Viral Vectors for Dendritic Cell-Based Immunotherapy

  • J. Humrich
  • L. Jenne
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)


Dendritic cells (DCs) constitute a specialised system of antigen-presenting cells with a high capacity to induce and to modulate the immune response against microbial, tumour and self-antigens. New techniques to generate large amounts of DCs together with the molecular identification of human tumour-associated antigens (TAA) have opened new ways for antigen-specific cancer immunotherapies. DCs loaded either with TAA-derived MHC class I-specific synthetic peptides or with whole tumour cell preparations have been used in numerous clinical trials evaluating the efficacy of DCs in patients with cancer. However, the disadvantages of DCs pulsed with synthetic peptides from TAA include the uncertainty regarding the longevity of antigen presentation, the restriction by the patient’s haplotype and the relatively low number of known MHC class I and in particular of MHC class II helper cell-related epitopes. Whole tumour cell preparations are difficult to standardise, and they depend on the availability of tumour cells. Thus the utilisation of viral vectors genetically modified to express TAA for the ex vivo transduction of DCs is an attractive alternative to achieve a MHC I- and MHC II-restricted presentation of tumoural antigens. To induce protective anti-tumoural immune response an increasing number of modified viral vectors have been used to transduce DCs. Although high transduction efficacies were reported for several viruses, analysis of the interaction of viral vectors with DCs has revealed several viral mechanisms that interfere with main functions of DCs, dampening somewhat the initial optimism in the field of DC transduction. However, promising results with different vectors have been achieved. In this review we summarise available data and discuss advantages and drawbacks of currently available vectors.


Dendritic Cell Herpes Simplex Virus Type Simian Immunodeficiency Virus Human Dendritic Cell Modify Vaccinia Ankara Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ace CI, McKee TA, Ryan JM, Cameron JM, Preston CM: Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J.Virol. 1989, 63: 2260–2269.PubMedGoogle Scholar
  2. Albert ML, Sauter B, Bhardwaj N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998, 392: 86–89.PubMedCrossRefGoogle Scholar
  3. Alcami A, Koszinowski UH: Viral mechanisms of immune evasion. Immunol.Today 2000, 21: 447–455.PubMedCrossRefGoogle Scholar
  4. Alcami A, Smith GL: A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell 1992, 71: 153–167.PubMedCrossRefGoogle Scholar
  5. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G: Dendritic cells as vectors for therapy. Cell 2001, 106: 271–274.PubMedCrossRefGoogle Scholar
  6. Bender A, Albert M, Reddy A, Feldman M, Sauter B, Kaplan G, Hellman W, Bhardwaj N: The distinctive features of influenza virus infection of dendritic cells. Immunobiology 1998, 198: 552–567.PubMedCrossRefGoogle Scholar
  7. Bender A, Bui LK, Feldman MA, Larsson M, Bhardwaj N: Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses. J.Exp.Med. 1995, 182: 1663–1671.PubMedCrossRefGoogle Scholar
  8. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ: Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997, 158: 3270–3276.PubMedGoogle Scholar
  9. Brown M, Davies DH, Skinner MA, Bowen G, Hollingsworth SJ, Mufti GJ, Arrand JR, Stacey SN: Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors. Cancer Gene Ther. 1999, 6: 238–245.PubMedCrossRefGoogle Scholar
  10. Carroll MW, Moss B: Poxviruses as expression vectors. Curr.Opin.Biotechnol. 1997, 8: 573–577.PubMedCrossRefGoogle Scholar
  11. Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A: Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J.Exp.Med. 1999, 189: 821–829.PubMedCrossRefGoogle Scholar
  12. Chiriva-Internati M, Liu Y, Salati E, Zhou W, Wang Z, Grizzi F, Roman JJ, Lim SH, Hermonat PL: Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur.J.Immunol. 2002, 32: 30–38.PubMedCrossRefGoogle Scholar
  13. Chou J, Kern ER, Whitley RJ, Roizman B: Mapping of herpes simplex virus-1 neuro-virulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990, 250: 1262–1266.PubMedCrossRefGoogle Scholar
  14. Diao J, Smythe JA, Smyth C, Rowe PB, Alexander IE: Human PBMC-derived dendritic cells transduced with an adenovirus vector induce cytotoxic T-lymphocyte responses against a vector-encoded antigen in vitro. Gene Ther. 1999, 6: 845–853.PubMedCrossRefGoogle Scholar
  15. Dietz AB, Bulur PA, Brown CA, Pankratz VS, Vuk-Pavlovic S: Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Gene Ther. 2001, 8: 419–423.PubMedCrossRefGoogle Scholar
  16. Dietz AB, Vuk-Pavlovic S: High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998, 91: 392–398.PubMedGoogle Scholar
  17. Drexler I, Antunes E, Schmitz M, Wolfel T, Huber C, Erfle V, Rieber P, Theobald M, Sutter G: Modified vaccinia virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase-and melanoma-specific human leukocyte antigen A*020 1 -restricted cytotoxic T cells in vitro and in vivo. Cancer Res. 1999, 59: 4955–4963.PubMedGoogle Scholar
  18. Drillien R, Spehner D, Bohbot A, Hanau D: Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 2000, 268: 471–81.PubMedCrossRefGoogle Scholar
  19. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L: A third-generation lentivirus vector with a conditional packaging system. J.Virol. 1998, 72: 8463–8471.PubMedGoogle Scholar
  20. Dyall J, Latouche JB, Schnell S, Sadelain M: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001, 97: 114–121.PubMedCrossRefGoogle Scholar
  21. Fink DJ, Glorioso JC: Herpes simplex virus-based vectors: problems and some solutions. Adv.Neurol. 1997, 72: 149–156.PubMedGoogle Scholar
  22. Firat H, Zennou V, Garcia-Pons F, Ginhoux F, Cochet M, Danos O, Lemonnier FA, Langlade-Demoyen P, Charneau P: Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J.Gene Med. 2002, 4: 38–45.PubMedCrossRefGoogle Scholar
  23. Foley HD, Otero M, Orenstein JM, Pomerantz RJ, Schnell MJ: Rhabdovirus-based vectors with human immunodeficiency virus type 1 (HIV-1) envelopes display HIV-1-like tropism and target human dendritic cells. J.Virol. 2002, 76: 19–31.PubMedCrossRefGoogle Scholar
  24. Frankel AD, Young JA: HIV-1: fifteen proteins and an RNA. Annu.Rev.Biochem. 1998, 67: 1–25.PubMedCrossRefGoogle Scholar
  25. Geller AI: Herpes simplex virus-1 plasmid vectors for gene transfer into neurons. Adv.Neurol. 1997, 72: 143–148.PubMedGoogle Scholar
  26. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F: Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000, 96: 1327–1333.PubMedGoogle Scholar
  27. Harris NL, Ronchese F: The role of B7 costimulation in T-cell immunity. Immunol.Cell Biol. 1999, 77: 304–311.PubMedCrossRefGoogle Scholar
  28. Hayward AR, Read GS, Cosyns M: Herpes simplex virus interferes with monocyte accessory cell function. J.Immunol. 1993, 150: 190–196.PubMedGoogle Scholar
  29. Holzer GW, Remp G, Antoine G, Pfleiderer M, Enzersberger OM, Emsenhuber W, Hammerle T, Gruber F, Urban C, Falkner FG, Dorner F: Highly efficient induction of protective immunity by a vaccinia virus vector defective in late gene expression. J.Virol. 1999, 73: 4536–4542.PubMedGoogle Scholar
  30. Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A, Park D, Tine J, Guito K, Tsang KW, Schlom J, Kaufman HL: Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol.Immunother. 2000, 49: 504–514.PubMedCrossRefGoogle Scholar
