Advertisement

Cryosols pp 573-580 | Cite as

The Biology of Arid Cryosols

  • G. G. C. Claridge
  • I. B. Campbell
Chapter

Abstract

Because of the prevailing low temperatures, low humidities, frequent freeze-thaw cycles, and salinity of the soil, the Arid Cryosols of the Transantarctic Mountains are generally unfavorable environments for plant and animal life. Nevertheless, careful examination of the soil shows that habitable niches do exist, and organisms have colonized the soil and radiated to fill most of them. Food chains have formed, and a relatively large number of organisms occur in a relatively simple ecosystem.

Keywords

Cold Desert Antarctic Soil Fumarolic Activity Habitable Niche Transantarctic Mountain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargagli, R, P.A. Broady, and D.W.H. Walton. 1996. Preliminary investigation of the thermal biosystem of Mt Rittmann fumaroles (northern Victoria Land, Antarctica). Antarc. Sci. 8: 121–126.CrossRefGoogle Scholar
  2. Beyer, L., and M. Bölter. 1999. Formation, ecology and geography of Cryosols of an ice-free oasis in coastal East Antarctica near Casey Station (Wilkes Land). Austral. J. Sci. 37: 209–44.CrossRefGoogle Scholar
  3. Beyer, L., H-P. Blume, C. Sorge, H-R. Schulten, H. Erlenkeuser, and D. Schneider. 1997. Humus composition and transformations in a pergelic cryohemist of coastal Antarctica. Arc. & Alp. Rsch. 29: 358–365.CrossRefGoogle Scholar
  4. Bonaccorso, A., M. Maione, P.C. Pertusati, E. Privitera, and C.A. Ricci. 1991. Fumarolic activity at Mt. Rittmann volcano (northern Victoria Land, Antarctica). Memorie della Società Geologica Italiana. 46: 453–456.Google Scholar
  5. Boyd, W.L., J.T. Staley, and J.W. Boyd. 1966. Ecology of microorganisms in Antarctica. In: J.C.F. Tedrow, ed. Antarctic soils and soil-forming processes. Amer. Geophys. U. Antarc. Ser. 8: 125–159.CrossRefGoogle Scholar
  6. Broady, P.A. 1984. taxonomic and ecological investigations of algae on steam-warmed soils on Mt. Erebus, Ross Island, Antarctica. Phycologia. 23: 257–271.CrossRefGoogle Scholar
  7. Broady, P.A. 1996. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. & Cons. 5: 1307–1355.CrossRefGoogle Scholar
  8. Broady, P.A., D. Given, L. Greenfield, and K. Thompson. 1987. The biota and environment of fumaroles on Mt. Melbourne, northern Victoria Land. Polar Biol. 7: 97–113.CrossRefGoogle Scholar
  9. Broady, P.A., and R.N. Weinstein. 1998. Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarc. Sci. 10: 376–385.CrossRefGoogle Scholar
  10. Cameron, R.E., and H.P. Conrow. 1969. Soil moisture, relative humidity and microbial abundance in dry valleys of southern Victoria Land. Antarc. J. U.S. 4: 23–28.Google Scholar
  11. Cameron, R.E., G.H. Lacy, F.H. Morelli, and J.B. Marsh. 1971. Farthest south microbial and ecological investigations. Antarc. J. U.S. 6: 105–110.Google Scholar
  12. Cameron, R.E. 1972. Microbial and ecological investigations in Victoria Valley, southern Victoria Land, Antarctica. In: G.A. Llano, ed. Antarctic Terrestrial Biology. Amer. Geophy. U. Antarc. Rsch. Ser. 20: 195–220.CrossRefGoogle Scholar
  13. Claridge, G.G.C., I.B. Campbell, and D.S. Sheppard. 2000. Carbon pools in Antarctica and their significance for global climate change. R. Lal, J.M. Kimble, and B.H. Stewart, eds. Global climate change in cold regions ecosystems. Lewis Publishers. Boca Raton, FL. pp. 59–78.Google Scholar
