Dendritic Cells and HCMV Cross-Presentation

  • G. Arrode
  • C. Davrinche
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)


The outcome of a viral infection is the result of an endless fight between the organism whose task is to mount an antiviral response and the virus that adapts strategies to circumvent the host response. Human cytomegalovirus (HCMV), a latent herpesvirus, can be considered as a spearhead in exploiting co-existence with the host to develop numerous immuno-evasion mechanisms. The ability of the organism to initiate a primary immune response against viruses such as HCMV is highly dependent on the capacity of professional antigen-presenting cells (APCs), namely dendritic cells (DCs), to prime and activate specific effector T cells. Recent findings emerging from the murine cytomegalovirus (MCMV) animal model demonstrated that infection of murine DCs with MCMV impaired their capacity to prime an effective T cell response. Even though data on interference of HCMV with DC functions are still limited, immunosuppressive effects identical to those reported for MCMV can be suspected and we may then ask how a cytotoxic T lymphocyte (CTL) response is generated in these unfavourable conditions. In response to this question, cross-presentation of HCMV antigens by uninfected DCs to CD8+ T cells could be considered a key process in initiating an immune response. In this chapter we discuss the mechanisms through which DCs could acquire HCMV antigens and how cross-presentation could be modulated throughout infection. Moreover, further knowledge of DC functions is key for the development of DC-based immunotherapy against HCMV.


Dendritic Cell Major Histocompatibility Complex Class Human Cytomegalovirus Primary Immune Response Murine Cytomegalovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert ML, Jegathesan M, Darnell RB. (2001) Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol 2: 1010–1017PubMedCrossRefGoogle Scholar
  2. Alcami A, Koszinowski UH. (2000) Viral mechanisms of immune evasion. Mol Med Today 6: 365–372PubMedCrossRefGoogle Scholar
  3. Andrews DM, Andoniou CE, Granucci F, Ricciardi-Castagnoli P, Degli-Esposti MA. (2001) Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2: 1077–1084PubMedCrossRefGoogle Scholar
  4. Arrode G, Boccaccio C, Abastado JP, Davrinche C. (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8(+) T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76:142– 150Google Scholar
  5. Arrode G, Boccaccio C, Lule J, Allart S, Moinard N, Abastado J, Alam A, Davrinche C. (2000) Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8(+) T cells by dendritic cells. J Virol 74: 10018–10024PubMedCrossRefGoogle Scholar
  6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811PubMedCrossRefGoogle Scholar
  7. Biron C, Byron K, Sullivan J. (1989) Severe Herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320: 1731–1735PubMedCrossRefGoogle Scholar
  8. Bitmansour AD, Waldrop SL, Pitcher CJ, Khatamzas E, Kern F, Maino VC, Picker LJ. (200 1) Clonotypic structure of the human CD4(+) memory T cell response to cytomegalovirus. J Immunol 167: 1151–1163Google Scholar
  9. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier JL, Michelson S. (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188: 855–866PubMedCrossRefGoogle Scholar
  10. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ. (2001) Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N EnglJ Med 344: 1366–1371CrossRefGoogle Scholar
  11. Borysiewicz LK, Graham S, Hickling JK, Mason PD, Sissons JG. (1988) Human cytomegalovirus-specific cytotoxic T cells: their precursor frequency and stage specificity. Eur J Immunol 18: 269–275PubMedCrossRefGoogle Scholar
  12. Britt WJ, Alford CA. (1996) Cytomegalovirus. In:, Fields BN, Knipe DM (eds) Fields Virology. Lippincott-Raven, Philadelphia, PA, p. 2493–2523Google Scholar
  13. Bukowski JF, Warner JF, Dennert G, Welsh RM. (1985) Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med 161:40– 52Google Scholar
  14. Buseyne F, Le Gall S, Boccaccio C, Abastado JP, Lifson JD, Arthur LO, Riviere Y, Heard JM, Schwartz O. (2001) MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat Med 7: 344–349PubMedCrossRefGoogle Scholar
  15. Cho HI, Han H, Kim CC, Kim TG. (2001) Generation of Cytotoxic T lymphocytes specific for human cytomegalovirus using dendritic cells in vitro. J Immunother 24: 242–249CrossRefGoogle Scholar
  16. Cohen B, Dix R. (1997). AIDS and the nervous system. In AIDS and the nervous system. Berger J, Levy, RM, ed. Lippincott-Raven, Philadelphia, PA, p. 595–639Google Scholar