  31. Horwitz MS: Adenoviruses. In Fields Virology. Edited by Fields BN, Knipe DM, Howley PM, Chancrock RM. Philadelphia: 1996: 2149–2171.Google Scholar
  32. Ignatius R, Marovich M, Mehlhop E, Villamide L, Mahnke K, Cox WI, Isdell F, Frankel S, Mascola JR, Steinman RM, Pope M: Canarypox-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor-a secretion. J.Virol. 2000, 74: 11329–11338.PubMedCrossRefGoogle Scholar
  33. Ilan Y, Droguett G, Chowdhury NR, Li Y, Sengupta K, Thummala NR, Davidson A, Chowdhury JR, Horwitz MS: Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc.Natl.Acad.Sci.U.S.A 1997, 94: 2587–2592.PubMedCrossRefGoogle Scholar
  34. Imler JL: Adenovirus vectors as recombinant viral vaccines. Vaccine 1995, 13:1143– 1151.Google Scholar
  35. Jenne L, Bhardwaj N: Perspectives of DC based immunotherapies. In Principles and Practice of Oncology, 6th Edition, Edited by DeVita VT, Hellman S, Rosenberg SA. Lippincott Williams & Wilkins; 2001: 1–15.Google Scholar
  36. Jenne L, Hauser C, Arrighi JF, Saurat JH, Hugin AW: Poxvirus as a vector to trans-duce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther 2000, 7: 1575–83.PubMedCrossRefGoogle Scholar
  37. Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 2001, 22: 102–107.PubMedCrossRefGoogle Scholar
  38. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int.J.Cancer 2001, 93: 243–251.PubMedCrossRefGoogle Scholar
  39. Kafri T: Lentivirus vectors: difficulties and hopes before clinical trials. Curr.Opin.- Mol.Ther. 2001, 3: 316–326.PubMedGoogle Scholar
  40. Kochanek S, Schiedner G, Volpers C: High-capacity ‘gutless’ adenoviral vectors. Curr.Opin.Mol.Ther. 2001, 3: 454–463.PubMedGoogle Scholar
  41. Kovesdi I, Brough DE, Bruder JT, Wickham TJ: Adenoviral vectors for gene transfer. Curr.Opin.Biotechnol. 1997, 8: 583–589.PubMedCrossRefGoogle Scholar
  42. Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hau-ber J: Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J.Exp.Med. 2000a, 191:1581– 1590.Google Scholar
  43. Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A: Mature dendritic cells infected with herpes simplex virus type I exhibit inhibited T cell stimulatory capacity. J.Virol. 2000b, 74: 7127–7136.PubMedCrossRefGoogle Scholar
  44. Kwong AD, Frenkel N: The herpes simplex virus virion host shutoff function. J.Virol. 1989, 63: 4834–4839.PubMedGoogle Scholar
  45. Lewis PF, Emerman M: Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J.Virol. 1994, 68: 510–516.PubMedGoogle Scholar
  46. Li S, Rodrigues M, Rodriguez D, Rodriguez JR, Esteban M, Palese P, Nussenzweig RS, Zavala F: Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc.Natl.Acad.Sci.U.S.A 1993, 90: 5214–5218.PubMedCrossRefGoogle Scholar
  47. Linette GP, Shankara S, Longerich S, Yang S, Doll R, Nicolette C, Preffer FI, Roberts BL, Haluska FG: In vitro priming with adenovirus/gp100 antigen-transduced dendritic cells reveals the epitope specificity of HLA-A*020 1 -restricted CD8+ T cells in patients with melanoma. J.Immunol. 2000, 164: 3402–3412.PubMedGoogle Scholar
  48. Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B, Schultz H, Stoeckel F, Pavirani A, Mehtali M: In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J.Virol. 1998, 72: 2022–2032.PubMedGoogle Scholar
  49. Lyakh LA, Koski GK, Young HA, Spence SE, Cohen PA, Rice NR: Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14(+) monocytes cultured under serum-free conditions. Blood 2002, 99: 600–608.PubMedCrossRefGoogle Scholar
  50. Mackett M, Smith GL: Vaccinia virus expression vectors. J.Gen.Virol. 1986, 67:2067– 2082.Google Scholar
  51. Mangeot PE, Duperrier K, Negre D, Boson B, Rigal D, Cosset FL, Darlix JL: High levels of transduction of human dendritic cells with optimized SIV vectors. Mol.Ther. 2002, 5: 283–290.PubMedCrossRefGoogle Scholar
  52. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL: Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000, 7: 867–874.PubMedCrossRefGoogle Scholar
  53. Maruyama K, Akiyama Y, Nara-Ashizawa N, Hojo T, Cheng JY, Mizuguchi H, Hayakawa T, Yamaguchi K: Adenovirus-mediated MUC1 gene transduction into human blood-derived dendritic cells. J.Immunother. 2001, 24: 345–353.PubMedCrossRefGoogle Scholar
  54. Metharom P, Ellem KA, Schmidt C, Wei MQ: Lentiviral vector-mediated tyrosinaserelated protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum.Gene Ther. 2001, 12: 2203–2213.PubMedCrossRefGoogle Scholar
  55. Meyer H, Sutter G, Mayr A: Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J.Gen.Virol. 1991, 72 (Pt 5): 1031–1038.PubMedCrossRefGoogle Scholar
  56. Mikloska Z, Bosnjak L, Cunningham AL: Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J.Virol. 2001, 75:5958– 5964.Google Scholar
  57. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat.Med. 1995, 1: 938–943.PubMedCrossRefGoogle Scholar
  58. Monahan PE, Samulski RJ: AAV vectors: is clinical success on the horizon? Gene Ther. 2000, 7: 24–30.PubMedCrossRefGoogle Scholar
  59. Morelli AE, Larregina AT, Ganster RW, Zahorchak AF, Plowey JM, Takayama T, Logar AJ, Robbins PD, Falo LD, Thomson AW: Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J.Virol. 2000, 74: 9617–9628.PubMedCrossRefGoogle Scholar
  60. Muzyczka N: Use of adeno -associated virus as a general transduction vector for mammalian cells. Curr.Top.Microbiol.Immunol. 1992, 158: 97–129.PubMedCrossRefGoogle Scholar
  61. Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ, Rabourdin-Combe C, Mehtali M, Moullier P, Darlix JL, Cosset FL: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 2000, 7: 1613–1623.PubMedCrossRefGoogle Scholar
  62. Palese P, Zheng H, Engelhardt OG, Pleschka S, Garcia-Sastre A: Negative-strand RNA viruses: genetic engineering and applications. Proc.Natl.Acad.Sci.U.S.A 1996, 93: 11354–11358.PubMedCrossRefGoogle Scholar
  63. Pecher G, Spahn G, Schirrmann T, Kulbe H, Ziegner M, Schenk JA, Sandig V: Mucin gene (MUC1) transfer into human dendritic cells by cationic liposomes and recombinant adenovirus. Anticancer Res. 2001, 21: 2591–2596.PubMedGoogle Scholar
  64. Philip R, Alters SE, Brunette E, Ashton J, Gadea J, Yau J, Lebkowski J, Philip M: Dendritic cells loaded with MART-1 peptide or infected with adenoviral construct are functionally equivalent in the induction of tumor-specific cytotoxic T lymphocyte responses in patients with melanoma. J.Immunother. 2000, 23: 168–176.PubMedCrossRefGoogle Scholar
  65. Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR: Adeno-associated virus type 2- mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J.Virol. 2001, 75: 9493–9501.PubMedCrossRefGoogle Scholar
  66. Rea D, Havenga MJ, van Den AM, Sutmuller RP, Lemckert A, Hoeben RC, Bout A, Melief CJ, Offringa R: Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J.Immunol. 2001, 166: 5236–5244.PubMedGoogle Scholar
  67. Rea D, Schagen FH, Hoeben RC, Mehtali M, Havenga MJ, Toes RE, Melief CJ, Offringa R: Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J Virol. 1999, 73: 10245–10253.PubMedGoogle Scholar
  68. Ready T: Trials suspended due to death at Hopkins. Nat.Med. 2001, 7: 877.PubMedCrossRefGoogle Scholar
  69. Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ: The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J.Virol. 1998, 72: 7909–7915.PubMedGoogle Scholar
  70. Rouard H, Leon A, Klonjkowski B, Marquet J, Tenneze L, Plonquet A, Agrawal SG, Abastado JP, Eloit M, Farcet JP, Delfau-Larue MH: Adenoviral transduction of human ‘clinical grade’ immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. J Immunol Methods 2000, 241: 69–81.PubMedCrossRefGoogle Scholar
  71. Salio M, Cella M, Suter M, Lanzavecchia A: Inhibition of dendritic cell maturation by herpes simplex virus. Eur.J.Immunol. 1999, 29: 3245–53.PubMedCrossRefGoogle Scholar
  72. Schultz ES, Chapiro J, Lurquin C, Claverol S, Burlet-Schiltz O, Warnier G, Russo V, Morel S, Levy F, Boon T, Van den Eynde BJ, van der BP: The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J.Exp.Med. 2002, 195: 391–399.PubMedCrossRefGoogle Scholar
  73. Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO: HSV-1 amplicon vectors–simplicity and versatility. Mol.Ther. 2000, 2: 9–15.PubMedCrossRefGoogle Scholar
  74. Stevenson SC, Rollence M, White B, Weaver L, McClelland A: Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain. J.Virol. 1995, 69: 2850–2857.PubMedGoogle Scholar
  75. Stockwin LH, Matzow T, Georgopoulos NT, Stanbridge LJ, Jones SV, Martin IG, Blair-Zajdel ME, Blair GE: Engineered expression of the Coxsackie B and adenovirus receptor (CAR) in human dendritic cells enhances recombinant adenovirus-mediated gene transfer. J.Immunol.Methods 2002, 259: 205–215.PubMedCrossRefGoogle Scholar
  76. Strobel I, Krumbholz M, Menke A, Hoffmann E, Dunbar PR, Bender A, Hobom G, Steinkasserer A, Schuler G, Grassmann R: Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Hum.Gene Ther. 2000, 11: 2207–2218.PubMedCrossRefGoogle Scholar
  77. Subklewe M, Chahroudi A, Schmaljohn A, Kurilla MG, Bhardwaj N, Steinman RM: Induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or UV- inactivated, recombinant EBNA-3Avaccinia virus. Blood 1999, 94: 1372–1381.PubMedGoogle Scholar
  78. Sutter G, Moss B: Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc.Natl.Acad.Sci.U.S.A 1992, 89: 10847–10851.PubMedCrossRefGoogle Scholar
  79. Sydiskis RJ, Roizman B: Polysomes and protein synthesis in cells infected with a DNA virus. Science 1966, 153: 76–78.PubMedCrossRefGoogle Scholar
  80. Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ, Gerritsen WR, Curiel DT: Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J.Immunol. 1999, 162: 6378–6383.PubMedGoogle Scholar
  81. Toes RE, Ossendorp F, Offringa R, Melief CJ: CD4 T cells and their role in antitumor immune responses. J.Exp.Med. 1999, 189: 753–756.PubMedCrossRefGoogle Scholar
  82. Trevor KT, Hersh EM, Brailey J, Balloul JM, Acres B: Transduction of human dendritic cells with a recombinant modified vaccinia Ankara virus encoding MUC1 and IL-2. Cancer Immunol.Immunother. 2001, 50: 397–407.PubMedCrossRefGoogle Scholar
  83. Trono D: Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 2000, 7: 20–23.PubMedCrossRefGoogle Scholar
  84. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73: 309–319.PubMedCrossRefGoogle Scholar
  85. Wold WS, Gooding LR: Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 1991, 184: 1–8.PubMedCrossRefGoogle Scholar
  86. Yang Y, Wilson JM: Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J.Immunol. 1995, 155: 2564–2570.PubMedGoogle Scholar
  87. Zachos G, Clements B, Conner J: Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1. J.Biol.Chem. 1999, 274: 5097–5103.PubMedCrossRefGoogle Scholar
  88. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM: Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur.J.Immunol. 1999, 29: 964–972.PubMedCrossRefGoogle Scholar
  89. Zhu M, Terasawa H, Gulley J, Panicali D, Arlen P, Schlom J, Tsang KY: Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells. Cancer Res. 2001, 61:3725– 3734.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Humrich
    • 1
  • L. Jenne
    • 1
  1. 1.Department of DermatologyUniversity of ErlangenErlangenGermany

Personalised recommendations