Biotic Responses to the Mjølnir Meteorite Impact, Barents Sea: Evidence from a Core Drilled within the Crater

  • Gerd Merethe A. Bremer
  • Morten Smelror
  • Jenö Nagy
  • Jorunn O. Vigran
Part of the Impact Studies book series (IMPACTSTUD)


The Mjølnir meteorite crater in the Barents Sea was formed at the Juassic/Cretaceous (Volgian-Ryazanian) boundary. The meteorite impacted the organic-rich clays assigned to the Hekkingen Formation (Volgian-Ryazanian age) and penetrated into underlying Middle Jurassic to Triassic rocks. Studies of macro- and microfossil assemblages from core 7329/03-U-01 drilled at the edge of the crater’s central high have revealed the following: 1) a lower unit consisting of strongly disturbed crater fill deposits with a microfossil content similar to that found in the Wilhelmøya Subgroup (Svalbard) and microfloral assemblage similar to those from the Sassendalen Group (Botneheia Formation) and the Storfjorden and Wilhelmøya subgroups on Svalbard; 2) a series of gravity flow deposits containing a mixture of reworked microfloras and -faunas of Middle Triassic/Middle Jurassic origin, and dinoflagellates of Volgian-Ryazanian age; 3) post-impact sediments of the Hekkingen Formation showing anomalous biotal features. In the lowermost post-impact sediments a conspicuous acme of Leiosphaeridia combined with an influx of abundant juvenile freshwater algae (Botryococcus) occurs. This points to brackish surface water conditions. In the same interval, only a few foraminiferids are found while the bivalve Buchia are frequent. High freshwater supply, stratified water-masses and high influx of released nutrients are considered as main factors acting on the post-impact depositional environment. Open marine conditions were restored in the Early Ryazanian.


Middle Triassic Dinoflagellate Cyst Meteorite Impact Biotic Response Microfossil Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkenmajer K, Pugaczewska H, Wierzbowski A (1982) The Janusfjellet Formation (Jurassic-Lower Cretaceous) at Myklegardfjellet, East Spitsbergen. Palaeontologica Polonica 43: 107–140Google Scholar
  2. Bjærke T (1977) Mesozoic palynology of Svalbard; II, Palynomorphs from the Mesozoic sequence of Kong Karls Land. Norsk Polarinstitutt Årbok 1976: 83–99Google Scholar
  3. Bjærke T (1980) Mesozoic palynology of Svalbard; V, Dinoflagellates from the Agardhfjellet Member (Middle and Upper Jurassic) in Spitsbergen. In: Geological and Geophysical Research in Svalbard and on Jan Mayen Norsk Polarinstitutt, Oslo, Norway, pp 145–167Google Scholar
  4. Bjærke T, Dypvik H (1977) Sedimentological and palynological studies of Upper Triassic-Lower Jurassic sediments in Sassenfjorden, Spitsbergen. Norsk Polarinstitutt Årbok 1976: 131–150Google Scholar
  5. Bremer GMA, Smelror M, Nagy J (2001) Biotic responses to the marine Mjølnir meteorite impact (Volgian-Ryazanian boundary, Barents Sea) [abs.]. In: Smelror M, Dypvik H, Tsikalas F (eds) 7th Workshop of the ESF Impact Program. Norwegian Geological Society, Trondheim, Norway, pp 11–12Google Scholar
  6. Dypvik H, Attrep M Jr. (1999) Geochemical signals of the late Jurassic, marine Mjølnir impact. Meteoritics and Planetary Science 34: 393–406CrossRefGoogle Scholar
  7. Dypvik H, Kyte FT, Smelror M (2000) Iridium peaks and algal blooms - The Mjølnir impact. [abs.] Lunar and Planetary Science 31, Abstract #1538, CD - ROMGoogle Scholar
  8. Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure; an impact crater in the Barents Sea. Geology 24: 779–782CrossRefGoogle Scholar
  9. Forsberg AW, Mørk A, Vigran JO (1984) Triassic source rock potential influenced by the green alga Tasmanites. Continental Shelf Institute (IKU), Trondheim, Norway, Report, 36 ppGoogle Scholar
