DC-SIGN: A Novel HIV Receptor on DCs That Mediates HIV-1 Transmission

  • T. B. H. Geijtenbeek
  • Y. van Kooyk
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)


The dendritic cell (DC)-specific HIV-1 receptor DC-SIGN plays a key-role in the dissemination of HIV-1 by DCs. DC-SIGN captures HIV-1 at sites of entry, enabling its transport to lymphoid tissues, where DC-SIGN efficiently transmits low amounts of HIV-1 to T cells. The expression pattern of DC-SIGN in mucosal tissue, lymph nodes, placenta and blood suggests a function for DC-SIGN in both horizontal and vertical transmission of HIV-1. Moreover, the efficiency of DC-SIGN+ blood DC to transmit HIV-1 to T cells supports a role in HIV-1 transmission via blood. To date, DC-SIGN represents a novel class of HIV-1 receptor, because it does not allow viral infection but binds HIV-1 and enhances its infection of T cells in trans. Its unique function is further underscored by its restricted expression on DCs. Although DC-SIGN is a C-type lectin with an affinity for carbohydrates exemplified by its interaction with its immunological ligand ICAM-3, recent evidence demonstrates that glycosylation of gp120 is not necessary for its interaction with DC-SIGN. Moreover, mutational analysis demonstrates that the HIV-1 gp120 binding site in DC-SIGN is different from that of ICAM-3.

Besides its role in DC-mediated adhesion processes, DC-SIGN also functions as an antigen receptor that captures and internalises antigens for presentation by DC. Strikingly, HIV-1 circumvents processing after binding DC-SIGN and remains infectious for several days after capture. A better understanding of the action of this novel HIV receptor in initial viral infection and subsequent transmission will provide a basis for the design of drugs that inhibit or alter interactions of DC-SIGN with gp120, interfering with HIV-1 dissemination and that may have a therapeutic value in both immunological diseases and/or HIV-1 infections.