  17. Davignon JL, Castanie P, Yorke JA, Gautier N, Clement D, Davrinche C. (1996) Antihuman cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro. J Virol 70: 2162–2169PubMedGoogle Scholar
  18. Davignon JL, Clement D, Alriquet J, Michelson S, Davrinche C. (1995) Analysis of the proliferative T cell response to human cytomegalovirus major immediate-early protein (IE1): phenotype, frequency and variability. Scand J Immunol 41:247– 255Google Scholar
  19. Fleck M, Kern ER, Zhou T, Podlech J, Wintersberger W, Edwards CKd, Mountz JD. (1998) Apoptosis mediated by Fas but not tumor necrosis factor receptor 1 prevents chronic disease in mice infected with murine cytomegalovirus. J Clin Invest 102: 1431–1443PubMedCrossRefGoogle Scholar
  20. Gallot G, Vivien R, Ibisch C, Lule J, Davrinche C, Gaschet J, Vie H. (2001) Purification of Ag-specific T lymphocytes after direct peripheral blood mononuclear cell stimulation followed by CD25 selection. I. Application to CD4(+) or CD8(+) cytomegalovirus phosphoprotein pp65 epitope determination. J Immunol 167:4196– 4206Google Scholar
  21. Gerna G, Zipeto D, Percivalle E, Parea M, Revello MG, Maccario R, Peri G, Milanesi G. (1992) Human cytomegalovirus infection of the major leukocyte subpopulations and evidence for initial viral replication in polymorphonuclear leukocytes from viremic patients. J Infect Dis 166: 1236–1244PubMedCrossRefGoogle Scholar
  22. Gillespie GM, Wills MR, Appay V, O’Callaghan C, Murphy M, Smith N, Sissons P, Rowland-Jones S, Bell JI, Moss PA. (2000) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol 74: 8140–8150PubMedCrossRefGoogle Scholar
  23. Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han J, Lutz RJ, Watanabe S, McFarland ED, Kieff ED, Mocarski ES, Chittenden T. (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci USA 96: 12536–12541PubMedCrossRefGoogle Scholar
  24. Grefte A, van der Giessen M, van Son W, The TH. (1993) Circulating cytomegalovirus ( CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 167: 270–277Google Scholar
  25. Gyulai Z, Endresz V, Burian K, Pincus S, Toldy J, Cox WI, Meri C, Plotkin S, Berencsi K. (2000) Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181: 1537–1546PubMedCrossRefGoogle Scholar
  26. Hahn G, Jores R, Mocarski ES. (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci USA 95: 3937–3942PubMedCrossRefGoogle Scholar
  27. Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM. (2001) Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 166:3717– 3723Google Scholar
  28. Hengel H, Reusch U, Geginat G, Holtappels R, Ruppert T, Hellebrand E, Koszinowski UH. (2000) Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J Virol 74:7861– 7868Google Scholar
  29. Hubert P, Giannini SL, Vanderplasschen A, Franzen-Detrooz E, Jacobs N, Boniver J, Delvenne P. (2001) Dendritic cells induce the death of human papillomavirus-transformed keratinocytes 1. FASEB J 15: 2521–2523PubMedGoogle Scholar
  30. Kern F, Surel IP, Brock C, Freistedt B, Radtke H, Scheffold A, Blasczyk R, Reinke P, Schneider-Mergener J, Radbruch A, Walden P, Volk HD. (1998) T-cell epitope mapping by flow cytometry. Nat Med 4: 975–978PubMedCrossRefGoogle Scholar
  31. Kern F, Surel IP, Faulhaber N, Frommel C, Schneider-Mergener J, Schonemann C, Reinke P, Volk HD. (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73: 8179–8184PubMedGoogle Scholar
  32. Klagge IM, Schneider-Schaulies S. (1999) Virus interactions with dendritic cells. J Gen Virol 80: 823–833PubMedGoogle Scholar
  33. Komanduri KV, Donahoe SM, Moretto WJ, Schmidt DK, Gillespie G, Ogg GS, Roederer M, Nixon DF, McCune JM. (2001) Direct measurement of CD4+ and CD8+ T-cell responses to CMV in HIV-1-infected subjects. Virology 279: 459–470PubMedCrossRefGoogle Scholar
  34. Liu S, Yu Y, Zhang M, Wang W, Cao X. (2001) The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 166: 5407–5415PubMedGoogle Scholar
  35. Loenen WA, Bruggeman CA, Wiertz EJ. (2001) Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Semin Immunol 13: 41–49PubMedCrossRefGoogle Scholar
  36. Maecker HT, Ghanekar SA, Suni MA, He XS, Picker LJ, Maino VC. (2001) Factors affecting the efficiency of CD8+ T cell cross-priming with exogenous antigens. J Immunol 166: 7268–7275PubMedGoogle Scholar
  37. McLaughlin-Taylor E, Pande H, Forman S, Tanamachi B, CR L, Zaia J, Greenberg P, Riddell S. (1994) Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43: 103–110PubMedCrossRefGoogle Scholar
  38. Mocarski Jr. ES. (1996) Cytomegaloviruses and their replication. In:, Fields BN, Knipe DM (eds) Fields Virology. Lippincott-Raven, Philadelphia, PA, p. 2447– 2491Google Scholar