  10. Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21: 291–294CrossRefGoogle Scholar
  11. Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 271–286CrossRefGoogle Scholar
  12. Lebedeva NK, Nikitenko BL (1999) Dinoflagellate cysts and microforaminifera of the Lower Cretaceous Yatria River Section, Subarctic Ural, NW Siberia, Russia. Grana 38: 134–143Google Scholar
  13. Leith TL, Weiss HM, Mørk A, Århus N, Elvebakk G, Embry AF, Brooks PW, Stewart KR, Pchelina TM, Bro EG, Verba ML, Danyushevskaya A, Borisov AV (1993) Mesozoic hydrocarbon source-rocks of the Arctic region. In: Vorren TO, Bergsager E, DahlStamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential: Proceedings of the Norwegian Petroleum Society Conference, Amsterdam, pp 1–25Google Scholar
  14. Løfaldli M, Nagy J (1980) Foraminiferal stratigraphy of Jurassic deposits on Kongsøya, Svalbard. In: Geological and geophysical research in Svalbard and on Jan Mayen. Norsk Polarinstitutt, Oslo, Norway, pp 63–95Google Scholar
  15. Løfaldli M, Nagy J (1981) Agglutinating foraminifera in Jurassic and Cretaceous dark shales in southern Spitsbergen. In: Verdenius JG, Van-Hinte JE, Fortuin AR (eds) Proceedings of the First Workshop on Arenaceous Foraminifera 7.-9. September, 1981. Continental Shelf Institute (IKU), Trondheim, Norway, pp 91–107Google Scholar
  16. Murray JW (1991) Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific and Technical, Essex, England, 397 ppGoogle Scholar
  17. Mørk A, Dallmann WK, Dypvik H, Johannessen EP, Larssen GB, Nagy J, Nøttvedt A, Olaussen S, Pcelina TM, Worsley D (1999) Mesozoic lithostratigraphy. In: Dallmann, WK (ed) Lithostratigraphic lexicon of Svalbard: review and recommendations for nomenclature use: upper Palaeozoic to Quaternary bedrock. Norsk Polarinstitutt, Tromsø, Norway, pp 127–214Google Scholar
  18. Mørk A, Knarud R, Worsley D (1982) Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: Embry AF, Balkwill HR (eds) Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology. Canadian Society of Petroleum Geologists, Calgary, Canada, pp 371–398Google Scholar
  19. Nagy J, Basov VA (1998) Revised foraminiferal taxa and biostratigraphy of Bathonian to Ryazanian deposits in Spitsbergen. Micropaleontology 44: 217–255CrossRefGoogle Scholar
  20. Nagy J, Løfaldli M, Bäckström SA (1988) Aspects of foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in eastern Spitsbergen. In: Roegl F, Gradstein FM (eds) Second workshop on Agglutinated foraminifera: proceedings of the second Workshop on Agglutinated Foraminifera Vienna 1986. Abhandlungen der Geologischen Bundesanstalt, Vienna, Austria, pp 287–300Google Scholar
  21. Nagy J, Pilskog B, Wilhelmsen RM (1990) Facies controlled distribution of foraminifera in the Jurassic North Sea basin. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (eds) Proceedings of the NATO Advanced Study Institute on Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. Reidel Publishing Company, Dordrecht-Boston, pp 621–657Google Scholar
  22. Nagy J, Seidenkrantz M-S (submitted) New foraminiferal taxa and revised biostratigraphy of Jurassic marginal marine deposits on Anholt, Denmark. MicropaleontologyGoogle Scholar
  23. Nøttvedt A, Cecchi M, Gjelberg JG, Kristensen SE, Lonoy A, Rasmussen A, Rasmussen E, Skott PH, van Veen PM (1993) Svalbard-Barents Sea correlation; a short review. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential: Proceedings of the Norwegian Petroleum Society Conference. Elsevier, New York, pp 363–375Google Scholar
  24. Riding JB, Fedorova VA, Ilynia VI (1999) Jurassic and lowermost Cretaceous dinoflagellate cyst biostratigraphy of the Russian Platform and Northern Siberia, Russia. American Association of Stratigraphic Palynologists Contribution Series 36: 1–179Google Scholar