Human Immunodeficiency Virus Type Simian Immunodeficiency Virus Liver Sinusoidal Endothelial Cell Dendritic Cell Precursor Gp120 Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banchereau, J, Steinman, RM (1998) Dendritic cells and the control of immunity. Nature 392, 245–52.PubMedCrossRefGoogle Scholar
  2. Baribaud F, Pohlmann S, Sparwasser T, Kimata MT, Choi YK, Haggarty BS, Ahmad N, Macfarlan T, Edwards TG, Leslie GJ, Arnason J, Reinhart TA, Kimata JT, Littman DR, Hoxie JA, Doms RW (2001) Functional and antigenic characterization of human, rhesus macaque, pigtailed macaque, and murine DC-SIGN. J Virol 75, 10281–9PubMedCrossRefGoogle Scholar
  3. Bashirova AA, Geijtenbeek TBH, van Duijnhoven GCF, van Vliet SJ, Eilering JB, Martin MP, Wu L, Martin TD, Viebig N, Knolle PA, KewalRamani VN, van Kooyk Y, Carrington M (2001) A dendritic cell-specific intercellular adhesion molecule 3- grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193, 671–8PubMedCrossRefGoogle Scholar
  4. Blauvelt A, Asada H, Saville MW, Klaus-Kovtun V, Altman DJ, Yarchoan R, Katz SI (1997) Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest 100, 2043–53PubMedCrossRefGoogle Scholar
  5. Bleijs DA, Geijtenbeek TBH, Figdor CG, van Kooyk Y (2001) DC-SIGN and LFA-1: a battle for ligand. Trends Immunol 22, 457–63PubMedCrossRefGoogle Scholar
  6. Buseyne F, Le Gall S, Boccaccio C, Abastado JP, Lifson JD, Arthur LO, Riviere Y, Heard JM, Schwartz O (2001) MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat Med 7, 344–9PubMedCrossRefGoogle Scholar
  7. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–7PubMedCrossRefGoogle Scholar
  8. Caminschi I, Lucas KM, O’Keeffe, MA Hochrein, H Laabi, Y Brodnicki, TC Lew, AM Shortman K, Wright, MD (2001) Molecular cloning of a C-type lectin superfamily protein differentially expressed by CD8alpha(-) splenic dendritic cells. Mol Immunol 38, 365–73PubMedCrossRefGoogle Scholar
  9. Cullen BR (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93, 685–92PubMedCrossRefGoogle Scholar
  10. Curtis BM, Scharnowske S, Watson AJ (1992) Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA 89, 8356–60PubMedCrossRefGoogle Scholar
  11. Drickamer K (1995) Increasing diversity of animal lectin structures. Curr Opin Struct Biol 5, 612–6PubMedCrossRefGoogle Scholar
  12. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F, Gunther G, Johnston I, Lanzavecchia A, Nagasaka T, Okada T, Vermi W, Winkels G, Yamamoto T, Zysk M, Yamaguchi Y, Schmitz J (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 194, 1823–34PubMedCrossRefGoogle Scholar
  13. Engering A, Geijtenbeek TBH, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y (2002a) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168, 2118–2126PubMedGoogle Scholar
  14. Engering A, van Vliet SJ, Geijtenbeek TB, van Kooyk Y (2002b) Subset of DC-SIGN(+) dendritic cells in human blood transmit HIV to T lymphocytes. Blood 100, 1780–1786PubMedCrossRefGoogle Scholar
  15. Feinberg H, Mitchell DA, Drickamer K, Weis WI (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163– 2166Google Scholar
  16. Funatsu O, Sato T, Kotovuori P, Gahmberg CG, Ikekita M, Furukawa K (2001) Structural study of N-linked oligosaccharides of human intercellular adhesion molecule-3 (CD50). Eur J Biochem 268, 1020–9PubMedCrossRefGoogle Scholar
  17. Geijtenbeek TBH, van Kooyk Y (2001) Dendritic cells ferry HIV-1 from periphery into lymphoid tissues. In: Cossarizza A, Kaplan A (eds) Cellular aspects of HIV infection, Wiley-Liss Inc, New York, pp 229–247CrossRefGoogle Scholar
  18. Geijtenbeek TBH, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GCF, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–97PubMedCrossRefGoogle Scholar
  19. Geijtenbeek TBH, Torensma R, van Vliet SJ, van Duijnhoven GCF, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–85PubMedCrossRefGoogle Scholar
  20. Geijtenbeek TBH, Krooshoop DJEB, Bleijs DA, vanVliet SJ, van Duijnhoven GCF, Grabovsky V, Alon R, Figdor CG, van Kooyk Y (2000c) DC-SIGNICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1, 353–357PubMedCrossRefGoogle Scholar
  21. Geijtenbeek TBH, van Vliet SJ, van Duijnhoven GCF, Figdor CG, van Kooyk Y (2001a) DC-SIGN, a dendritic cell-specific HIV-1 receptor present in placenta that infects T cells in trans–a review. Placenta 22, S 19–23CrossRefGoogle Scholar
  22. Geijtenbeek TBH, Koopman G, van Duijnhoven GC, van Vliet SJ, van Schijndel AC, Engering A, Heeney JL, van Kooyk Y (2001b) Rhesus macaque and chimpanzee DC-SIGN act as HIV/SIV gp120 trans-receptors, similar to human DC-SIGN. Immunol Lett 79, 101–7PubMedCrossRefGoogle Scholar
  23. Geijtenbeek TBH, van Duijnhoven GCF, van Vliet SJ, Krieger E, Vriend G, Figdor CG, van Kooyk Y (2002a) Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for ICAM-3 and HIV-1. J Biol Chem 277, 11314–11320PubMedCrossRefGoogle Scholar
  24. Geijtenbeek TBH, Groot PC, Nolte MA, van Vliet SJ, Gangaram-Panday ST, van Duijnhoven GC, Kraal G, van Osterhout AJ, van Kooyk Y (2002b) Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–2916PubMedCrossRefGoogle Scholar
  25. Goldstein H, Pettoello-Mantovani M, Bera TK, Pastan IH, Berger EA (2000) Chimeric toxins targeted to the human immunodeficiency virus type 1 envelope glycoprotein augment the in vivo activity of combination antiretroviral therapy in thy/livSCID-Hu mice. J Infect Dis 181, 921–6PubMedCrossRefGoogle Scholar