  14. Freckmann, D.W., and R.A. Virginia. 1998. Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: J.C. Priscu, ed. Ecosystem dynamics in a Polar Desert. Amer. Geophy. U. Antarc. Rsch. Ser. 72: 323–335.CrossRefGoogle Scholar
  15. Friedmann, E.I., and R. Ocampo. 1976. Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Sci. 193: 1247–1249.CrossRefGoogle Scholar
  16. Gressitt, J., and J. Shoup. 1967. Ecological notes on free-living mites in North Victoria Land. In: J.L. Gressitt, ed. Entomology of Antarctica. Amer. Geophy. U. Antarc. Rsch. Ser. 10: 307–320.Google Scholar
  17. Janetschek, H. 1970. Environments and ecology of terrestrial arthropods in the High Antarctic. In: M.W. Holdgate, ed. Antarctic Ecology. Academic Press, London 2: 871–885.Google Scholar
  18. Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: biogeographical synthesis. Arc. & Alp. Rsch. 4: 308–315.CrossRefGoogle Scholar
  19. LeMasurier, W.E., and F.A. Wade. 1968. Fumarolic activity in Marie Byrd land, Antarctica. Sci. 162: 352.Google Scholar
  20. Lyon, G.L., and W.F. Giggenbach. 1974. Geothermal activity in Victoria Land, Antarctica. N.Z. J. Geol. and Geophys. 17: 511–522.CrossRefGoogle Scholar
  21. Orchard, V.A., and D.M. Corderoy. 1983. Influence of environmental factors on the decomposition of penguin guano in Antarctica. Polar Biol. 1: 199–204.CrossRefGoogle Scholar
  22. Ramsay, A.J. 1983. Bacterial biomass in ornithogenic soils of Antarctica. Polar Biol. 1: 221–225.CrossRefGoogle Scholar
  23. Ramsay, A.J., and R.E. Stannard. 1986. Numbers and viability of bacteria in ornithogenic soils of Antarctica. Polar Biol. 5: 195–198.CrossRefGoogle Scholar
  24. Rudolph, E.D. 1966. Vegetation of Hallett Station area, Victoria Land, Antarctica. Ecol. 44: 585–586.Google Scholar
  25. Speir, T.W., and J.C. Cowling. 1984. Ornithogenic soils of the Cape Bird Adelie penguin rookeries, Antarctica. 1. Chemical properties. Polar Biol. 2: 199–205.CrossRefGoogle Scholar
  26. Ugolini, F.C. 1967. Soils of Mt. Erebus, Antarctica. N.Z. J. Geol. and Geophys. 10: 431–442.CrossRefGoogle Scholar
  27. Ugolini, F.C. 1972. Omithogenic soils of Antarctica. In; G.A. Llano, ed. Antarctic Terrestrial Biology. Amer. Geophy. U. Antarc. Rsch. Ser. 20: 181–193.CrossRefGoogle Scholar
  28. Ugolini, F.C. 1977. The protoranker soils and the evolution of an ecosystem at Kar Plateau, Antarctica. In: G.A. Llano, ed. Proceedings of the 3rd Symposium on Antarctic Biology. Smithsonian Institute. Washington D.C. 1091–1110.Google Scholar
  29. Ugolini, F.C., and R.L. Starkey. 1966. Soils and micro-organisms from Mt Erebus. Nature. 211: 440–441.CrossRefGoogle Scholar
  30. Wynn-Williams, D.D., N.C. Russell, and H.G.M. Edwards. 1997. Moisture and habitat structure as regulators for microalgal colonists in diverse Antarctic terrestrial habitats. In: W.B. Lyons, C. Howard-Williams, and I. Hawes, eds. Ecosystem processes in Antarctic ice-free landscapes. Balkema. Rotterdam. pp. 77–88.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. G. C. Claridge
    • 1
  • I. B. Campbell
    • 2
  1. 1.Days Bay, EastbourneNew Zealand
  2. 2.Land and Soil Consultancy ServicesNelsonNew Zealand

Personalised recommendations