Dendritic Cell-Based Immunotherapy

  • T. G. Berger
  • E. S. Schultz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)

Abstract

Dendritic cell (DC)-based vaccinations represent a promising approach for the immunotherapy of cancer and infectious diseases as DCs play an essential role in initiating cellular immune responses. A number of clinical trials using ex vivo-generated DCs have been performed so far and only minor toxicity has been reported. Both the induction of antigen-specific T cells and clinical responses have been observed in vaccinated cancer patients. Nevertheless, DC-based immunotherapy is still in its infancy and there are many issues to be addressed such as antigen loading procedures, DC source and maturational state, migration properties, route, frequency, and dosage of DC vaccination. The increasing knowledge of DC biology should be used to improve the efficacy of this new therapy.

Keywords

Migration Toxicity Lymphoma Tuberculosis Interferon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J.Exp.Med. 1998, 188:1359–1368.CrossRefGoogle Scholar
  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413:732–738.PubMedCrossRefGoogle Scholar
  3. Altman JD, Moss PH, Goulder PR, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM: Phenotypic analysis of antigen-specific T lymphocytes [published erratum appears in Science 1998 Jun 19;280(5371):1821]. Science 1996, 274: 94–96.PubMedCrossRefGoogle Scholar
  4. Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, Thor SP: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 2001, 61: 5964–5968.PubMedGoogle Scholar
  5. Arnold D, Faath S, Rammensee H, Schild H: Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J.Exp.Med. 1995, 182: 885–889.PubMedCrossRefGoogle Scholar
  6. Arnold D, Wahl C, Faath S, Rammensee HG, Schild H: Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J.Exp.Med. 1997, 186: 461–466.PubMedCrossRefGoogle Scholar
  7. Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp.Med. 1997, 186: 1177–1182.PubMedCrossRefGoogle Scholar
  8. Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hall-mann R, Scheffold A, Radbruch A, Hamann A: P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 1997, 385: 81–83.PubMedCrossRefGoogle Scholar
  9. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J: Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001a, 61: 6451–6458.PubMedGoogle Scholar
  10. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G: Dendritic cells as vectors for therapy. Cell 2001b, 106: 271–274.PubMedCrossRefGoogle Scholar
  11. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392: 245–252.PubMedCrossRefGoogle Scholar
  12. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J.Immunol.Methods 1996, 196: 121–135.PubMedCrossRefGoogle Scholar
  13. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A: In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp.Med. 2000, 191: 1895–1903.PubMedCrossRefGoogle Scholar
  14. Bennett SR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998, 393: 478–480.PubMedCrossRefGoogle Scholar
  15. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK: Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J.Exp.Med. 1997, 186: 1315–1322.PubMedCrossRefGoogle Scholar
  16. Blom B, Ho S, Antonenko S, Liu YJ: Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp.Med. 2000, 192: 1785–1796.PubMedCrossRefGoogle Scholar
  17. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000, 96: 3102–3108.PubMedGoogle Scholar
  18. Burch PA, Breen JK, Buckner JC, Gastineau DA, Kaur JA, Laus RL, Padley DJ, Peshwa MV, Pitot HC, Richardson RL, Smits BJ, Sopapan P, Strang G, Valone FH, Vuk-Pavlovic S: Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin.Cancer Res. 2000, 6: 2175–2182.PubMedGoogle Scholar
  19. Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997, 90: 1458–1470.PubMedGoogle Scholar
  20. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J: CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp.Med. 1996, 184: 695–706.PubMedCrossRefGoogle Scholar
  21. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A: Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997, 388: 782–787.PubMedCrossRefGoogle Scholar