  26. Granelli-Piperno A, Finkel V, Delgado E, Steinman RM (1999) Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr Biol 9, 21–9PubMedCrossRefGoogle Scholar
  27. Hu J, Miller CJ, O’Doherty U, Marx PA, Pope M (1999) The dendritic cell-T cell milieu of the lymphoid tissue of the tonsil provides a locale in which SIV can reside and propagate at chronic stages of infection. AIDS Res Hum Retroviruses 15, 1305–14PubMedCrossRefGoogle Scholar
  28. Kato M, Neil TK, Clark GJ, Morris CM, Sorg RV, Hart DN (1998) cDNA cloning of human DEC-205, a putative antigen-uptake receptor on dendritic cells. Immunogenetics 47, 442–50Google Scholar
  29. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144PubMedCrossRefGoogle Scholar
  30. Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265, 10373–82PubMedGoogle Scholar
  31. Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR subunit organization and binding to multivalent ligands. J Biol Chem 276, 28939–45PubMedCrossRefGoogle Scholar
  32. Mizuochi, T Spellman, MW Larkin, M Solomon, J Basa, LJ, Feizi, T (1988) Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem J 254, 599–603Google Scholar
  33. Mummidi S, Catano G, Lam L, Hoefle A, Telles V, Begum K, Jimenez F, Ahuja SS, Ahuja SK (2001) Extensive repertoire of membrane-bound and soluble DC-SIGN1 and DC- SIGN2 isoforms: Inter-individual variation in expression of DC-SIGN transcripts. J Biol Chem 276, 33196–212.Google Scholar
  34. Park CG, Takahara K, Umemoto E, Yashima Y, Matsubara K, Matsuda Y, Clausen BE, Inaba K, Steinman RM (2001) Five mouse homologues of the human dendritic cell C-type lectin, DC- SIGN. Int Immunol 13, 1283–1290Google Scholar
  35. Patterson S, Roberts MS, English NR, Macatonia SE, Gompels MN, Pinching AJ, Knight SC (1994) Detection of HIV DNA in peripheral blood dendritic cells of HIV-infected individuals. Res Virol 145, 171–6PubMedCrossRefGoogle Scholar
  36. Patterson S, Robinson SP, English NR, Knight SC (1999) Subpopulations of peripheral blood dendritic cells show differential susceptibility to infection with a lymphotropic strain of HIV-1. Immunol Lett 66, 111–6PubMedCrossRefGoogle Scholar
  37. Patterson S, Rae A, Hockey N, Gilmour J, Gotch F (2001) Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol 75, 6710–3PubMedCrossRefGoogle Scholar
  38. Petit C, Buseyne F, Boccaccio C, Abastado JP, Heard JM, Schwartz O (2001) Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286, 225–36PubMedCrossRefGoogle Scholar
  39. Piguet V, Chen YL, Mangasarian A, Foti M, Carpentier JL, Trono D (1998) Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17, 2472–81PubMedCrossRefGoogle Scholar
  40. Pohlmann S, Soilleux EJ, Baribaud F, Leslie GJ, Morris LS, Trowsdale J, Lee B, Coleman N, Doms RW (2001a) DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA 98, 2670–2675PubMedCrossRefGoogle Scholar
  41. Pohlmann S, Baribaud F, Lee B, Leslie GJ, Sanchez MD, Hiebenthal-Millow K, Munch J, Kirchhoff F, Doms RW (2001b) DC-SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus. J Virol 75, 4664–72PubMedCrossRefGoogle Scholar
  42. Pohlmann S, Leslie GJ, Edwards TG, Macfarlan T, Reeves JD, Hiebenthal-Millow K, Kirchhoff F, Baribaud F, Doms RW (2001c) DC-SIGN interactions with human immunodeficiency virus: virus binding and transfer are dissociable functions. J Virol 75, 10523–6PubMedCrossRefGoogle Scholar
  43. Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, Gezelter S, Schuler G, Steinman RM (1994) Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–98PubMedCrossRefGoogle Scholar
  44. Reimann KA, Tenner-Racz K, Racz P, Montefiori DC, Yasutomi Y, Lin W, Ransil BJ, Letvin NL (1994) Immunopathogenic events in acute infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Virol 68, 2362–70PubMedGoogle Scholar
  45. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182, 389–400PubMedCrossRefGoogle Scholar
  46. Soilleux EJ, Barten R, Trowsdale J (2000) Cutting Edge: DC-SIGN; a Related Gene, DC-SIGNR; and CD23 Form a Cluster on 19p13. J Immunol 165, 2937–2942PubMedGoogle Scholar
  47. Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, Abastado P, Heard J-M, van Kooyk Y, Schwartz O (2002) HIV-1 nef induced up-regulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16, 145–155PubMedCrossRefGoogle Scholar
  48. Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, Ho DD (1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183, 215–25PubMedCrossRefGoogle Scholar
  49. Steffan AM, Lafon ME, Gendrault JL, Schweitzer C, Royer C, Jaeck D, Arnaud JP, Schmitt MP, Aubertin AM, Kirn A (1992) Primary cultures of endothelial cells from the human liver sinusoid are permissive for human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89, 1582–6PubMedCrossRefGoogle Scholar
  50. Turville SG, Arthos J, Mac Donald K, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98, 2482–8PubMedCrossRefGoogle Scholar
  51. Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163, 19–34PubMedCrossRefGoogle Scholar
  52. Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92, 826–30PubMedCrossRefGoogle Scholar
  53. Weissman D, Fauci AS (1997) Role of dendritic cells in immunopathogenesis of human immunodeficiency virus infection. Clin Microbiol Rev 10, 358–67PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. B. H. Geijtenbeek
    • 1
  • Y. van Kooyk
    • 1
  1. 1.Department of Molecular Cell BiologyVrije Universiteit Medical Center AmsterdamAmsterdamThe Netherlands

Personalised recommendations