen Mechanismen der intrazellulären Ausbildung von Transportern wurden in vielen Systemen untersucht, wie z.B. teilweise intakten Zellen, zellfreien Systemen und Hefemutanten, und trotzdem konnte nur ein begrenzter Fortschritt in dem Verständnis der Biogenese von Vesikeln und des vesikelvermittelten Transportes erlangt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Balch WE (1989) Biochemistry of interorganelle transport. A new frontier in enzymology emerges from versatile in vitro model system. J Biol Chem 264: 16969–16968

    Google Scholar 

  2. Goda Y, Pfeffer SR (1989) Cell-free system to study vesicular transport along the secretory and endocytic pathways. FASEB J 3: 2488–2495

    PubMed  CAS  Google Scholar 

  3. Rothman JE, Orci L (1990) Movement of proteins through the Golgi stock: a molecular dissection of vesicular transport. FASEB J 4: 1460–1468

    PubMed  CAS  Google Scholar 

  4. Beckers CJM, Balch WE (1989) Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol 108: 1245–1256

    Article  PubMed  CAS  Google Scholar 

  5. Beckers CJM, Plutner H, Davidson HW, Block WE (1990) Sequential intermediates in the transport of protein between endoplasmic reticulum and the Golgi. J Biol Chem 265: 18298–18310

    PubMed  CAS  Google Scholar 

  6. Baker D, Hicke L, Rexach N, Schleyer N, Schekman R (1988) Reconstitution of SEC gene product dependent intercompartmental protein transport. Cell 54: 335–344

    Article  PubMed  CAS  Google Scholar 

  7. Pfeffer SR, Rothman JE (1987) Biosynthetic protein transport and sorting by endoplasmic reticulum and Golgi. Annu Rev Biochem 56: 829–852

    Article  PubMed  CAS  Google Scholar 

  8. Groesch ME, Ruohola H, Bacon R, Rossi G, Ferro-Novick S (1990) Isolation of functional vesicular intermediate that mediates ER to Golgi transport in yeast. J Cell Biol 111: 45–53

    Article  PubMed  CAS  Google Scholar 

  9. Graham TR, Emr SD (1991) Compartmental organization of Golgi specific protein modification and vacuolar protein sorting events defined in yeast sec 18 NSF mutant. J Cell Biol 114: 207–218

    Article  PubMed  CAS  Google Scholar 

  10. Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3: 243–293

    Article  PubMed  CAS  Google Scholar 

  11. Cutler DF (1988) The role of transport signals and retention signals in constitutive export from animal cell. J Cell Sci 91: 1–4

    PubMed  Google Scholar 

  12. Rose JK, Doms RW (1988) Regulation of protein export from endoplasmic reticulum. Annu Rev Cell Biol 4: 257–288

    Article  PubMed  CAS  Google Scholar 

  13. Warren G (1987) Signals and salvage sequences. Nature 327: 17–18

    Article  PubMed  CAS  Google Scholar 

  14. Hurtley SM, Helenius A (1989) Protein oligomerization in the endoplasmic reticulum. Ann Rev Cell Biol 5: 277–307

    Article  PubMed  CAS  Google Scholar 

  15. Mellman I, Simons K (1992) The Golgi complex: in vitro veritas? Cell 68: 829–840

    Article  PubMed  CAS  Google Scholar 

  16. Slomiany A, Kasinathan C, Slomiany BL (1992) Glycosylation patterns in mucus glycoprotein. Adv Macromol Carbohydr Res (in press)

    Google Scholar 

  17. Paulson JC, Colley KJ (1989) Glycosyltransferases, structure, localization and control of cell type specific glycosylation. J Biol Chem 264: 17615–17618

    PubMed  CAS  Google Scholar 

  18. von Heijne G (1981) On the hydrophobic nature of signal sequences. Eur J Biochem 116: 419–422

    Article  Google Scholar 

  19. Walter P, Ibrahimi I, Blobel G (1981) Translocation of proteins across endoplasmic reticulum. I. Signal recognition protein binds to in vitro assembled polysomes synthesizing secretory proteins. J Cell Biol 91: 545–550

    Google Scholar 

  20. Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. Ill. Signal recognition protein ( SRP) causes signal sequence dependent and site specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91: 557–561

    Google Scholar 

  21. Walter P, Blobel G (1983) Signal recognition particle: A ribonucleoprotein required for cotranslational translocation of protein, isolation and properties. Methods Enzymol 96: pp 682–691

    Article  PubMed  CAS  Google Scholar 

  22. Sanz P, Meyer DI (1989) Secretion in yeast: Preprotein binding to a membrane receptor and ATP-dependent translocation are sequential and separable events in vitro. J Cell Biol 108: 2101–2106