  22. Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A: Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J.Exp.Med. 1999, 189: 821–829.PubMedCrossRefGoogle Scholar
  23. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocka M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM: Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity. 1998, 9: 25–34.PubMedCrossRefGoogle Scholar
  24. Da Silva DM, Eiben GL, Fausch SC, Wakabayashi MT, Rudolf MP, Velders MP, Kast WM: Cervical cancer vaccines: emerging concepts and developments. J Cell Physiol 2001, 186: 169–182.PubMedCrossRefGoogle Scholar
  25. de Baey A, Lanzavecchia A: The role of aquaporins in dendritic cell macropinocytosis. J.Exp.Med. 2000, 191: 743–748.PubMedCrossRefGoogle Scholar
  26. de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga EA, Yazdanbakhsh M, Kapsenberg ML: Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol. 2002, 168: 1704–1709.PubMedGoogle Scholar
  27. Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N: Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin.Invest 2000, 105: R9 - R14.PubMedCrossRefGoogle Scholar
  28. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J.Exp.Med. 2001, 193: 233–238.PubMedCrossRefGoogle Scholar
  29. Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, Donahoe SM, Dunbar PR, Cerundolo V, Nixon DF, Bhardwaj N: Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J.Clin.Invest. 1999, 104: 173–180.PubMedCrossRefGoogle Scholar
  30. Dietz AB, Vuk-Pavlovic S: High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998, 91: 392–398.PubMedGoogle Scholar
  31. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp.Med. 1998, 188: 373–386.PubMedCrossRefGoogle Scholar
  32. Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC, Engelhard VH, Hunt DF, Schreiber H: The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp.Med. 1997, 185: 695–705.PubMedCrossRefGoogle Scholar
  33. Dyall J, Latouche JB, Schnell S, Sadelain M: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001, 97: 114–121.PubMedCrossRefGoogle Scholar
  34. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J: BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol. 2000, 165: 6037–6046.PubMedGoogle Scholar
  35. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ: Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res. 1999, 59: 3340–3345.PubMedGoogle Scholar
  36. Engelmayer J, Larsson M, Lee A, Lee M, Cox WI, Steinman RM, Bhardwaj N: Mature dendritic cells infected with canarypox virus elicit strong anti-human immunodeficiency virus CD8+ and CD4+ T-cell responses from chronically infected individuals. J Virol. 2001, 75: 2142–2153.PubMedCrossRefGoogle Scholar
  37. Engelmayer J, Larsson M, Subklewe M, Chahroudi A, Cox WI, Steinman RM, Bhardwaj N: Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J.Immunol. 1999, 163: 6762–6768.PubMedGoogle Scholar
  38. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C: Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp.Med. 2002, 195: 343–351.PubMedCrossRefGoogle Scholar
  39. Ferlazzo G, Wesa A, Wei WZ, Galy A: Dendritic cells generated either from CD34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells. J Immunol. 1999, 163: 3597–3604.PubMedGoogle Scholar
  40. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L: Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat.Med. 1999, 5: 405–411.PubMedCrossRefGoogle Scholar
  41. Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B: A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 2000, 245: 15–29.PubMedCrossRefGoogle Scholar
  42. Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG: Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol. 2001a, 167: 7150–7156.PubMedGoogle Scholar
  43. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG: Dendritic cells injected via different routes induce immunity in cancer patients. J.Immunol. 2001b, 166: 4254–4259.PubMedGoogle Scholar
  44. Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D: Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol. 2000, 165: 1705–1711.PubMedGoogle Scholar
  45. Hahn S, Gehri R, Erb P: Mechanism and biological significance of CD4-mediated cytotoxicity. Immunol.Rev. 1995, 146: 57–79.PubMedCrossRefGoogle Scholar
  46. Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Ricciardi-Castagnoli P, Goud B, Fridman WH, Johannes L, Tartour E: The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J.Immunol. 2000, 165: 3301–3308.PubMedGoogle Scholar