  39. Peggs K, Verfuerth S, Mackinnon S. (2001) Induction of cytomegalovirus (CMV)- specific T-cell responses using dendritic cells pulsed with CMV antigen: a novel culture system free of live CMV virions. Blood 97: 994–1000PubMedCrossRefGoogle Scholar
  40. Perez-Jiminez A, Colamaria V, Franco A, Grimau-Merino R, Darra R, Fontana E, Zullini E, Beltramello O, Dalla-Bernardina B. (1998) Epilepsy and disorders of cortical development in children with congenital cytomegalovirus infection. Rev Neurol 26: 42–49Google Scholar
  41. Ploegh HL. (1998) Viral strategies of immune evasion. Science 280: 248–253PubMedCrossRefGoogle Scholar
  42. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH. (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047– 1054Google Scholar
  43. Reddehase MJ. (2000) The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol 12: 738PubMedCrossRefGoogle Scholar
  44. Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH. (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55: 264–273PubMedGoogle Scholar
  45. Reis e Sousa C. (2001) Dendritic cells as sensors of infection. Immunity 14: 495–498CrossRefGoogle Scholar
  46. Rentenaar RJ, Gamadia LE, van DerHoek N, van Diepen FN, Boom R, Weel JF, Wertheim-van Dillen PM, van Lier RA, ten Berge IJ. (2000) Development of virus-specific CD4(+) T cells during primary cytomegalovirus infection. J Clin Invest 105: 541–548PubMedCrossRefGoogle Scholar
  47. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257: 238–241PubMedCrossRefGoogle Scholar
  48. Riegler S, Hebart H, Einsele H, Brossart P, Jahn G, Sinzger C. (2000) Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J Gen Virol 81 Pt 2: 393–399Google Scholar
  49. Sallusto F, Lanzavecchia A. (2000) Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177: 134–140PubMedCrossRefGoogle Scholar
  50. Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D, Wiley SR. (1999) IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 163: 920–926PubMedGoogle Scholar
  51. Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G. (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76: 741–750Google Scholar
  52. Sinzger C, Jahn G. (1996) Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39: 302–319PubMedGoogle Scholar
  53. Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS. (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA 98: 7829–7834PubMedCrossRefGoogle Scholar
  54. Steffens HP, Kurz S, Holtappels R, Reddehase MJ. (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72: 1797–1804PubMedGoogle Scholar
  55. Tabi Z, Moutaftsi M, Borysiewicz LK. (2001) Human Cytomegalovirus pp65- and immediate early 1 antigen-specific HLA Class I-restricted cytotoxic T cell responses induced by cross-presentation of viral antigens. J Immunol 166: 5695–5703PubMedGoogle Scholar
  56. Topilko A, Michelson S. (1994) Hyperimmediate entry of human cytomegalovirus virions and dense bodies into human fibroblasts. Res Virol 145: 75–82PubMedCrossRefGoogle Scholar
  57. van Del Pol A, Mocarski E, Saederup J, Meier T. (1999) Cytomegalovirus cell tropism, replication, and gene transfer in brain. J Neurosci 19: 10948–10965Google Scholar
  58. Vanderheyde N, Aksoy E, Amraoui Z, Vandenabeele P, Goldman M, Willems F. (2001) Tumoricidal activity of monocyte-derived dendritic cells: evidence for a caspase-8-dependent, fas-associated death domain-independent mechanism. J Immunol 167: 3565–3569PubMedGoogle Scholar
  59. Vaz-Santiago J, Lule J, Rohrlich P, Jacquier C, Gibert N, Le Roy E, Betbeder D, Davignon JL, Davrinche C. (2001) Ex vivo stimulation and expansion of both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells of human cytomegalovirus-seropositive blood donors by using a soluble recombinant chimeric protein, IE1-pp65. J Virol 75: 7840–7847PubMedCrossRefGoogle Scholar
  60. Vidalain PO, Azocar O, Lamouille B, Astier A, Rabourdin-Combe C, Servet-Delprat C. (2000) Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74: 556–559PubMedCrossRefGoogle Scholar
  61. Vidalain PO, Azocar O, Yagita H, Rabourdin-Combe C, Servet-Delprat C. (2001) Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded rna and cd40 ligand. J Immunol 167: 3765–3772PubMedGoogle Scholar
  62. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333: 1038–1044PubMedCrossRefGoogle Scholar
  63. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG. (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70: 7569–7579PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. Arrode
    • 1
  • C. Davrinche
    • 1
  1. 1.INSERM U 395CHU PurpanToulouse CédexFrance

Personalised recommendations