  25. Sandbakken PT (2002) A geological investigation of the Mjølnir Crater core (7329/03-U01): with emphasis on shock metamorphosed quartz. Cand. Scient. (Master) thesis, Department of Geology, University of Oslo, 141 ppGoogle Scholar
  26. Sandbakken P, Dypvik H (2001) The Mjølnir crater–A core description. [abs.] In: Smelror M, Dypvik H, Tsikalas F (eds) 7th Workshop of the ESF Impact Programme. Submarine Craters and Ejecta-Crater Correlations and Icy Impacts and Icy Targets. Norwegian Geological Society, Trondheim, Norway, pp 69–70Google Scholar
  27. Smelror M, Below R (1993) Dinoflagellate biostratigraphy of the Toarcian to Lower Oxfordian (Jurassic) of the Barents Sea region. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential: Proceedings of the Norwegian Petroleum Society Conference. Elsevier, New York, pp 495–513Google Scholar
  28. Smelror M, Mørk A, Montail E, Rutledge D, Leereveld H (1998) The Klippfisk Formation: a new lithostratigraphic unit of Lower Cretaceous platform carbonates on the western Barents Shelf. Polar Research 17: 181–202CrossRefGoogle Scholar
  29. Smelror M, Dypvik H, Mørk A (2001a). Phytoplankton blooms in the Jurassic-Cretaceous boundary beds of the Barents Sea possibly induced by the Mjølnir meteorite impact. In: Buffetaut E, Koeberl C (eds) Geological and Biological Effects of Impact Events. Springer, Berlin, pp 66–81Google Scholar
  30. Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001b) Mjølnir ( Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsletter on Stratigraphy 38: 129–140Google Scholar
  31. Smelror M, Mørk A, Mørk MBE, Weiss HM, Løseth H (2001c) Middle Jurassic-Lower Cretaceous transgressive-regressive sequences and facies distribution off northern Nordland and Troms, Norway. In: Martinsen OJ, Dreyer T (eds) Sedimentary environments offshore Norway–palaeozoic to recent: proceedings of the Norwegian Petroleum Society Conference, 3–5 May 1999, Bergen, Norway. Elsevier, Amsterdam, pp 211–232Google Scholar
  32. Tsikalas F, Gudlaugsson ST, Faleide JI (1998) Collapse, infilling and post-impact deformation at the Mjølnir Impact Structure, Barents Sea. Geological Society of America Bulletin 110: 537–552Google Scholar
  33. Vigran JO, Mangerud G, Mørk A, Bugge T, Weitschat W (1998) Biostratigraphy and sequence stratigraphy of the Lower and Middle Triassic deposits from the Svalis Dome, Central Barents Sea, Norway. Palynology 22: 89–141Google Scholar
  34. Wierzbowski A, Århus N (1990) Ammonite and dinoflagellate cyst succession of an Upper Oxfordian-Kimmeridgian black shale core from the Nordkapp Basin, southern Barents Sea. Newsletter on Stratigraphy 22: 7–19Google Scholar
  35. Wignall PB (1994) Black Shales. Clarendon Press, Oxford, 127 ppGoogle Scholar
  36. Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A Lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Oljedirektoratet, Stavanger, pp 42–65Google Scholar
  37. Århus N (199 1) The transition from deposition of condensed carbonates to dark claystones in the Lower Cretaceous succession of the southwestern Barents Sea. Norsk Geologisk Tidsskrift 71: 259–263Google Scholar
  38. Århus N, Kelly SRA, Collins JSH, Sandy MR (1990) Systematic palaeontology and biostratigraphy of two Early Cretaceous condensed sections from the Barents Sea. Polar Research 8: 165–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gerd Merethe A. Bremer
    • 1
  • Morten Smelror
    • 2
  • Jenö Nagy
    • 1
  • Jorunn O. Vigran
    • 3
  1. 1.Department of GeologyUniversity of OsloOsloNorway
  2. 2.Geological Survey of NorwayTrondheimNorway
  3. 3.TrondheimNorway

Personalised recommendations