  47. Henderson RA, Nimgaonkar MT, Watkins SC, Robbins PD, Ball ED, Finn OJ: Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1). Cancer Res. 1996, 56: 3763–3770.PubMedGoogle Scholar
  48. Hermans IF, Ritchie DS, Yang J, Roberts JM, Ronchese F: CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol. 2000, 164: 3095–3101.PubMedGoogle Scholar
  49. Hernando J, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T: Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol.Immunother. 2002, 51: 45–52.PubMedCrossRefGoogle Scholar
  50. Holtl L: CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet. 1998, 352: 1358.PubMedCrossRefGoogle Scholar
  51. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat.Med. 1996, 2: 52–58.PubMedCrossRefGoogle Scholar
  52. Ignatius R, Mahnke K, Rivera M, Hong K, Isdell F, Steinman RM, Pope M, Stamatatos L: Presentation of proteins encapsulated in sterically stabilized liposomes by dendritic cells initiates CD8(+) T-cell responses in vivo. Blood 2000a, 96: 3505–3513.PubMedGoogle Scholar
  53. Ignatius R, Marovich M, Mehlhop E, Villamide L, Mahnke K, Cox WI, Isdell F, Frankel SS, Mascola JR, Steinman RM, Pope M: Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. J Virol. 2000b, 74: 11329–11338.PubMedCrossRefGoogle Scholar
  54. Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, Sousa C, Germain RN, Mellman I, Steinman RM: The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp.Med. 2000, 191: 927–936.PubMedCrossRefGoogle Scholar
  55. Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM: Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J.Exp.Med. 1998, 188: 2163–2173.PubMedCrossRefGoogle Scholar
  56. Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Husain R, Doshi R, Young LS, Mountain A: Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat.Biotechnol. 2000, 18: 1273–1278.PubMedCrossRefGoogle Scholar
  57. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A: Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc.Natl.Acad.Sci.U.S.A 2000, 97: 4760–4765.PubMedCrossRefGoogle Scholar
  58. Jakob T, Walker PS, Krieg AM, von Stebut E, Udey MC, Vogel JC: Bacterial DNA and CpG-containing oligodeoxynucleotides activate cutaneous dendritic cells and induce IL-12 production: implications for the augmentation of Th1 responses. Int.Arch.Allergy Immunol. 1999, 118: 457–461.PubMedCrossRefGoogle Scholar
  59. Jenne L, Arrighi JF, Sauter B, Kern P: Dendritic cells pulsed with unfractionated helminthic proteins to generate antiparasitic cytotoxic T lymphocyte. Parasite Immunol. 2001a, 23: 195–201.PubMedCrossRefGoogle Scholar
  60. Jenne L, Hauser C, Arrighi JF, Saurat JH, Hugin A: Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Therapy 2000, 7: 1575–1583.PubMedCrossRefGoogle Scholar
  61. Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 2001b, 22: 102–107.PubMedCrossRefGoogle Scholar
  62. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995, 375: 151–155.PubMedCrossRefGoogle Scholar
  63. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int.J.Cancer 2001, 93: 243–251.PubMedCrossRefGoogle Scholar
  64. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH: Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur.J.Immunol. 1997, 27: 3135–3142.PubMedCrossRefGoogle Scholar
  65. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH: Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J.Exp.Med. 2000, 192: 1213–1222.PubMedCrossRefGoogle Scholar
  66. Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y: TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp.Med. 2000, 191: 495–502.PubMedCrossRefGoogle Scholar
  67. Kaisho T, Akira S: Critical roles of Toll-like receptors in host defense. Crit Rev.Immunol. 2000, 20: 393–405.PubMedCrossRefGoogle Scholar
  68. Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML: IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol. 1997, 159: 28–35.PubMedGoogle Scholar
  69. Kampgen E, Koch N, Koch F, Stoger P, Heufler C, Schuler G, Romani N: Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc.Natl.Acad.Sci.U.S.A 1991, 88: 3014–3018.PubMedCrossRefGoogle Scholar