    Google Scholar 

  23. Rapoport TA (1985) Extensions of the signal hypothesis-sequential insertion model versus amphipathic tunnel hypothesis. FEBS Lett 187: 1–10

    Article  PubMed  CAS  Google Scholar 

  24. Gilmore R, Blobel G, Walter P (1982) Protein translocation across the endoplasmic reticulum I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol 95: 463–469

    Google Scholar 

  25. Rothblatt JA, Deshaies RJ, Sanders SL, Daum G, Schekman R (1989) Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J Cell Biol 109: 2641–2652

    Article  PubMed  CAS  Google Scholar 

  26. Slomiany A, Witas H, Aono M, Slomiany BL (1983) Covalently linked fatty acids in gastric mucus glycoprotein of cystic fibrosis patients. J Biol Chem 258: 8535–8538

    PubMed  CAS  Google Scholar 

  27. Slomiany A, Zielenski J, Tsukada H, Slomiany BL (1988) Synthesis and cotranslational processing of mucus glycoprotein In: Mastella G, Quinton PM (eds) Cellular and molecular basis of cystis fibrosis, San Francisco Press, San Francisco pp 247–261

    Google Scholar 

  28. Tsukada H, Zielenski J, Mizuta K, Slomiany BL, Slomiany A (1987) Prostaglandin protection against ethanol induced gastric injury: regulatory effect on mucus glycoprotein metabolism. Digestion 36: 201–212

    Article  PubMed  CAS  Google Scholar 

  29. Slomiany BL, Tsukada H, Slomiany A (1986) Cotranslational attachment of fatty acids to nascent peptides in gastric mucus glycoprotein. Biochem Biophys Res Commun 141: 387–393

    Article  PubMed  CAS  Google Scholar 

  30. Slomiany A, Mizuta K, Zalesna G, Tsukada H, Slomiany BL (1988) Cotranslational processing and intracellular transport of rat salivary mucus glycoprotein. Archs Oral Biol 33: 807–818

    Article  CAS  Google Scholar 

  31. Slomiany A, Tsukada H, Zalesna G, Slomiany BL (1988) Cotranslational fatty acylation of mucus glycoprotein. Addition of palmitic acid to peptidyl-tRNA occurs prior to peptide chain completion and release. Int J Biochem 20: 1381–1390

    Google Scholar 

  32. Zalesna G, Tsukada H, Okazaki K, Slomiany BL, Slomiany A (1989) Synthesis and initial processing of gastric mucin. Biochem Int 18: 775–784

    PubMed  CAS  Google Scholar 

  33. Kasinathan C, Grzelinska E, Slomiany BL, Slomiany A (1990) Purification of protein fatty acyltransferase and determination of its distribution and topology. J Biol Chem 265: 5139–5144

    PubMed  CAS  Google Scholar 

  34. Slomiany A, Okazaki K, Slomiany BL (1992) Synthesis and macromolecular organization of gastrointestinal mucin: Evidence for the origin of mucin “link protein”. J Clin Gastroenterol 14 (1): 571–581

    Google Scholar 

  35. Slomiany A, Slomiany BL (1992) Synthesis and macromolecular organization of gastrointestinal mucin. J Physiol Pharmacol 43: 113–136

    Google Scholar 

  36. Sudo Y, Valenzuela D, Beck—Sickinger AG, Fishman M, Strittmatter SM (1992) Palmitoylation alters protein activity: blockade of Go stimulation by GAP-43. EMBO J 11: 2095–2102

    PubMed  CAS  Google Scholar 

  37. Perez—Vilar J, Hidalgo T, Velasco A (1991) Presence of terminal N-acetylgalactosamine residues in subregions of endoplasmic reticulum is influenced by cell differentiation in culture. J Biol Chem 266: 23967–23976

    Google Scholar 

  38. Spielman J, Rockley NL, Carraway KL (1987) Temporal aspects of O-glycosylation and cell surface expression of ascites sialoglycoprotein-1, the major cell surface sialomucin of 13762 mammary ascites tumor cells. J Biol Chem 262: 269–275

    PubMed  CAS  Google Scholar 

  39. Towler DA, Gordon JI, Adams SP, Glaser L (1988) The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem 57: 69–99

    Article  PubMed  CAS  Google Scholar 

  40. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347–358

    Article  PubMed  CAS  Google Scholar 

  41. Palade G (1956) Intracisternal granules in the exocrine pancreas. J Biophys Biochem Cytol 2: 417–422

    Article  PubMed  CAS  Google Scholar 

  42. Roman LM, Garoff H (1985) Revelation through exploitation: the viral model for intracellular traffic. Trends Biochem Sci 10: 428–432

    Article  Google Scholar 

  43. Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71: 4457–4461

    Google Scholar 

  44. Slomiany A, Grzelinska E, Kasinathan C, Yamaki K, Palecz D, Slomiany BA, Slomiany BL (1992) Biogenesis of endoplasmic reticulum transport vesicles transferring gastric apomucin from ER to Golgi. Exp Cell Res 201: 321–329

    Article  PubMed  CAS  Google Scholar 

  45. Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3: 243–293

    Article  PubMed  CAS  Google Scholar 

  46. Kelly RB (1990) Microtubules, membrane traffic and cell organization. Cell 61: 5–7

    Article  PubMed  CAS  Google Scholar 

  47. Vale RD (1987) Intracellular transport using microtubule-based motors. Annu Rev Cell Biol 3: 347–378

    Article  PubMed  CAS  Google Scholar 

  48. Clary DO, Griff IC, Rothman JE (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709–721

    Article  PubMed  CAS  Google Scholar 

  49. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125–132

    Article  PubMed  CAS  Google Scholar 

  50. Staw JL, Bruno de Almeida J, Narula N, Holtzman EJ, Ercolani L (1991) A heterotrimeric G protein, Ga1–3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK epithelial cells. J Cell Ciol 114: 1113–1124

    Article  Google Scholar 

  51. Balch WE ( 1990 Small GTP-binding proteins in vesicular transport. Trends Biochem Sci 15: 473–477. pa

    Article  PubMed  Google Scholar 

  52. Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640

    Article  PubMed  CAS  Google Scholar 

  53. Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L (1991) A coat subunit of Golgi-derived non-clathrin-coated vesicules with homology to the clathrin-coated vesicle coat protein β-adaptin. Nature 349: 215–220

    Article  PubMed  CAS  Google Scholar 

  54. Waters MG, Serafini T, Rothman JE (1991) “Coatomer”: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248–251

    Google Scholar 

  55. Slomiany A, Grzelinska E, Kasinathan C, Yamaki K, Palecz D, Slomiany BL (1992) Function of intracellular phospholipase AZ in vectorial transport of apoproteins from ER to Golgi. Int J Biochem 24: 1397–1406

    Article  PubMed  CAS  Google Scholar 

  56. Weidman PJ, Melancon P, Block MR, Rothman JE (1989) Binding of N-ethylmaleimide sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol 108: 1589–1596

    Article  PubMed  CAS  Google Scholar 

  57. Molenaar CMT, Prange R, Galwitz D (1988) A carboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity of the non-related yeast YPTI protein. EMBO J 7: 971–976

    PubMed  CAS  Google Scholar 

  58. Lowy DR, Willumsen BM (1989) New clue to Ras lipid glue. Nature 341: 389–385

    Article  Google Scholar 

  59. Walworth NC, Goud B, Kabcenell AK, Novick PJ (1989) Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J 8: 1685–1693

    PubMed  CAS  Google Scholar 

  60. Goud B, Salminen A, Walworth NC, Novick RI (1988) A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53: 753–768

    Article  PubMed  CAS  Google Scholar 

  61. Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46: 171–184

    Article  PubMed  CAS  Google Scholar 

  62. Rothman JE, Miller RL, Urbani U (1984) Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations. J Cell Biol 99: 260–271

    Article  PubMed  CAS  Google Scholar 

  63. Slomiany A, Grzelinska E, Grabska M, Yamaki K, Tamura S, Kasinathan C, Slomiany BL (1992) Intracellular processes associated with glycoprotein transport and processing. Arch Biochem Biophys 298: 167–175

    Article  PubMed  CAS  Google Scholar 

  64. Ganong BR, Bell RM (1984) Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry 23: 4977–4983

    Article  PubMed  CAS  Google Scholar 

  65. Pagano RE, Longmuir KJ (1985) Phosphorylation, transbilayer movement and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblast. J Biol Chem 260: 1909–1916

    PubMed  CAS  Google Scholar 

  66. Lipsky NG, Pagano RE (1983) Sphingolipid metabolism in cultured fibroblasts: Microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci USA 80: 2608–2612

    Google Scholar 

  67. Jelsema CL, Morre DJ (1978) Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J Biol Chem 253: 7960–7971

    PubMed  CAS  Google Scholar 

  68. Higgins JA, Fieldsend JK (1987) Phosphatidylcholine synthesis for incorporation into membrane or for secretion as plasma lipoproteins by Golgi membranes of rat liver. J Lipid Res 28: 268–278

    PubMed  CAS  Google Scholar 

  69. Pagano RE (1988) What is the fate of diacylglycerol produced at the Golgi apparatus? Trends Biochem Sci 12: 202–205

    Article  Google Scholar 

  70. Malhotra V, Serafini T, Orci L, Glick BS, Block MR, Rothman JE (1989) Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58: 329–336

    Article  PubMed  CAS  Google Scholar 

  71. de Curtis I, Simons K (1989) Isolation of exocytic carrier vesicles from BHK cells. Cell 58: 719–727

    Article  PubMed  Google Scholar 

  72. Beckers CJM, Block B, Glick J, Rothman JE, Balch WE (1989) Vesicular transport between the endoplasmic reticulum and the Golgi stack requires NEM-sensitive fusion protein. Nature 339: 397–398

    Article  PubMed  CAS  Google Scholar 

  73. Klausner RD, Donaldson TG, Lippincott-Schwartz J (1992) Brefeldin A: Insights into the control of membrane traffic and organelle structure. J Cell Biol 116: 1071–1080

    Google Scholar 

  74. Cleves AE, Mc Gee TP, Whitters EA, Chempion KM, Aitken JR, Dowhan W, Goeld M, Bankaitis VA (1991) Mutations in CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64: 789–800

    Article  PubMed  CAS  Google Scholar 

  75. Pfanner N, Orci L, Glick BS, Amherdt M, Arden SR, Malhotra V, Rothman JE (1989) Fatty acyl coenzyme A is required for budding of transport vesicles from golgi cisternae. Cell 59: 95–102

    Article  PubMed  CAS  Google Scholar 

  76. Slomiany A, Jozwiak Z, Liau YH, Slomiany BL (1984) Effect of ethanol on enzymatic sulfation of glycosphingolipids in gastric mucosa. J Biol Chem 259: 5792–5796

    PubMed  CAS  Google Scholar 

  77. Carter SR, Slomiany A, Gwozdzinski K, Liau YH, Slomiany BL (1988) Effect of ethanol on mucus glycoprotein sulfotransferase from gastric mucosa. J Biol Chem 263: 11977–11984

    PubMed  CAS  Google Scholar 

  78. Slomiany A, Slomiany BL, Witas H, Zdebska E, Galicki NI, Newman LJ (1983) Lipids of gastric secretion of patients with cystic fibrosis. Biochim Biophys Acta 750: 253–260

    Article  PubMed  CAS  Google Scholar 

  79. Collins FS (1992) Cystic fibrosis: Molecular biology and therapeutic implications. Science 256: 774–779

    Article  PubMed  CAS  Google Scholar 

  80. Bradbury NA, Jilling T, Berta G, Sorscher EJ, Bridges RJ, Kirk KL (1992) Regulation of plasma membrane recycling by CFTR. Science 256: 530–531

    Article  PubMed  CAS  Google Scholar 

  81. Tabakoff B, Hoffman PL (1987) Biochemical pharmacology of alcohol. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress, Raven Press, New York, pp 1521–1526

    Google Scholar 

  82. Hoek JB, Taraschi TF (1988) Cellular adaptation to ethanol. Trends Biochem Sci 13: 269–174

    Article  PubMed  CAS  Google Scholar 

  83. Pfanner N, Glick BS, Arden SR, Rothman JE (1990) Fatty acylation promotes fusion of transport vesicles with Golgi cisternae. J Cell Biol 110: 955–961

    Article  PubMed  CAS  Google Scholar 

  84. Stubbs CD, Williams BW, Pryor CL, Rubin E (1988) Ethanol induced modification to membrane lipid structure. Effect on phospholipase A2 membrane interactions. Arch Biochem Biophys 262: 560–573

    Article  PubMed  CAS  Google Scholar 

  85. Gies TB, Bertrand C, Landry Y (1988) Membrane phospholipids polar heads influence the coupling of M2 muscarinic receptors to G protein. Neurochem Res 13: 737–742

    Article  PubMed  CAS  Google Scholar 

  86. Harris RA, Allen AM (1989) Alcohol intoxication: ion channels and genetics. FASEB J 3: 1689–1695

    PubMed  CAS  Google Scholar 

  87. Slomiany A, Grabska M, Grzelinska E, Yamaki K, Kasinathan C, Slomiany BA, Slomiany BL (1992) Membrane biogenesis in the presence of ethanol. Alc Clin Exp Res 16: 1152–1161

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slomiany, A., Slomiany, B.L. (1993). Die Bedeutung der Lipide und der Membranbiogenese bei der Schleimsekretion. In: Domschke, W., Konturek, S.J. (eds) Der Magen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06526-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06526-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56612-0

  • Online ISBN: 978-3-662-06526-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics