Pathophysiology of Coronary Calcification

  • Rozemarijn Vliegenthart
Part of the Medical Radiology book series (MEDRAD)


In the eighteenth century, just after the initial descriptions of coronary sclerosis, pathologists first noted calcium deposits in the coronary arteries (Blankenhorn 1961; Morgagni 1761, cited by bing 1964). Thebesius considered calcified coronary artery lesions to be the most important feature of coronary sclerosis (Blankenhorn 1961). This was the prevailing view for over 200 years. In 1863 Virchow noticed that the calcification of atherosclerotic lesions in the coronaries was similar to ossification, or bone formation. During the twentieth century attention shifted towards cholesterol metabolism and other factors found to play an essential role in atherogenesis. Calcium deposits were regarded as merely a degenerative byproduct of advanced stages of atherosclerosis (Leary 1936; Blankenhorn 1961; Hamby et al. 1974). Part of the decreased interest may have been due to the poor resolution of radiographic imaging techniques at the time, with a low sensitivity for detecting calcium. Nevertheless, many researchers recognized that noninvasive imaging of coronary calcification might be useful for the identification of asymptomatic subjects at high risk of acute myocardial infarction or sudden cardiac death. Owing to the development of high-resolution techniques such as fluoroscopy and, more recently, electron-beam


Sudden Cardiac Death Atherosclerotic Lesion Vascular Calcification Plaque Rupture Plaque Burden 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107: 341–348Google Scholar
  2. Anderson HC (1989) Mechanism of mineral formation in bone. Lab Invest 60: 320–330Google Scholar
  3. Bing R (1964) Coronary circulation and cardiac metabolism. In: Fishman A, Richards D (eds) Circulation of the blood: men and ideas. Oxford University Press, Oxford, UK, pp 199–264Google Scholar
  4. Blankenhorn DH (1961) Coronary arterial calcification: a review. Am J Med Sci 42: 1–9CrossRefGoogle Scholar
  5. Bostrom K, Watson KE, Horn S et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91: 1800–1809CrossRefGoogle Scholar
  6. Buerger L, Oppenheimer A (1908) Bone formation in sclerotic arteries. J Exp Med 10: 354–367CrossRefGoogle Scholar
  7. Bunting CH (1906) The formation of true bone in sclerotic arteries. J Exp Med 8: 365–376CrossRefGoogle Scholar
  8. Cheng GC, Loree HM, Kamm RD et al (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87: 1179–1187CrossRefGoogle Scholar
  9. Conklin JL, Enlow DH, Bang S (1965) Methods for the demonstration of lipid applied to compact bone. Stain Technol 40: 183–191Google Scholar
  10. Davies MJ, Richardson PD, Woolf N et al (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381CrossRefGoogle Scholar
  11. Doherty MJ, Ashton BA, Walsh Set al (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13: 828–838CrossRefGoogle Scholar
  12. Doherty TM, Detrano RC, Mautner SL et al (1999) Coronary calcium: the good, the bad, and the uncertain. Am Heart J 137: 806–814CrossRefGoogle Scholar
  13. Edmonds ME, Morrison N, Laws JW et al (1982) Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 284: 928–930CrossRefGoogle Scholar
  14. Fitzpatrick LA, Severson A, Edwards WD et al (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94: 15971604Google Scholar
  15. Fleet JC, Hock JM (1994) Identification of osteocalcin mrna in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction. J Bone Miner Res 9: 1565–1573CrossRefGoogle Scholar
  16. Hamby RI, Tabrah F, Wisoff BG et al (1974) Coronary artery calcification: clinical implications and angiographic correlates. Am Heart J 87: 565–570CrossRefGoogle Scholar
  17. Haust MD, More RH (1965) Spontaneous lesions of the aorta in the rabbit. In: Roberts JC, Straus R (eds) Comparative atherosclerosis: the morphology of spontaneous and induced atherosclerotic lesions in the animals and its relation to human diseases. Harper and Row, New York, pp 255–275Google Scholar
  18. Hirota S, Imakita M, Kohri K et al (1993) Expression of osteopontin messenger ma by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol 143: 1003–1008Google Scholar
  19. Irving JT, Wuthier RE (1968) Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop 56: 237–260Google Scholar
  20. Kragel AH, Reddy SG, Wittes JT et al (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80: 1747–1756CrossRefGoogle Scholar
  21. Leary T (1936) Atherosclerosis: special consideration of aortic lesions. Arch Pathol 21: 419–419Google Scholar
  22. Lee RT (2000) Atherosclerotic lesion mechanics versus biology. Z Kardiol 89 [Suppl 21: 80–84CrossRefGoogle Scholar
  23. Lee RT, Grodzinsky AJ, Frank EH et al (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83: 1764–1770CrossRefGoogle Scholar
  24. Long ER (1967) Development of our knowledge of arteriosclerosis. In: Blumenthal HT (eds) Cowdry’s arteriosclerosis. A survey of the problem. Thomas, Springfield, pp 6–7Google Scholar
  25. Loree HM, Tobias BJ, Gibson LJ et al (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14: 230–234CrossRefGoogle Scholar
  26. Mascola A, Ko J, Bakhsheshi H et al (2000) Electron beam tomography comparison of culprit and non-culprit coronary arteries in patients with acute myocardial infarction. Am J Cardiol 85: 1357–1359CrossRefGoogle Scholar
  27. Mönckeberg JG (1903) Über die reine Mediaverkalkung der Extremitätenarterien and ihr Verhalten zur Arteriosklerose. Virchows Arch 171: 141–167CrossRefGoogle Scholar
  28. Mönckeberg JG (1914) Mediaverkalkung and Atherosklerose. Virchows Arch 216: 408–416CrossRefGoogle Scholar
  29. Naghavi M, Madjid M, Khan MR et al (2001) New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 3: 125–135CrossRefGoogle Scholar
  30. Parhami F, Morrow AD, Balucan J et al (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17: 680–687CrossRefGoogle Scholar
  31. Proudfoot D, Skepper JN, Shanahan CM et al (1998) Calcification of human vascular cells in vitro is correlated with high levels of matrix gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol 18: 379–388PubMedCrossRefGoogle Scholar
  32. Rekhter MD, Zhang K, Narayanan AS et al (1993) Type i collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol 143: 1634–1648Google Scholar
  33. Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92: 2157–2162CrossRefGoogle Scholar
  34. Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcify-ing methodology. J Am Coll Cardiol 31: 126–133CrossRefGoogle Scholar
  35. Schmermund A, Schwartz RS, Adamzik M et al (2001) Coronary atherosclerosis in unheralded sudden coronary death under age 50: histo-pathologic comparison with `healthy’ subjects dying out of hospital. Atherosclerosis 155: 499–508CrossRefGoogle Scholar
  36. Schmid K, McSharry WO, Pameijer CH et al (1980) Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37: 199–210CrossRefGoogle Scholar
  37. Schor AM, Allen TD, Canfield AE et al (1990) Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97: 449–461Google Scholar
  38. Shanahan CM, Cary NR, Metcalfe JC et al (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93: 2393–2402CrossRefGoogle Scholar
  39. Shanahan CM, Proudfoot D, Tyson KL et al (2000) Expression of mineralisation-regulating proteins in association with human vascular calcification. Z Kardiol 89 [Suppl 2]: 63–68CrossRefGoogle Scholar
  40. Shemesh J, Stroh CI, Tenenbaum A et al (1998) Comparison of coronary calcium in stable angina pectoris and in first acute myocardial infarction utilizing double helical computerized tomography. Am J Cardiol 81: 271–275CrossRefGoogle Scholar
  41. Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11 [Suppl E]: 3–19CrossRefGoogle Scholar
  42. Stary HC (1995) The histological classification of atherosclerotic lesions in human coronary arteries. In: Fuster V, Ross R, Topol E (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  43. Stary HC (2000a) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20: 1177–1178CrossRefGoogle Scholar
  44. Stary HC (2000b) Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 89 [Suppl 2]: 28–35CrossRefGoogle Scholar
  45. Tanimura A, McGregor DH, Anderson HC (1986) Calcification in atherosclerosis. I. Human studies. J Exp Pathol 2: 261–273Google Scholar
  46. Tintut Y, Parhami F, Bostrom K et al (1998) Camp stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem 273: 7547–7553CrossRefGoogle Scholar
  47. Van der Wal AC, Becker AE, van der Loos CM et al (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44CrossRefGoogle Scholar
  48. Veress AI, Vince DG,Anderson PM et al (2000) Vascular mechan- ics of the coronary artery. Z Kardiol 89 [Suppl 21: 92–100CrossRefGoogle Scholar
  49. Virchow R (1863) Cellular pathology: as based upon physiological and pathological histology (translated by Frank Chance, 1971). Dover, pp 404–408Google Scholar
  50. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275CrossRefGoogle Scholar
  51. Watson KE, Bostrom K, Ravindranath R et al (1994) Tgf-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93: 2106–2113CrossRefGoogle Scholar
  52. Watson KE, Parhami F, Shin V et al (1998) Fibronectin and collagen i matrixes promote calcification of vascular cells in vitro, whereas collagen iv matrix is inhibitory. Arterioscler Thromb Vasc Biol 18: 1964–1971CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rozemarijn Vliegenthart
    • 1
  1. 1.Department of RadiologyUniversity Hospital GroningenGroningenThe Netherlands

Personalised recommendations