  70. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M: CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997, 278: 1626–1629.PubMedCrossRefGoogle Scholar
  71. Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM: The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in v. J Immunol. 1999, 162: 3859–3864.PubMedGoogle Scholar
  72. Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J.Immunol. 1997, 159: 1666–1668.PubMedGoogle Scholar
  73. Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J: Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000, 165: 5713–5719.PubMedGoogle Scholar
  74. Korn EL, Arbuck SG, Pluda JM, Simon R, Kaplan RS, Christian MC: Clinical trial designs for cytostatic agents: are new approaches needed? J Clin.Oncol. 2001, 19: 265–272.PubMedGoogle Scholar
  75. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat.Med. 2000, 6: 332–336.PubMedCrossRefGoogle Scholar
  76. Kukutsch NA, Rossner S, Austyn JM, Schuler G, Lutz MB: Formation and kinetics of MHC class I-ovalbumin peptide complexes on immature and mature murine dendritic cells. J Invest Dermatol. 2000, 115: 449–453.PubMedCrossRefGoogle Scholar
  77. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S: Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol. 1999, 162: 168–175.PubMedGoogle Scholar
  78. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F: Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat.Immunol. 2000, 1: 311–316.PubMedCrossRefGoogle Scholar
  79. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF: Type i inter-ferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001, 14: 461–470.PubMedCrossRefGoogle Scholar
  80. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat.Med. 1999, 5: 677–685.PubMedCrossRefGoogle Scholar
  81. Lim SH, Bailey-Wood R: Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int.J Cancer 1999, 83: 215–222.PubMedCrossRefGoogle Scholar
  82. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R: Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol.Blood Marrow Transplant. 2000, 6: 621–627.PubMedCrossRefGoogle Scholar
  83. Liu YJ: Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001, 106: 259–262.PubMedCrossRefGoogle Scholar
  84. Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM: Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp.Med. 2000, 191: 795–804.PubMedCrossRefGoogle Scholar
  85. Ludewig B, Odermatt B, Ochsenbein AF, Zinkernagel RM, Hengartner H: Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol.Rev. 1999, 169: 45–54.PubMedCrossRefGoogle Scholar
  86. Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M: Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur.J Immunol. 1999, 29: 4037–4042.PubMedCrossRefGoogle Scholar
  87. Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int.J.Cancer 2000.May.;86.(3.):385–392.Google Scholar
  88. Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int.J.Cancer 2000.May. 86: 385–392.Google Scholar
  89. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM: The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol. 2000, 151: 673–684.PubMedCrossRefGoogle Scholar
  90. Mandruzzato S, Brasseur F, Andry G, Boon T, van der BP: A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp.Med. 1997, 186: 785–793.PubMedCrossRefGoogle Scholar
  91. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ: In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000, 96: 878–884.PubMedGoogle Scholar
  92. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp.Med. 2000, 192: 741–754.PubMedCrossRefGoogle Scholar
  93. Mbow ML, Zeidner N, Panella N, Titus RG, Piesman J: Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infect.Immun. 1997, 65: 3386–3390.PubMedGoogle Scholar
  94. Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M, Schumacher TN, Bladergroen BA, Ossendorp F, Kummer JA, Melief CJ, Offringa R: Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp.Med. 2001, 194: 657–667.PubMedCrossRefGoogle Scholar
  95. Mellman I, Steinman RM: Dendritic cells: specialized and regulated antigen processing machines. Cell 2001, 106: 255–258.PubMedCrossRefGoogle Scholar
  96. Miltenyi S, Muller W, Weichel W, Radbruch A: High gradient magnetic cell separation with MACS. Cytometry 1990, 11: 231–238.PubMedCrossRefGoogle Scholar
  97. Moll H, Berberich C: Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 2001, 204: 659–666.PubMedCrossRefGoogle Scholar
  98. Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL, Monsarrat B, Van Velthoven R, Cerottini JC, Boon T, Gairin JE, Van den Eynde BJ: Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity. 2000, 12: 107–117.PubMedCrossRefGoogle Scholar
  99. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK: Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 1999, 59: 56–58.PubMedGoogle Scholar
  100. Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM: Human CD4(+) T lymphocytes consistently respond to the latent Epstein- Barr virus nuclear antigen EBNA1. J Exp.Med. 2000, 191: 1649–1660.PubMedCrossRefGoogle Scholar
  101. Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A: Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201- specific peptides from prostate-specific membrane antigen. Prostate 1996, 29: 371–380.PubMedCrossRefGoogle Scholar
  102. Murphy GP, Tjoa BA, Simmons SJ, Jarisch J, Bowes VA, Ragde H, Rogers M, Elgamal A, Kenny GM, Cobb OE, Ireton RC, Troychak MJ, Salgaller ML, Boynton AL: Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 1999a, 38: 73–78.PubMedCrossRefGoogle Scholar
  103. Murphy GP, Tjoa BA, Simmons SJ, Ragde H, Rogers M, Elgamal A, Kenny GM, Troychak MJ, Salgaller ML, Boynton AL: Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 1999b, 39: 54–59.PubMedCrossRefGoogle Scholar
  104. Murphy GP, Tjoa BA, Simmons SJ, Rogers MK, Kenny GM, Jarisch J: Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients. Prostate 2000, 43: 59–62.PubMedCrossRefGoogle Scholar
  105. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E: Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat.Med. 2000, 6: 1011–1017.PubMedCrossRefGoogle Scholar
  106. Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA: Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T- lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int.J Cancer 1999, 82: 121–124.PubMedCrossRefGoogle Scholar
  107. Nepom GT, Buckner JH, Novak EJ, Reichstetter S, Reijonen H, Gebe J, Wang R, Swanson E, Kwok WW: HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum. 2002, 46: 5–12.PubMedCrossRefGoogle Scholar
  108. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat.Med. 1998, 4: 328–332.PubMedCrossRefGoogle Scholar
  109. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, Ohta A: Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp.Med. 1999, 190: 617–627.PubMedCrossRefGoogle Scholar
  110. Pardoll DM: Cancer vaccines. Nat.Med. 1998, 4: 525–531.PubMedCrossRefGoogle Scholar
  111. Peshwa MV: Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate. 1998, 36: 129–138.PubMedCrossRefGoogle Scholar
  112. Qin Z, Blankenstein T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000, 12: 677–686.PubMedCrossRefGoogle Scholar
  113. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S: Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J.Exp.Med. 1999, 189: 371–380.PubMedCrossRefGoogle Scholar
  114. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R: Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma–a feasibility study. Blood 1999, 93: 2411–2419.PubMedGoogle Scholar
  115. Rescigno M, Borrow P: The host-pathogen interaction: new themes from dendritic cell biology. Cell 2001, 106: 267–270.PubMedCrossRefGoogle Scholar
  116. Ridge JP: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998, 393: 474–478.PubMedCrossRefGoogle Scholar
  117. Rieser C, Ramoner R, Holtl L, Rogatsch H, Papesh C, Stenzl A, Bartsch G, Thurnher M: Mature dendritic cells induce T-helper type-1-dominant immune responses in patients with metastatic renal cell carcinoma. Urol.Int. 1999, 63: 151–159.PubMedCrossRefGoogle Scholar
  118. Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J.Exp.Med. 1995, 182: 389–400.PubMedCrossRefGoogle Scholar
  119. Sallusto F, Lanzavecchia A, Mackay CR: Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 1998a, 19: 568–574.PubMedCrossRefGoogle Scholar
  120. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A: Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur.J Immunol. 1999, 29: 1617–1625.PubMedCrossRefGoogle Scholar
  121. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A: Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur.J Immunol 1998b, 28: 2760–2769.PubMedCrossRefGoogle Scholar
  122. Santin AD, Bellone S, Ravaggi A, Roman JJ, Pecorelli S, Parham GP, Cannon MJ: Induction of tumour-specific CD8(+) cytotoxic T lymphocytes by tumour lysatepulsed autologous dendritic cells in patients with uterine serous papillary cancer. Br.J Cancer 2002, 86: 151–157.PubMedCrossRefGoogle Scholar
  123. Savill J, Fadok V: Corpse clearance defines the meaning of cell death. Nature 2000, 407: 784–788.PubMedCrossRefGoogle Scholar
  124. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions [see comments]. Nature 1998, 393: 480–483.PubMedCrossRefGoogle Scholar
  125. Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, Roder C, Haendle I, Leisgang W, Dunbar R, Cerundolo V, von Den DP, Knop J, Brocker EB, Enk A, Kampgen E, Schuler G: Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J.Immunol. 2000, 165: 3492–3496.PubMedGoogle Scholar
  126. Schuler-Thurner B, Schultz ES, Berger T, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B Fritsch PO, Romani N, Schuler G: Rapid induction of tumor-specific type 1 helper T cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp.Med. 2002.Google Scholar
  127. Schultz ES, Chapiro J, Lurquin C, Claverol S, Burlet-Schiltz O, Warnier G, Russo V, Morel S, Levy F, Boon T, Van den Eynde BJ, van der BP: The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J.Exp.Med. 2002, 195: 391–399.PubMedCrossRefGoogle Scholar
  128. Schultz ES, Lethe B, Cambiaso CL, Van Snick J, Chaux P, Corthals J, Heirman C, Thielemans K, Boon T, van der BP: A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 2000, 60: 6272–6275.PubMedGoogle Scholar
  129. Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, Rea D, Offringa R, Geuze HJ, Melief CJ, Ossendorp F: Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp.Med. 2000, 192: 145–150.PubMedCrossRefGoogle Scholar
  130. Seder RA, Hill AV: Vaccines against intracellular infections requiring cellular immunity. Nature 2000, 406: 793–798.PubMedCrossRefGoogle Scholar
  131. Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB: Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp.Med. 2000, 192: 1249–1260.PubMedCrossRefGoogle Scholar
  132. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH: Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin.Oncol. 2000, 18: 3894–3903.PubMedGoogle Scholar
  133. Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM: Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin.Cancer Res. 2001, 7: 4253–4261.PubMedGoogle Scholar
  134. Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI: NKT cells–conductors of tumor immunity? Curr.Opin.Immunol. 2002, 14: 165–171.PubMedCrossRefGoogle Scholar
  135. Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A: Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol. 1998, 161: 1083–1086.PubMedGoogle Scholar
  136. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur.J Immunol. 1998, 28: 2045–2054.PubMedCrossRefGoogle Scholar
  137. Steinman RM, Turley S, Mellman I, Inaba K: The induction of tolerance by dendritic cells that have captured apoptotic cells. J.Exp.Med. 2000, 191: 411–416.PubMedCrossRefGoogle Scholar
  138. Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A: Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Human Gene Therapy 2000a,In Press.Google Scholar
  139. Strobel I, Krumbholz M, Menke A, Hoffmann E, Dunbar PR, Bender A, Hobom G, Steinkasserer A, Schuler G, Grassmann R: Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Hum.Gene Ther. 2000b, 11: 2207–2218.PubMedCrossRefGoogle Scholar
  140. Subklewe M, Chahroudi A, Schmaljohn A, Kurilla MG, Bhardwaj N, Steinman RM: Induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated, recombinant EBNA-3Avaccinia virus. Blood 1999, 94: 1372–1381.PubMedGoogle Scholar
  141. Takahashi T: Reactivity of autologous CD4+ T lymphocytes against human melanoma. Evidence for a shared melanoma antigen presented by HLA-DR15. J.Immunol. 1995, 154: 772–779.PubMedGoogle Scholar
  142. Takashima A, Morita A: Dendritic cells in genetic immunization. J Leukoc.Biol. 1999, 66: 350–356.PubMedGoogle Scholar
  143. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M: Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp.Med. 2000, 192: 405–412.PubMedCrossRefGoogle Scholar
  144. Tang DC, DeVit M, Johnston SA: Genetic immunization is a simple method for eliciting an immune response. Nature 1992, 356: 152–154.PubMedCrossRefGoogle Scholar
  145. Thomas WD: CD4 T cells kill melanoma cells by mechanisms that are independent of Fas (CD95). Int.J.Cancer. 1998, 75: 384–390.PubMedCrossRefGoogle Scholar
  146. Thurner B, Haendle I, der C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von Den Driesch P, Br, Steinman RM, Enk A, mpgen E, Schuler G: Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific Cytotoxic T Cells and induces regression of some metastases in advanced stage IV melanoma. J.Exp.Med. 1999a, 190: 1669–1678.PubMedCrossRefGoogle Scholar
  147. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G: Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J.Immunol.Methods 1999b, 223: 1–15.PubMedCrossRefGoogle Scholar
  148. Thurnher M, Rieser C, Holtl L, Papesh C, Ramoner R, Bartsch G: Dendritic cell-based immunotherapy of renal cell carcinoma. Urol.Int. 1998, 61: 67–71.PubMedCrossRefGoogle Scholar
  149. Thurnher M, Zelle-Rieser C, Ramoner R, Bartsch G, Holtl L: The disabled dendritic cell. FASEB J 2001, 15: 1054–1061.PubMedCrossRefGoogle Scholar
  150. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002, 99: 1517–1526.PubMedCrossRefGoogle Scholar
  151. Tjoa BA: Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998, 36: 39–44.PubMedCrossRefGoogle Scholar
  152. Toes RE, Ossendorp F, Offringa R, Melief CJ: CD4 T cells and their role in antitumor immune responses. J.Exp.Med. 1999, 189: 753–756.PubMedCrossRefGoogle Scholar
  153. Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M: Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alphagalactosylceramide. J.Immunol. 1999, 163: 2387–2391.PubMedGoogle Scholar
  154. Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ: Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 1999, 400: 73–77.PubMedCrossRefGoogle Scholar
  155. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den EB, Knuth A, Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991, 254: 1643–1647.PubMedCrossRefGoogle Scholar
  156. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN: Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001, 98: 49–56.PubMedCrossRefGoogle Scholar
  157. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E: Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J.Immunol. 1999, 163: 57–61.PubMedGoogle Scholar
  158. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D: A p 16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995, 269: 1281–1284.PubMedCrossRefGoogle Scholar
  159. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat.Med. 2001, 7: 297–303.PubMedCrossRefGoogle Scholar
  160. Worgall S, Kikuchi T, Singh R, Martushova K, Lande L, Crystal RG: Protection against pulmonary infection with Pseudomonas aeruginosa following immunization with P. aeruginosa-pulsed dendritic cells. Infect.Immun. 2001, 69: 4521–4527.PubMedCrossRefGoogle Scholar
  161. You Z, Huang XF, Hester J, Rollins L, Rooney C, Chen SY: Induction of vigorous helper and cytotoxic T cell as well as B cell responses by dendritic cells expressing a modified antigen targeting receptor-mediated internalization pathway. J.Immunol. 2000, 165: 4581–4591.PubMedGoogle Scholar
  162. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL: Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001, 61: 842–847.PubMedGoogle Scholar
  163. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM: Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur.J.Immunol. 1999, 29: 964–972.PubMedCrossRefGoogle Scholar
  164. Zitvogel L, Fernandez N, Lozier A, Wolfers J, Regnault A, Raposo G, Amigorena S: Dendritic cells or their exosomes are effective biotherapies of cancer. Eur.J Cancer 1999, 35 Suppl 3: S36 - S38.Google Scholar
  165. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S: Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat.Med. 1998, 4: 594–600.PubMedCrossRefGoogle Scholar
  166. zur Hausen H: Papillomavirus infections–a major cause of human cancers. Biochim.Biophys.Acta 1996, 1288: F55 - F78.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. G. Berger
    • 1
  • E. S. Schultz
    • 1
  1. 1.Department of DermatologyUniversity of ErlangenErlangenGermany

Personalised recommendations