Skip to main content

Contrasting Roles of Dendritic Cells and B Cells in the Immune Control of Epstein-Barr Virus

  • Chapter
Dendritic Cells and Virus Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 276))

Abstract

The human γ-herpesvirus, Epstein-Barr virus (EBV), has growth-transforming potential in vivo and in vitro. Despite this, most healthy carriers remain free of EBV-associated malignancies because of effective T cell-mediated immune control of the virus. A better understanding of these highly efficient control mechanisms is important in the development of new treatment strategies for EBV-associated malignancies.

A rational approach to EBV immunotherapy requires answering two questions about the initiation of the protective EBV-specific immune response. The first question is, what is the antigen-presenting cell responsible for priming EBV specific immunity? Second, which viral antigen is central to protective EBV adaptive immunity seen in healthy carriers of the virus?

We provide evidence in this review that dendritic cells rather than EBV-transformed B cells are responsible for orchestrating protective EBV immunity and that the EBV nuclear antigen 1 (EBNA1)-specific CD4+ T cell response probably plays a role in resistance against all types of EBV-associated malignancies in healthy carriers. This implies that EBNA1 targeting to dendritic cells should be a component of vaccine and immunotherapy development against EBV-associated malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert M. L, Pearce S. F. A, Francisco L. M, Sauter B, Roy P, Silverstein R. L, and Bhardwaj N. (1998). Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36 and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188 1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Arulanandam B. P, Mittler J. N, Lee W. T, O’Toole M, and Metzger D. W. (2000). Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J Immunol 164 3698–704

    PubMed  CAS  Google Scholar 

  • Babcock G. J, Decker L. L, Volk M, and Thorley-Lawson D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9 395–404

    Article  PubMed  CAS  Google Scholar 

  • Babcock G. J, Hochberg D, and Thorley-Lawson A. D. (2000). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13 497–506

    Article  PubMed  CAS  Google Scholar 

  • Babcock G. J, and Thorley-Lawson D. A. (2000). Tonsillar memory B cells latently infected with Epstein-Barr virus express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci USA 97 12250–5

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, and Steinman R. M. (1998). Dendritic cells and the control of immunity. Nature 392 245–52

    Article  PubMed  CAS  Google Scholar 

  • Bancroft A. J, Else K. J, Sypek J. P, and Grencis R. K. (1997). Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol 27 866–70

    Article  PubMed  CAS  Google Scholar 

  • Bennett S. R. M, Carbone F. R, Karamalis F, Flavell R. A, Miller J. F. A. P, and Heath W. R. (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393 478–480

    Article  PubMed  CAS  Google Scholar 

  • Bickham K, Miinz C, Tsang M. L, Larsson M, Fonteneau J. F, Bhardwaj N, and Steinman R. (2001). EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J Clin Invest 107 121–30

    Article  PubMed  CAS  Google Scholar 

  • Biggar R. J, Henle G, Bocker J, Lennette E. T, Fleisher G, and Henle W. (1978). Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer 22 244–50

    Google Scholar 

  • Blackwell N. M, and Else K. J. (2001). B cells and antibodies are required for resistance to the parasitic gastrointestinal nematode Trichuris muris. Infect Immun 69 3860–8

    Article  PubMed  CAS  Google Scholar 

  • Blake N, Haigh T, Shaka’a G, Croom-Carter D, and Rickinson A. (2000). The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165 7078–87

    PubMed  CAS  Google Scholar 

  • Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla M. G, Frappier L, and Rickinson A. (1997). Human CD8+ Tcell responses to EBV EBNA1: HLA class I presentation of the ( Gly-Ala)-containing protein requires exogenous processing. Immunity 7 791–802

    Google Scholar 

  • Bohlen H, Kessler M, Sextro M, Diehl V, and Tesch H. (2000). Poor clinical outcome of patients with Hodgkin’s disease and elevated interleukin-10 serum levels. Clinical significance of interleukin-10 serum levels for Hodgkin’s disease. Ann Hematol 79 110–3

    Article  PubMed  CAS  Google Scholar 

  • Brown D. R, and Reiner S. L. (1999). Polarized helper-T-cell responses against Leishmania major in the absence of B cells. Infect Immun 67 266–70

    PubMed  CAS  Google Scholar 

  • Burkitt D. (1962). A children’s cancer dependent on climatic factors. Nature 194 232–234

    Article  PubMed  CAS  Google Scholar 

  • Cardin R. D, Brooks J. W, Sarawar S. R, and Doherty P. C. (1996). Progressive loss of CD8+ T cell-mediated control of gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184 863–871

    Article  PubMed  CAS  Google Scholar 

  • Caux C, Vanbervliet B, Massacrier C, Azuma M, Okumura K, Lanier L. L, and Banchereau J. (1994). B70/B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 180 1841–1847

    Article  PubMed  CAS  Google Scholar 

  • Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, and Alber G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184 747–752

    Google Scholar 

  • Chan S. H, and Chew T. S. (1981). Lack of regression in Epstein-Barr virus infected leucocyte cultures of nasopharyngeal carcinoma patients. Lancet 2 1353

    Article  PubMed  CAS  Google Scholar 

  • Deacon E. M, Pallesen G, Niedobitek G, Crocker J, Brooks L, Rickinson A. B, and Young L. S. (1993). Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177 339–49

    Article  PubMed  CAS  Google Scholar 

  • de Schryver A, Friberg S, Jr, Klein G, Henle W, Henle G, De-The G, Clifford P, and Ho H. C. (1969). Epstein-Barr virus-associated antibody patterns in carcinoma of the post-nasal space. Clin Exp Immunol 5 443–59

    PubMed  Google Scholar 

  • de-The G, Geser A, Day N. E, Tukei P. M, Williams E. H, Beri D. P, Smith P. G, Dean A. G, Bronkamm G. W, Feorino P, and Henle W. (1978). Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274 756–61

    Article  PubMed  CAS  Google Scholar 

  • Else K. J, Finkelman F. D, Maliszewski C. R, and Grencis R. K. (1994). Cytokine-me- diated regulation of chronic intestinal helminth infection. J Exp Med 179 347–51

    Article  PubMed  CAS  Google Scholar 

  • Else K. J, and Grencis R. K. (1996). Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infect Immun 64 2950–4

    PubMed  CAS  Google Scholar 

  • Fahraeus R, Fu H. L, Ernberg I, Finke J, Rowe M, Klein G, Falk K, Nilsson E, Yadav M, Busson P, et al. (1988). Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42 329–38

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Semino C, Spaggiari G. M, Meta M, Mingari M. C, and Melioli G. (2000). Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 12 1741–7

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Tsang M. L, Moretta A, Melioli G, Steinman R. M, and Miinz C. (2002) Human dendritic cells activate resting NK cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195 343–351

    Article  PubMed  CAS  Google Scholar 

  • Fernandez N. C, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, and Zitvogel L. (1999). Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5 405–11

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman J. A, and Cebra J. J. (1981). Special features of the priming process for a secretory IgA response. B cell priming with cholera toxin. J Exp Med 153 534–44

    Google Scholar 

  • Good M. F, and Doolan D. L. (1999). Immune effector mechanisms in malaria. Curr Opin Immunol 11412–9

    Google Scholar 

  • Hahn S, Gehri R, and Erb P. (1995). Mechanism and biological significance of CD4- mediated cytotoxicity. Immunol Rev 146 57–79

    Article  PubMed  CAS  Google Scholar 

  • Harris R. S, Croom-Carter D. S, Rickinson A. B, and Neuberger M. S. (2001). Epstein-Barr virus and the somatic hypermutation of immunoglobulin genes in Burkitt’s lymphoma cells. J Virol 75 10488–92

    Article  PubMed  CAS  Google Scholar 

  • Henle G, and Henle W. (1976). Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17 1–7

    Article  PubMed  CAS  Google Scholar 

  • Henle W, Henle G, Ho H. C, Burtin P, Cachin Y, Clifford P, de Schryver A, de-The G, Diehl V, and Klein G. (1970). Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma other head and neck neoplasms and control groups. J Natl Cancer Inst 44225–31

    Google Scholar 

  • Herbst H, Foss H. D, Samol J, Araujo I, Klotzbach H, Krause H, Agathanggelou A, Niedobitek G, and Stein H. (1996). Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 87 2918–29

    PubMed  CAS  Google Scholar 

  • Herr W, Ranieri E, Olson W, Zarour H, Gesualdo L, and Storkus W. J. (2000). Mature dendritic cells pulsed with freeze-thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood 96 1857–64

    PubMed  CAS  Google Scholar 

  • Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, and Steinman R. M. (1997). High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from lymph node. J Exp Med 186 665–672

    Article  PubMed  CAS  Google Scholar 

  • Inaba K, Witmer-Pack M, Inaba M, Hathcock K. S, Sakuta H, Azuma M, Yagita H, Okumura K, Linsley P. S, Ikehara S, et al. (1994). The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 180 1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Jarrett R. F, Gallagher A, Jones D. B, Alexander F. E, Krajewski A. S, Kelsey A, Adams J, Angus B, Gledhill S, Wright D. H, et al. (1991). Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44 844–8

    Article  PubMed  CAS  Google Scholar 

  • Jenkins M. K, Khoruts A, Ingulli E, Mueller D. L, McSorley S. J, Reinhardt R. L, Itano A, and Pape K. A. (2001). In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 19 23–45

    Article  PubMed  CAS  Google Scholar 

  • Joseph A. M, Babcock G. J, and Thorley-Lawson D. A. (2000). Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J Virol 74 9964–71

    Article  PubMed  CAS  Google Scholar 

  • Kapp U, Yeh W. C, Patterson B, Elia A. J, Kagi D, Ho A, Hessel A, Tipsword M, Williams A, Mirtsos C, et al. (1999). Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 189 1939–46

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, and Burrows S. R. (2000). Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54 19–48

    Article  PubMed  CAS  Google Scholar 

  • Kieff E, and Rickinson A.B. (2001). Epstein-Barr virus and its replication. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven Publishers) pp. 2511–2573

    Google Scholar 

  • Koch F, Stanzl U, Jennewien P, Janke K, Heufler C, Kämpgen E, Romani N, and Schuler G. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184 741–746

    Article  PubMed  CAS  Google Scholar 

  • Koch F, Trockenbacher B, Kämpgen E, Grauer O, Stössel H, Livingstone A. M, Schuler G, and Romani N. (1995). Antigen processing in populations of mature murine dendritic cells is caused by subsets of incompletely matured cells. J Immunol 155 93–100

    PubMed  CAS  Google Scholar 

  • Küppers R, Klein U, Hansmann M. L, and Rajewsky K. (1999). Cellular origin of human B-cell lymphomas. N Engl J Med 341 1520–9

    Article  PubMed  Google Scholar 

  • Küppers R, and Rajewsky K. (1998). The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 16 471–93

    Article  PubMed  Google Scholar 

  • Kurth J, Spieker T, Wustrow J, Strickler G. J, Hansmann L. M, Rajewsky K, and Küppers R. (2000). EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13 485–95

    Article  PubMed  CAS  Google Scholar 

  • Kurzrock R. (1997). Cytokine deregulation in hematological malignancies: clinical and biological implications. Clin Cancer Res 3 2581–4

    PubMed  CAS  Google Scholar 

  • Langhorne J, Cross C, Seixas E, Li C, and von der Weid T. (1998). A role for B cells in the development of T cell helper function in a malaria infection in mice. Proc Natl Acad Sci USA 95 1730–4

    Article  PubMed  CAS  Google Scholar 

  • Larsen C. P, Ritchie S. C, Hendrix R, Linsley P. S, Hathcock R. J, Lowry R. P, and Pearson T. C. (1994). Regulation of immunostimulatory function and costimulatory molecule [B7–1 and B7–2] expression on murine dendritic cells. J Immunol 152 5208–5219

    PubMed  CAS  Google Scholar 

  • Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, and Blake N. (2001). Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J Virol 75 8649–59

    Article  PubMed  CAS  Google Scholar 

  • Levine A. M. (1992). Acquired immunodeficiency syndrome-related lymphoma. Blood 80 8–20

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen P. M, Klein G, Kurilla M. G, and Masucci M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375 685–688

    Article  PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, and Masucci M. G. (1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94 12616–21

    Article  PubMed  CAS  Google Scholar 

  • Lin J. C, Smith M. C, and Pagano J. S. (1984). Prolonged inhibitory effect of 9-(13- dihydroxy-2-propoxymethyl) guanine against replication of Epstein-Barr virus. J Virol 50 50–5

    PubMed  CAS  Google Scholar 

  • Linton P. J, Harbertson J, and Bradley L. M. (2000). A critical role for B cells in the development of memory CD4 cells. J Immunol 165 5558–65

    PubMed  CAS  Google Scholar 

  • Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thiele-mans K, Leo O, Urbain J, and Moser M. (1999). CD8a+ and CD8a-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189587–592

    Google Scholar 

  • Maloy K. J, Burkhart C, Junt T. M, Odermatt B, Oxenius A, Piali L, Zinkernagel R. M, and Hengartner H. (2000). CD4+ T cell subsets during virus infection: protective capacity depends on effector cytokine secretion and on migratory capability. J Exp Med 1912159

    Google Scholar 

  • Moretta A, Comoli P, Montagna D, Gasparoni A, Percivalle E, Carena I, Revello M. G, Gerna G, Mingrat G, Locatelli F, et al. (1997). High frequency of Epstein-Barr virus (EBV) lymphoblastoid cell line-reactive lymphocytes in cord blood: evaluation of cytolytic activity and IL-2 production. Clin Exp Immunol 107 312–20

    Article  PubMed  CAS  Google Scholar 

  • Moss D. J, Chan S. H, Burrows S. R, Chew T. S, Kane R. G, Staples J. A, and Kunaratnam N. (1983). Epstein-Barr virus specific T-cell response in nasopharyngeal carcinoma patients. Int J Cancer 32 301–5

    Article  PubMed  CAS  Google Scholar 

  • Miinz C, Bickham K. L, Subklewe M, Tsang M. L, Chahroudi A, Kurilla M. G, Zhang D, O’Donnell M, and Steinman R. M. (2000). Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr Virus nuclear antigen EBNA1. J Exp Med 191 1649–1660

    Article  Google Scholar 

  • Murphy K. M, Ouyang W, Farrar J. D, Yang J, Ranganath S, Asnagli H, Afkarian M, and Murphy T. L. (2000). Signaling and transcription in T helper development. Annu Rev Immunol 18 451–94

    Article  PubMed  CAS  Google Scholar 

  • Murray R. J, Kurilla M. G, Brooks J. M, Thomas W. A, Rowe M, Kieff E, and Rickinson A. B. (1992). Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176 157–68

    Article  PubMed  CAS  Google Scholar 

  • Nikiforow S, Bottomly K, and Miller G. (2001). CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 75 3740–52

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, and Ohta A. (1999). Distinct roles of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190 617–628

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, and Murphy K. (1994). Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6 458–66

    Article  PubMed  Google Scholar 

  • Orange J. S, and Biron C. A. (1996). An absolute and restricted requirement for IL-12 in natural killer cell IFN-y production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156 1138–42

    Google Scholar 

  • Orange J. S, Wang B, Terhorst C, and Biron C. A. (1995). Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182 1045–56

    Article  PubMed  CAS  Google Scholar 

  • Pallesen G, Hamilton-Dutoit S. J, and Zhou X. (1993). The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin’s disease: two new developments in the EBV field. Adv Cancer Res 62 179–239

    Article  PubMed  CAS  Google Scholar 

  • Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, Ochs H. D, Wolf H, Bonnefoy J. Y, Biassoni R, et al. (2000). X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192 337–46

    Article  PubMed  CAS  Google Scholar 

  • Purtilo D. T, Cassel C, and Yang J. P. (1974). Letter: Fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med 291 736

    Google Scholar 

  • Rajnavölgyi E, Nagy N, Thuresson B, Dosztanyi Z, Simon A, Simon I, Karr R. W, Ernberg I, Klein E, and Falk K. I. (2000). A repetitive sequence of Epstein-Barr virus nuclear antigen 6 comprises overlapping T cell epitopes which induce HLADR-restricted CD4+ T lymphocytes. Int Immunol 12 281–93

    Article  PubMed  Google Scholar 

  • Redchenko I. V, and Rickinson A. B. (1999). Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J Virol 73 334–42

    PubMed  CAS  Google Scholar 

  • Rentenaar R. J, Gamadia L. E, van DerHoek N, van Diepen F. N, Boom R, Weel J. F, Wertheim-Van Dillen P. M, van Lier R. A, and ten Berge I. J. (2000). Development of virus-specific CD4+ T cells during primary cytomegalovirus infection. J Clin Invest 105 541–8

    Article  PubMed  CAS  Google Scholar 

  • Rickinson A. B, and Kieff E. (2001). Epstein-Barr virus. In Fields Virology P. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2575–2627

    Google Scholar 

  • Ridge J. P, Di Rosa F, and Matzinger P. (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T helper and a T-killer cell. Nature 393 474–478

    Article  PubMed  CAS  Google Scholar 

  • Riley E. M. (1999). Is T-cell priming required for initiation of pathology in malaria infections? Immunol Today 20 228–33

    Article  PubMed  CAS  Google Scholar 

  • Roizman B, and Pellett P. E. (2001). The Family Herpesviridae: A Brief Introduction. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2301–2307

    Google Scholar 

  • Roizman B, and Knipe D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2399–2459

    Google Scholar 

  • Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone A. M, Fathman C. G, Inaba K, and Steinman R. M. (1989). Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature epidermal Langerhans cells. J Exp Med 169 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A, and Mackay C. R. (1998). Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19 568–74

    Article  PubMed  CAS  Google Scholar 

  • Sam C. K, Prasad U, and Pathmanathan R. (1989). Serological markers in the diagnosis of histopathological types of nasopharyngeal carcinoma. Eur J Surg Oncol 15 357–60

    PubMed  CAS  Google Scholar 

  • Sarris A. H, Kliche K. O, Pethambaram P, Preti A, Tucker S, Jackow C, Messina O, Pugh W, Hagemeister F. B, McLaughlin P, et al. (1999). Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann Oncol 10 433–40

    Article  PubMed  CAS  Google Scholar 

  • Schoenberger S. P, Toes R. E. M, van der Voort E. I. H, Offringa R, and Melief C. J. M. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393 480–483

    Article  PubMed  CAS  Google Scholar 

  • Schulz T. F, Boshoff C. H, and Weiss R. A. (1996). HIV infection and neoplasia. Lancet 348 587–91

    Article  PubMed  CAS  Google Scholar 

  • Sheldon P. J, Hemsted E. H, Papamichail M, and Holborow E. J. (1973). Thymic origin of atypical lymphoid cells in infectious mononucleosis. Lancet 1 1153–5

    Article  PubMed  CAS  Google Scholar 

  • Shibata D, Weiss L. M, Hernandez A. M, Nathwani B. N, Bernstein L, and Levine A. M. (1993). Epstein-Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood 812102–9

    Google Scholar 

  • Silins S. L, Sherritt M. A, Silleri J. M, Cross S. M, Elliott S. L, Bharadwaj M, Le T. T, Morrison L. E, Khanna R, Moss D. J, et al. (2001). Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood 98 3739–3744

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald-Mullen P, Kurilla M. G, and Braciale T. J. (2000). Type 2 cytokines predominate in the human CD4+ T-lymphocyte response to Epstein-Barr virus nuclear antigen 1. J Virol 74 6748–59

    Article  PubMed  CAS  Google Scholar 

  • Steven N. M, Leese A. M, Annels N. E, Lee S. P, and Rickinson A. B. (1996). Epitope focusing in the primary cytotoxic T cell response to Epstein- Barr virus and its relationship to T cell memory. J Exp Med 184 1801–13

    Article  PubMed  CAS  Google Scholar 

  • Subklewe M, Chahroudi A, Bickham K, Larsson M, Kurilla M. G, Bhardwaj N, and Steinman R. M. (1999a). Presentation of Epstein-Barr virus latency antigens to CD8+ interferon-y-secreting T lymphocytes. Eur J Immunol 29 3995–4001

    Article  PubMed  CAS  Google Scholar 

  • Subklewe M, Chahroudi A, Schmaljohn A, Kurilla M. G, Bhardwaj N, and Steinman R. M. (1999b). Induction of Epstein-Barr Virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated recombinant EBNA-3A vaccinia virus. Blood 94 1372–1381

    PubMed  CAS  Google Scholar 

  • Subklewe M, Paludan C, Tsang M. L, Mahnke K, Steinman R. M, and Miinz C. (2001). Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand tumor-reactive CD8+ killer T cells. J Exp Med 193405–11

    Google Scholar 

  • Thorley-Lawson D. A. (2001). Epstein-Barr virus: exploiting the immune system Nat Rev Immunol 175–82

    Google Scholar 

  • Urban B. C, Ferguson D. J, Pain A, Willcox N, Plebanski M, Austyn J. M, and Roberts D. J. (1999). Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400 73–7

    Article  PubMed  CAS  Google Scholar 

  • Viviani S, Notti P, Bonfante V, Verderio P, Valagussa P, and Bonadonna G. (2000). Elevated pretreatment serum levels of Il-10 are associated with a poor prognosis in Hodgkin’s disease the Milan Cancer Institute Experience. Med Oncol 17 59–63

    Article  PubMed  CAS  Google Scholar 

  • von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann M. L, Diehl V, and Georgii A. (2000). Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease allowing for known prognostic factors. Blood 95 1207–13

    PubMed  CAS  Google Scholar 

  • Whittle H. C, Brown J, Marsh K, Greenwood B. M, Seidelin P, Tighe H, and Wedderburn L. (1984). T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312 449–50

    Article  PubMed  CAS  Google Scholar 

  • Wright D. H. (1999). What is Burkitt’s lymphoma and when is it endemic? Blood 93 758

    PubMed  CAS  Google Scholar 

  • Young L. S, Dawson C. W, Clark D, Rupani H, Busson P, Tursz T, Johnson A, and Rickinson A. B. (1988). Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 1051–65

    Article  PubMed  CAS  Google Scholar 

  • Zajac A. J, Blattman J. N, Murali-Krishna K, Sourdive D. J, Suresh M, Altman J. D, and Ahmed R. (1998). Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188 2205–13

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y. (1985). Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv Cancer Res 44 121–38

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, and de Vries J. E. (1994). Interleukin 13 an interleukin 4-like cytokine that acts on monocytes and B cells but not on T cells. Immunol Today 15 19–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bickham, K., Münz, C. (2003). Contrasting Roles of Dendritic Cells and B Cells in the Immune Control of Epstein-Barr Virus. In: Steinkasserer, A. (eds) Dendritic Cells and Virus Infection. Current Topics in Microbiology and Immunology, vol 276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06508-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06508-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07926-9

  • Online ISBN: 978-3-662-06508-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics