Contrasting Roles of Dendritic Cells and B Cells in the Immune Control of Epstein-Barr Virus

  • K. Bickham
  • C. Münz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)

Abstract

The human γ-herpesvirus, Epstein-Barr virus (EBV), has growth-transforming potential in vivo and in vitro. Despite this, most healthy carriers remain free of EBV-associated malignancies because of effective T cell-mediated immune control of the virus. A better understanding of these highly efficient control mechanisms is important in the development of new treatment strategies for EBV-associated malignancies.

A rational approach to EBV immunotherapy requires answering two questions about the initiation of the protective EBV-specific immune response. The first question is, what is the antigen-presenting cell responsible for priming EBV specific immunity? Second, which viral antigen is central to protective EBV adaptive immunity seen in healthy carriers of the virus?

We provide evidence in this review that dendritic cells rather than EBV-transformed B cells are responsible for orchestrating protective EBV immunity and that the EBV nuclear antigen 1 (EBNA1)-specific CD4+ T cell response probably plays a role in resistance against all types of EBV-associated malignancies in healthy carriers. This implies that EBNA1 targeting to dendritic cells should be a component of vaccine and immunotherapy development against EBV-associated malignancies.

Keywords

Lymphoma Oncol Malaria Stein Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert M. L, Pearce S. F. A, Francisco L. M, Sauter B, Roy P, Silverstein R. L, and Bhardwaj N. (1998). Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36 and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188 1359–1368PubMedCrossRefGoogle Scholar
  2. Arulanandam B. P, Mittler J. N, Lee W. T, O’Toole M, and Metzger D. W. (2000). Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J Immunol 164 3698–704PubMedGoogle Scholar
  3. Babcock G. J, Decker L. L, Volk M, and Thorley-Lawson D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9 395–404PubMedCrossRefGoogle Scholar
  4. Babcock G. J, Hochberg D, and Thorley-Lawson A. D. (2000). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13 497–506PubMedCrossRefGoogle Scholar
  5. Babcock G. J, and Thorley-Lawson D. A. (2000). Tonsillar memory B cells latently infected with Epstein-Barr virus express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci USA 97 12250–5PubMedCrossRefGoogle Scholar
  6. Banchereau J, and Steinman R. M. (1998). Dendritic cells and the control of immunity. Nature 392 245–52PubMedCrossRefGoogle Scholar
  7. Bancroft A. J, Else K. J, Sypek J. P, and Grencis R. K. (1997). Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol 27 866–70PubMedCrossRefGoogle Scholar
  8. Bennett S. R. M, Carbone F. R, Karamalis F, Flavell R. A, Miller J. F. A. P, and Heath W. R. (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393 478–480PubMedCrossRefGoogle Scholar
  9. Bickham K, Miinz C, Tsang M. L, Larsson M, Fonteneau J. F, Bhardwaj N, and Steinman R. (2001). EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J Clin Invest 107 121–30PubMedCrossRefGoogle Scholar
  10. Biggar R. J, Henle G, Bocker J, Lennette E. T, Fleisher G, and Henle W. (1978). Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer 22 244–50Google Scholar
  11. Blackwell N. M, and Else K. J. (2001). B cells and antibodies are required for resistance to the parasitic gastrointestinal nematode Trichuris muris. Infect Immun 69 3860–8PubMedCrossRefGoogle Scholar
  12. Blake N, Haigh T, Shaka’a G, Croom-Carter D, and Rickinson A. (2000). The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165 7078–87PubMedGoogle Scholar
  13. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla M. G, Frappier L, and Rickinson A. (1997). Human CD8+ Tcell responses to EBV EBNA1: HLA class I presentation of the ( Gly-Ala)-containing protein requires exogenous processing. Immunity 7 791–802Google Scholar
  14. Bohlen H, Kessler M, Sextro M, Diehl V, and Tesch H. (2000). Poor clinical outcome of patients with Hodgkin’s disease and elevated interleukin-10 serum levels. Clinical significance of interleukin-10 serum levels for Hodgkin’s disease. Ann Hematol 79 110–3PubMedCrossRefGoogle Scholar
  15. Brown D. R, and Reiner S. L. (1999). Polarized helper-T-cell responses against Leishmania major in the absence of B cells. Infect Immun 67 266–70PubMedGoogle Scholar
  16. Burkitt D. (1962). A children’s cancer dependent on climatic factors. Nature 194 232–234PubMedCrossRefGoogle Scholar
  17. Cardin R. D, Brooks J. W, Sarawar S. R, and Doherty P. C. (1996). Progressive loss of CD8+ T cell-mediated control of gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184 863–871PubMedCrossRefGoogle Scholar
  18. Caux C, Vanbervliet B, Massacrier C, Azuma M, Okumura K, Lanier L. L, and Banchereau J. (1994). B70/B7–2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 180 1841–1847PubMedCrossRefGoogle Scholar
  19. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, and Alber G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184 747–752Google Scholar
  20. Chan S. H, and Chew T. S. (1981). Lack of regression in Epstein-Barr virus infected leucocyte cultures of nasopharyngeal carcinoma patients. Lancet 2 1353PubMedCrossRefGoogle Scholar
  21. Deacon E. M, Pallesen G, Niedobitek G, Crocker J, Brooks L, Rickinson A. B, and Young L. S. (1993). Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177 339–49PubMedCrossRefGoogle Scholar
  22. de Schryver A, Friberg S, Jr, Klein G, Henle W, Henle G, De-The G, Clifford P, and Ho H. C. (1969). Epstein-Barr virus-associated antibody patterns in carcinoma of the post-nasal space. Clin Exp Immunol 5 443–59PubMedGoogle Scholar
  23. de-The G, Geser A, Day N. E, Tukei P. M, Williams E. H, Beri D. P, Smith P. G, Dean A. G, Bronkamm G. W, Feorino P, and Henle W. (1978). Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274 756–61PubMedCrossRefGoogle Scholar
  24. Else K. J, Finkelman F. D, Maliszewski C. R, and Grencis R. K. (1994). Cytokine-me- diated regulation of chronic intestinal helminth infection. J Exp Med 179 347–51PubMedCrossRefGoogle Scholar
  25. Else K. J, and Grencis R. K. (1996). Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infect Immun 64 2950–4PubMedGoogle Scholar
  26. Fahraeus R, Fu H. L, Ernberg I, Finke J, Rowe M, Klein G, Falk K, Nilsson E, Yadav M, Busson P, et al. (1988). Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42 329–38PubMedCrossRefGoogle Scholar
  27. Ferlazzo G, Semino C, Spaggiari G. M, Meta M, Mingari M. C, and Melioli G. (2000). Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 12 1741–7PubMedCrossRefGoogle Scholar
  28. Ferlazzo G, Tsang M. L, Moretta A, Melioli G, Steinman R. M, and Miinz C. (2002) Human dendritic cells activate resting NK cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195 343–351PubMedCrossRefGoogle Scholar
  29. Fernandez N. C, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, and Zitvogel L. (1999). Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5 405–11PubMedCrossRefGoogle Scholar
  30. Fuhrman J. A, and Cebra J. J. (1981). Special features of the priming process for a secretory IgA response. B cell priming with cholera toxin. J Exp Med 153 534–44Google Scholar
  31. Good M. F, and Doolan D. L. (1999). Immune effector mechanisms in malaria. Curr Opin Immunol 11412–9Google Scholar
  32. Hahn S, Gehri R, and Erb P. (1995). Mechanism and biological significance of CD4- mediated cytotoxicity. Immunol Rev 146 57–79PubMedCrossRefGoogle Scholar
  33. Harris R. S, Croom-Carter D. S, Rickinson A. B, and Neuberger M. S. (2001). Epstein-Barr virus and the somatic hypermutation of immunoglobulin genes in Burkitt’s lymphoma cells. J Virol 75 10488–92PubMedCrossRefGoogle Scholar
  34. Henle G, and Henle W. (1976). Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17 1–7PubMedCrossRefGoogle Scholar
  35. Henle W, Henle G, Ho H. C, Burtin P, Cachin Y, Clifford P, de Schryver A, de-The G, Diehl V, and Klein G. (1970). Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma other head and neck neoplasms and control groups. J Natl Cancer Inst 44225–31Google Scholar
  36. Herbst H, Foss H. D, Samol J, Araujo I, Klotzbach H, Krause H, Agathanggelou A, Niedobitek G, and Stein H. (1996). Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 87 2918–29PubMedGoogle Scholar
  37. Herr W, Ranieri E, Olson W, Zarour H, Gesualdo L, and Storkus W. J. (2000). Mature dendritic cells pulsed with freeze-thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood 96 1857–64PubMedGoogle Scholar
  38. Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, and Steinman R. M. (1997). High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from lymph node. J Exp Med 186 665–672PubMedCrossRefGoogle Scholar
  39. Inaba K, Witmer-Pack M, Inaba M, Hathcock K. S, Sakuta H, Azuma M, Yagita H, Okumura K, Linsley P. S, Ikehara S, et al. (1994). The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 180 1849–1860PubMedCrossRefGoogle Scholar
  40. Jarrett R. F, Gallagher A, Jones D. B, Alexander F. E, Krajewski A. S, Kelsey A, Adams J, Angus B, Gledhill S, Wright D. H, et al. (1991). Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44 844–8PubMedCrossRefGoogle Scholar
  41. Jenkins M. K, Khoruts A, Ingulli E, Mueller D. L, McSorley S. J, Reinhardt R. L, Itano A, and Pape K. A. (2001). In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 19 23–45PubMedCrossRefGoogle Scholar
  42. Joseph A. M, Babcock G. J, and Thorley-Lawson D. A. (2000). Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J Virol 74 9964–71PubMedCrossRefGoogle Scholar
  43. Kapp U, Yeh W. C, Patterson B, Elia A. J, Kagi D, Ho A, Hessel A, Tipsword M, Williams A, Mirtsos C, et al. (1999). Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 189 1939–46PubMedCrossRefGoogle Scholar
  44. Khanna R, and Burrows S. R. (2000). Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54 19–48PubMedCrossRefGoogle Scholar
  45. Kieff E, and Rickinson A.B. (2001). Epstein-Barr virus and its replication. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven Publishers) pp. 2511–2573Google Scholar
  46. Koch F, Stanzl U, Jennewien P, Janke K, Heufler C, Kämpgen E, Romani N, and Schuler G. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184 741–746PubMedCrossRefGoogle Scholar
  47. Koch F, Trockenbacher B, Kämpgen E, Grauer O, Stössel H, Livingstone A. M, Schuler G, and Romani N. (1995). Antigen processing in populations of mature murine dendritic cells is caused by subsets of incompletely matured cells. J Immunol 155 93–100PubMedGoogle Scholar
  48. Küppers R, Klein U, Hansmann M. L, and Rajewsky K. (1999). Cellular origin of human B-cell lymphomas. N Engl J Med 341 1520–9PubMedCrossRefGoogle Scholar
  49. Küppers R, and Rajewsky K. (1998). The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 16 471–93PubMedCrossRefGoogle Scholar
  50. Kurth J, Spieker T, Wustrow J, Strickler G. J, Hansmann L. M, Rajewsky K, and Küppers R. (2000). EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13 485–95PubMedCrossRefGoogle Scholar
  51. Kurzrock R. (1997). Cytokine deregulation in hematological malignancies: clinical and biological implications. Clin Cancer Res 3 2581–4PubMedGoogle Scholar
  52. Langhorne J, Cross C, Seixas E, Li C, and von der Weid T. (1998). A role for B cells in the development of T cell helper function in a malaria infection in mice. Proc Natl Acad Sci USA 95 1730–4PubMedCrossRefGoogle Scholar
  53. Larsen C. P, Ritchie S. C, Hendrix R, Linsley P. S, Hathcock R. J, Lowry R. P, and Pearson T. C. (1994). Regulation of immunostimulatory function and costimulatory molecule [B7–1 and B7–2] expression on murine dendritic cells. J Immunol 152 5208–5219PubMedGoogle Scholar
  54. Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, and Blake N. (2001). Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J Virol 75 8649–59PubMedCrossRefGoogle Scholar
  55. Levine A. M. (1992). Acquired immunodeficiency syndrome-related lymphoma. Blood 80 8–20PubMedGoogle Scholar
  56. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen P. M, Klein G, Kurilla M. G, and Masucci M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375 685–688PubMedCrossRefGoogle Scholar
  57. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, and Masucci M. G. (1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94 12616–21PubMedCrossRefGoogle Scholar
  58. Lin J. C, Smith M. C, and Pagano J. S. (1984). Prolonged inhibitory effect of 9-(13- dihydroxy-2-propoxymethyl) guanine against replication of Epstein-Barr virus. J Virol 50 50–5PubMedGoogle Scholar
  59. Linton P. J, Harbertson J, and Bradley L. M. (2000). A critical role for B cells in the development of memory CD4 cells. J Immunol 165 5558–65PubMedGoogle Scholar
  60. Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thiele-mans K, Leo O, Urbain J, and Moser M. (1999). CD8a+ and CD8a-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189587–592Google Scholar
  61. Maloy K. J, Burkhart C, Junt T. M, Odermatt B, Oxenius A, Piali L, Zinkernagel R. M, and Hengartner H. (2000). CD4+ T cell subsets during virus infection: protective capacity depends on effector cytokine secretion and on migratory capability. J Exp Med 1912159Google Scholar
  62. Moretta A, Comoli P, Montagna D, Gasparoni A, Percivalle E, Carena I, Revello M. G, Gerna G, Mingrat G, Locatelli F, et al. (1997). High frequency of Epstein-Barr virus (EBV) lymphoblastoid cell line-reactive lymphocytes in cord blood: evaluation of cytolytic activity and IL-2 production. Clin Exp Immunol 107 312–20PubMedCrossRefGoogle Scholar
  63. Moss D. J, Chan S. H, Burrows S. R, Chew T. S, Kane R. G, Staples J. A, and Kunaratnam N. (1983). Epstein-Barr virus specific T-cell response in nasopharyngeal carcinoma patients. Int J Cancer 32 301–5PubMedCrossRefGoogle Scholar
  64. Miinz C, Bickham K. L, Subklewe M, Tsang M. L, Chahroudi A, Kurilla M. G, Zhang D, O’Donnell M, and Steinman R. M. (2000). Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr Virus nuclear antigen EBNA1. J Exp Med 191 1649–1660CrossRefGoogle Scholar
  65. Murphy K. M, Ouyang W, Farrar J. D, Yang J, Ranganath S, Asnagli H, Afkarian M, and Murphy T. L. (2000). Signaling and transcription in T helper development. Annu Rev Immunol 18 451–94PubMedCrossRefGoogle Scholar
  66. Murray R. J, Kurilla M. G, Brooks J. M, Thomas W. A, Rowe M, Kieff E, and Rickinson A. B. (1992). Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med 176 157–68PubMedCrossRefGoogle Scholar
  67. Nikiforow S, Bottomly K, and Miller G. (2001). CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cell proliferation. J Virol 75 3740–52PubMedCrossRefGoogle Scholar
  68. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, and Ohta A. (1999). Distinct roles of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190 617–628PubMedCrossRefGoogle Scholar
  69. O’Garra A, and Murphy K. (1994). Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6 458–66PubMedCrossRefGoogle Scholar
  70. Orange J. S, and Biron C. A. (1996). An absolute and restricted requirement for IL-12 in natural killer cell IFN-y production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156 1138–42Google Scholar
  71. Orange J. S, Wang B, Terhorst C, and Biron C. A. (1995). Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182 1045–56PubMedCrossRefGoogle Scholar
  72. Pallesen G, Hamilton-Dutoit S. J, and Zhou X. (1993). The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin’s disease: two new developments in the EBV field. Adv Cancer Res 62 179–239PubMedCrossRefGoogle Scholar
  73. Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, Ochs H. D, Wolf H, Bonnefoy J. Y, Biassoni R, et al. (2000). X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192 337–46PubMedCrossRefGoogle Scholar
  74. Purtilo D. T, Cassel C, and Yang J. P. (1974). Letter: Fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med 291 736Google Scholar
  75. Rajnavölgyi E, Nagy N, Thuresson B, Dosztanyi Z, Simon A, Simon I, Karr R. W, Ernberg I, Klein E, and Falk K. I. (2000). A repetitive sequence of Epstein-Barr virus nuclear antigen 6 comprises overlapping T cell epitopes which induce HLADR-restricted CD4+ T lymphocytes. Int Immunol 12 281–93PubMedCrossRefGoogle Scholar
  76. Redchenko I. V, and Rickinson A. B. (1999). Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J Virol 73 334–42PubMedGoogle Scholar
  77. Rentenaar R. J, Gamadia L. E, van DerHoek N, van Diepen F. N, Boom R, Weel J. F, Wertheim-Van Dillen P. M, van Lier R. A, and ten Berge I. J. (2000). Development of virus-specific CD4+ T cells during primary cytomegalovirus infection. J Clin Invest 105 541–8PubMedCrossRefGoogle Scholar
  78. Rickinson A. B, and Kieff E. (2001). Epstein-Barr virus. In Fields Virology P. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2575–2627Google Scholar
  79. Ridge J. P, Di Rosa F, and Matzinger P. (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T helper and a T-killer cell. Nature 393 474–478PubMedCrossRefGoogle Scholar
  80. Riley E. M. (1999). Is T-cell priming required for initiation of pathology in malaria infections? Immunol Today 20 228–33PubMedCrossRefGoogle Scholar
  81. Roizman B, and Pellett P. E. (2001). The Family Herpesviridae: A Brief Introduction. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2301–2307Google Scholar
  82. Roizman B, and Knipe D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology D. M. Knipe and P. M. Howley eds. (Philadelphia Lippincott-Raven) pp. 2399–2459Google Scholar
  83. Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone A. M, Fathman C. G, Inaba K, and Steinman R. M. (1989). Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature epidermal Langerhans cells. J Exp Med 169 1169–1178PubMedCrossRefGoogle Scholar
  84. Sallusto F, Lanzavecchia A, and Mackay C. R. (1998). Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19 568–74PubMedCrossRefGoogle Scholar
  85. Sam C. K, Prasad U, and Pathmanathan R. (1989). Serological markers in the diagnosis of histopathological types of nasopharyngeal carcinoma. Eur J Surg Oncol 15 357–60PubMedGoogle Scholar
  86. Sarris A. H, Kliche K. O, Pethambaram P, Preti A, Tucker S, Jackow C, Messina O, Pugh W, Hagemeister F. B, McLaughlin P, et al. (1999). Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann Oncol 10 433–40PubMedCrossRefGoogle Scholar
  87. Schoenberger S. P, Toes R. E. M, van der Voort E. I. H, Offringa R, and Melief C. J. M. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393 480–483PubMedCrossRefGoogle Scholar
  88. Schulz T. F, Boshoff C. H, and Weiss R. A. (1996). HIV infection and neoplasia. Lancet 348 587–91PubMedCrossRefGoogle Scholar
  89. Sheldon P. J, Hemsted E. H, Papamichail M, and Holborow E. J. (1973). Thymic origin of atypical lymphoid cells in infectious mononucleosis. Lancet 1 1153–5PubMedCrossRefGoogle Scholar
  90. Shibata D, Weiss L. M, Hernandez A. M, Nathwani B. N, Bernstein L, and Levine A. M. (1993). Epstein-Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood 812102–9Google Scholar
  91. Silins S. L, Sherritt M. A, Silleri J. M, Cross S. M, Elliott S. L, Bharadwaj M, Le T. T, Morrison L. E, Khanna R, Moss D. J, et al. (2001). Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood 98 3739–3744PubMedCrossRefGoogle Scholar
  92. Steigerwald-Mullen P, Kurilla M. G, and Braciale T. J. (2000). Type 2 cytokines predominate in the human CD4+ T-lymphocyte response to Epstein-Barr virus nuclear antigen 1. J Virol 74 6748–59PubMedCrossRefGoogle Scholar
  93. Steven N. M, Leese A. M, Annels N. E, Lee S. P, and Rickinson A. B. (1996). Epitope focusing in the primary cytotoxic T cell response to Epstein- Barr virus and its relationship to T cell memory. J Exp Med 184 1801–13PubMedCrossRefGoogle Scholar
  94. Subklewe M, Chahroudi A, Bickham K, Larsson M, Kurilla M. G, Bhardwaj N, and Steinman R. M. (1999a). Presentation of Epstein-Barr virus latency antigens to CD8+ interferon-y-secreting T lymphocytes. Eur J Immunol 29 3995–4001PubMedCrossRefGoogle Scholar
  95. Subklewe M, Chahroudi A, Schmaljohn A, Kurilla M. G, Bhardwaj N, and Steinman R. M. (1999b). Induction of Epstein-Barr Virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV-inactivated recombinant EBNA-3A vaccinia virus. Blood 94 1372–1381PubMedGoogle Scholar
  96. Subklewe M, Paludan C, Tsang M. L, Mahnke K, Steinman R. M, and Miinz C. (2001). Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand tumor-reactive CD8+ killer T cells. J Exp Med 193405–11Google Scholar
  97. Thorley-Lawson D. A. (2001). Epstein-Barr virus: exploiting the immune system Nat Rev Immunol 175–82Google Scholar
  98. Urban B. C, Ferguson D. J, Pain A, Willcox N, Plebanski M, Austyn J. M, and Roberts D. J. (1999). Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400 73–7PubMedCrossRefGoogle Scholar
  99. Viviani S, Notti P, Bonfante V, Verderio P, Valagussa P, and Bonadonna G. (2000). Elevated pretreatment serum levels of Il-10 are associated with a poor prognosis in Hodgkin’s disease the Milan Cancer Institute Experience. Med Oncol 17 59–63PubMedCrossRefGoogle Scholar
  100. von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann M. L, Diehl V, and Georgii A. (2000). Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease allowing for known prognostic factors. Blood 95 1207–13PubMedGoogle Scholar
  101. Whittle H. C, Brown J, Marsh K, Greenwood B. M, Seidelin P, Tighe H, and Wedderburn L. (1984). T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312 449–50PubMedCrossRefGoogle Scholar
  102. Wright D. H. (1999). What is Burkitt’s lymphoma and when is it endemic? Blood 93 758PubMedGoogle Scholar
  103. Young L. S, Dawson C. W, Clark D, Rupani H, Busson P, Tursz T, Johnson A, and Rickinson A. B. (1988). Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 1051–65PubMedCrossRefGoogle Scholar
  104. Zajac A. J, Blattman J. N, Murali-Krishna K, Sourdive D. J, Suresh M, Altman J. D, and Ahmed R. (1998). Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188 2205–13PubMedCrossRefGoogle Scholar
  105. Zeng Y. (1985). Seroepidemiological studies on nasopharyngeal carcinoma in China. Adv Cancer Res 44 121–38PubMedCrossRefGoogle Scholar
  106. Zurawski G, and de Vries J. E. (1994). Interleukin 13 an interleukin 4-like cytokine that acts on monocytes and B cells but not on T cells. Immunol Today 15 19–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. Bickham
    • 1
  • C. Münz
    • 1
  1. 1.Laboratory of Cellular Physiology and ImmunologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations