Infection of Dendritic Cells by Lymphocytic Choriomeningitis Virus

  • N. Sevilla
  • S. Kunz
  • D. McGavern
  • M. B. A. Oldstone
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)


Dendritic cells (DCs) comprise the major antigen-presenting cells (APCs) of the host, uniquely programmed to stimulate immunologically naïve T lymphocytes. Viruses that can target and disorder the function of these cells enjoy a selective advantage. The cellular receptor for lymphocytic choriomeningitis virus (LCMV), Lassa fever virus (LFV), and several other arenaviruses is α-dystroglycan (α-DG). Among cells of the immune system, CD11c+ and DEC-205+ DCs primarily and preferentially express α-DG. By selection, strains and variants of LCMV generated as quasi-species that bind α-DG with high affinity replicate in the majority of CD11c+ and DEC-205+ (>75%) DCs, causing a generalized immunosuppression, and establish a persistent infection. In contrast, viral strains and variants that bind with low affinity to α-DG display minimal replication in CD11c+ and DEC-205+ DCs (<10%), rarely replicate in the white pulp, and generate a robust anti-LCMV CTL response that clears the virus infection. Hence, receptor-virus interaction on DCs in vivo is an essential step in the initiation of virus-induced immunosuppression and viral persistence. Investigation into the mechanism of how virus-infected DCs cause immunosuppression reveals loss of MHC class II surface expression and costimulatory molecules on surface of such DCs. As a consequence DCs are unable to act as APCs, initiate immune responses, and have a defect in migration into the T cell area. These data indicate that LCMV infection influences DC maturation and migration, leading to decreased T cell stimulatory capacity of DCs, events essential for the initiation of immune responses. Because several other viruses known to cause immunosuppression (HIV, measles) interact with DCs, the observations noted here are likely a common selective mechanism by which viruses also are able to evade the host’s immune system.


Human Immunodeficiency Virus Dendritic Cell Cellular Receptor Viral Persistence Lymphocytic Choriomeningitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed R, Hahn C. S, Somasundaram T, Villarete L, Matloubian M, and Strauss J. H. (1991). Molecular basis of organ-specific selection of viral variants during chronic infection. J Virol 65 4242–4247PubMedGoogle Scholar
  2. Ahmed R, and Oldstone M. B. (1988). Organ-specific selection of viral variants during chronic infection. J Exp Med 167 1719–1724PubMedCrossRefGoogle Scholar
  3. Ahmed R, Salmi A, Butler L. D, Chiller J. M, and Oldstone M. B. (1984). Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med 160 521–540Google Scholar
  4. Althage A, Odermatt B, Moskophidis D, Kundig T, Hoffman-Rohrer U, Hengartner H, and Zinkernagel R. M. (1992). Immunosuppression by lymphocytic choriomeningitis virus infection: competent effector T and B cells but impaired antigen presentation. Eur J Immunol 22 1803–1812PubMedCrossRefGoogle Scholar
  5. Austyn J. M, Weinstein D. E, and Steinman R. M. (1988). Clustering with dendritic cells precedes and is essential for T-cell proliferation in a mitogenesis model. Immunology 63 691–696PubMedGoogle Scholar
  6. Banchereau J, and Steinman R. M. (1998). Dendritic cells and the control of immunity. Nature 392 245–252PubMedCrossRefGoogle Scholar
  7. Borrow P, Evans C. F, and Oldstone M. B. (1995). Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69 1059–1070PubMedGoogle Scholar
  8. Borrow P, and Oldstone M. B. (1992). Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus. J Virol 66 7270–7281PubMedGoogle Scholar
  9. Borrow P, and Oldstone M. B. (1997). Lymphocytic choriomeningitis virus. Viral pathogenesis N Nathanson et al Eds Lippincott-Raven Publishers Philadelphia 593–627Google Scholar
  10. Borrow P, and Shaw G. M. (1998). Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo? Immunol Rev 164 37–51PubMedCrossRefGoogle Scholar
  11. Borrow P, Tishon A, and Oldstone M. B. (1991). Infection of lymphocytes by a virus that aborts cytotoxic T lymphocyte activity and establishes persistent infection. J Exp Med 174 203–212PubMedCrossRefGoogle Scholar
  12. Buchmeier M. J, and Oldstone M. B. (1979). Protein structure of lymphocytic choriomeningitis virus: evidence for a cell-associated precursor of the virion glycopeptides. Virology 99 111–120PubMedCrossRefGoogle Scholar
  13. Buckley S. M, Casals J, and Downs W. G. (1970). Isolation and antigenic characterization of Lassa virus. Nature 227 174PubMedCrossRefGoogle Scholar
  14. Cao W, Henry M. D, Borrow P, Yamada H, Elder J. H, Ravkov E. V, Nichol S. T, Compans R. W, Campbell K. P, and Oldstone M. B. (1998). Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282 2079–2081PubMedCrossRefGoogle Scholar
  15. Cavaldesi M, Macchia G, Barca S, Defilippi P, Tarone G, and Petrucci T. C. (1999). Association of the dystroglycan complex isolated from bovine brain synaptosomes with proteins involved in signal transduction. J Neurochem 72 1648–1655PubMedCrossRefGoogle Scholar
  16. Chambers B. J, Salcedo M, and Ljunggren H. G. (1996). Triggering of natural killercells by the costimulatory molecule CD80 (B7–1). Immunity 5 311–317PubMedCrossRefGoogle Scholar
  17. Dockter J, Evans C. F, Tishon A, and Oldstone M. B. (1996). Competitive selection inGoogle Scholar
  18. vivo by a cell for one variant over another: implications for RNA virus quasis-Google Scholar
  19. pecies in vivo. J Virol 70 1799–1803Google Scholar
  20. Durbeej M, Henry M. D, Ferletta M, Campbell K. P, and Ekblom P. (1998). Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem 46 449–457PubMedCrossRefGoogle Scholar
  21. Ervasti J. M, and Campbell K. P. (1991). Membrane organization of the dystrophinglycoprotein complex. Cell 66 1121–1131PubMedCrossRefGoogle Scholar
  22. Ervasti J. M, and Campbell K. P. (1993). Dystrophin and the membrane skeleton. Curr Opin Cell Biol 5 82–87PubMedCrossRefGoogle Scholar
  23. Evans C. F, Borrow P, de la Torre J. C, and Oldstone M. B. (1994). Virus-induced immunosuppression: kinetic analysis of the selection of a mutation associated with viral persistence. J Virol 68 7367–7373PubMedGoogle Scholar
  24. Gee S. H, Montanaro F, Lindenbaum M. H, and Carbonetto S. (1994). Dystroglycanalpha a dystrophin-associated glycoprotein is a functional agrin receptor. Cell 77 675–686PubMedCrossRefGoogle Scholar
  25. Hazenberg M. D, Hamann D, Schuitemaker H, and Miedema F. (2000). T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 1 285– 289Google Scholar
  26. Henry M. D, and Campbell K. P. (1998). A role for dystroglycan in basement membrane assembly. Cell 95 859–870PubMedCrossRefGoogle Scholar
  27. Henry M. D, and Campbell K. P. (1999). Dystroglycan inside and out. Curr Opin Cell Biol 11602–607Google Scholar
  28. Ibraghimov-Beskrovnaya O, Ervasti J. M, Leveille C. J, Slaughter C. A, Sernett S. W, and Campbell K. P. (1992). Primary structure of dystrophin-associated glycopro- teins linking dystrophin to the extracellular matrix. Nature 355 696–702PubMedCrossRefGoogle Scholar
  29. Ibrahim M. A, Chain B. M, and Katz D. R. (1995). The injured cell: the role of the dendritic cell system as a sentinel receptor pathway. Immunol Today 16 181–186PubMedCrossRefGoogle Scholar
  30. Jaspars L. H, Bloemena E, Bonnet P, Van der Valk P, and Meijer C. J. (1995). Distribution of extracellular matrix components and their receptors in human lymphoid tissue and B-cell non-Hodgkin lymphomas. Histopathology 26 113–121PubMedCrossRefGoogle Scholar
  31. Jung D, Yang B, Meyer J, Chamberlain J. S, and Campbell K. P. (1995). Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 270 27305–27310PubMedCrossRefGoogle Scholar
  32. Kramer R. H, Rosen S. D, and McDonald K. A. (1988). Basement-membrane components associated with the extracellular matrix of the lymph node. Cell Tissue Res 252367–375Google Scholar
  33. Kuchroo V. K, Das M. P, Brown J. A, Ranger A. M, Zamvil S. S, Sobel R. A, Weiner H. L, Nabavi N, and Glimcher L. H. (1995). B7–1 and B7–2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80 707–718PubMedCrossRefGoogle Scholar
  34. Kunz S, Sevilla N, McGavern D. B, Campbell K. P, and Oldstone M. B. (2001). Molecular analysis of the interaction of LCMV with its cellular receptor [alpha]-dystroglycan. J Cell Biol 155 301–310PubMedCrossRefGoogle Scholar
  35. Lieberman J, Shankar P, Manjunath N, and Andersson J. (2001). Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98 1667–1677PubMedCrossRefGoogle Scholar
  36. Macatonia S. E, Hosken N. A, Litton M, Vieira P, Hsieh C. S, Culpepper J. A, Wysocka M, Trinchieri G, Murphy K. M, and O’Garra A. (1995). Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154 5071–5079PubMedGoogle Scholar
  37. Matloubian M, Kolhekar S. R, Somasundaram T, and Ahmed R. (1993). Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol 67 7340–7349PubMedGoogle Scholar
  38. McMichael A. J, and Rowland-Jones S. L. (2001). Cellular immune responses to HIV. Nature 410 980–987PubMedCrossRefGoogle Scholar
  39. Odermatt B, Eppler M, Leist T. P, Hengartner H, and Zinkernagel R. M. (1991). Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc Natl Acad Sci USA 88 8252–8256PubMedCrossRefGoogle Scholar
  40. Ohshima Y, and Delespesse G. (1997). T cell-derived IL-4 and dendritic cell-derived IL-12 regulate the lymphokine-producing phenotype of alloantigen-primed naive human CD4 T cells. J Immunol 158 629–636PubMedGoogle Scholar
  41. Oldstone M. B. (1989). Viral persistence. Cell 56 517–520PubMedCrossRefGoogle Scholar
  42. Oxenius A, Karrer U, Zinkernagel R. M, and Hengartner H. (1999). IL-12 is not required for induction of type 1 cytokine responses in viral infections. J Immunol 162965–973Google Scholar
  43. Parekh B. S, and Buchmeier M. J. (1986). Proteins of lymphocytic choriomeningitis virus: antigenic topography of the viral glycoproteins. Virology 153 168–178 Patterson J. B, Manchester M, and Oldstone M. B. (2001). Disease model: dissecting the pathogenesis of the measles virus. Trends Mol Med 7 85–88Google Scholar
  44. Peters C. J, Buchmeier M. J, Rollin P. E, and Kisiazek T. G. (1996). Arenavirus. DM Knipe BN Fields and PM Howlley (ed) Fields Virology 3rd edition Lippincott-Raven Publishers Philadelphia 2 1521–1551Google Scholar
  45. Rescigno M, Granucci F, and Ricciardi-Castagnoli P. (1999). Dendritic cells at the end of the millennium. Immunol Cell Biol 77 404–410PubMedCrossRefGoogle Scholar
  46. Riviere Y, Ahmed R, Southern P. J, Buchmeier M. J, Dutko F. J, and Oldstone M. B. (1985). The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J Virol 53 966–968PubMedGoogle Scholar
  47. Rodriguez M, Buchmeier M. J, Oldstone M. B, and Lampert P. W. (1983). Ultrastructural localization of viral antigens in the CNS of mice persistently infected with lymphocytic choriomeningitis virus ( LCMV ). Am J Pathol 110 95–100Google Scholar
  48. Salvato M, Borrow P, Shimomaye E, and Oldstone M. B. (1991). Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol 65 1863–1869PubMedGoogle Scholar
  49. Salvato M. S, and Shimomaye E. M. (1989). The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173 1–10PubMedCrossRefGoogle Scholar
  50. Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell K. P, de La Torre J. C, and Oldstone M. B. (2000). Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192 1249–1260PubMedCrossRefGoogle Scholar
  51. Singh M. K, Fuller-Pace F. V, Buchmeier M. J, and Southern P. J. (1987). Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus. Virology 161448–456Google Scholar
  52. Smelt S. C, Borrow P, Kunz S, Cao W, Tishon A, Lewicki H, Campbell K. P, and Old-stone M. B. (2001). Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor alpha-dystroglycan correlate with viral tropism and disease kinetics. J Virol 75 448–457PubMedCrossRefGoogle Scholar
  53. Southern P. J. (1996). Arenaviridae: the viruses and their replication. DM Knipe BN Fields and PM Howlley (ed) Fields Virology 3rd edition Lippincott-Raven Publishers Philadelphia 2 1505–1551Google Scholar
  54. Southern P. J, Singh M. K, Riviere Y, Jacoby D. R, Buchmeier M. J, and Oldstone M. B. (1987). Molecular characterization of the genomic S RNA segment from lymphocytic choriomeningitis virus. Virology 157 145–155PubMedCrossRefGoogle Scholar
  55. Steinman R. M. (1991). The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9 271–296PubMedCrossRefGoogle Scholar
  56. Steinman R. M, Pack M, and Inaba K. (1997). Dendritic cells in the T-cell areas of lymphoid organs. Immunol Rev 156 25–37PubMedCrossRefGoogle Scholar
  57. Sykulev Y, Joo M, Vturina I, Tsomides T. J, and Eisen H. N. (1996). Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4 565–571PubMedCrossRefGoogle Scholar
  58. Talts J. F, Andac Z, Gohring W, Brancaccio A, and Timpl R. (1999). Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin sulfatides alpha-dystroglycan and several extracellular matrix proteins. EMBO J 18 863–870PubMedCrossRefGoogle Scholar
  59. Tishon A, Borrow P, Evans C, and Oldstone M. B. (1993). Virus-induced immunosuppression. 1. Age at infection relates to a selective or generalized defect. Virology 195 397–405Google Scholar
  60. Tishon A, Southern P. J, and Oldstone M. B. (1988). Virus-lymphocyte interactions. II. Expression of viral sequences during the course of persistent lymphocytic choriomeningitis virus infection and their localization to the L3T4 lymphocyte subset. J Immunol 140 1280–1284PubMedGoogle Scholar
  61. Tortorella D, Gewurz B. E, Furman M. H, Schust D. J, and Ploegh H. L. (2000). Viral subversion of the immune system. Annu Rev Immunol 18 861–926PubMedCrossRefGoogle Scholar
  62. van den Berg T. K, van der Ende M, Dopp E. A, Kraal G, and Dijkstra C. D. (1993). Localization of beta 1 integrins and their extracellular ligands in human lymphoid tissues. Am J Pathol 143 1098–1110PubMedGoogle Scholar
  63. Villarete L, Somasundaram T, and Ahmed R. (1994). Tissue-mediated selection of viral variants: correlation between glycoprotein mutation and growth in neuronal cells. J Virol 68 7490–7496PubMedGoogle Scholar
  64. Webb L. M, and Feldmann M. (1995). Critical role of CD28/B7 costimulation in the development of human Th2 cytokine-producing cells. Blood 86 3479–3486PubMedGoogle Scholar
  65. Williamson R. A, Henry M. D, Daniels K. J, Hrstka R. F, Lee J. C, Sunada Y, Ibraghimov-Beskrovnaya O, and Campbell K. P. (1997). Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum Mol Genet 6 831–841PubMedCrossRefGoogle Scholar
  66. Winder S. J. (2001). The complexities of dystroglycan. Trends Biochem Sci 26 118– 124Google Scholar
  67. Wright K. E, Spiro R. C, Burns J. W, and Buchmeier M. J. (1990). Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus. Virology 177175–183Google Scholar
  68. Yang B, Jung D, Motto D, Meyer J, Koretzky G, and Campbell K. P. (1995). SH3 domain-mediated interaction of dystroglycan and Grb2. J Biol Chem 270 11711– 11714Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • N. Sevilla
    • 1
  • S. Kunz
    • 1
  • D. McGavern
    • 1
  • M. B. A. Oldstone
    • 1
  1. 1.Department of Neuropharmacology, Division of VirologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations