Skip to main content

Time-Course of Smooth Muscle Cell Proliferation following Balloon Angioplasty and Excimer Laser Treatment in an Experimental Animal Model

  • Chapter
Coronary Laser Angioplasty

Abstract

Division of Cardiology, Department of Medicine, University of Tübingen, FRG Since Grüntzig et al. [2] introduced Percutaneous Transluminal Coronary Angioplasty (PTCA) in 1977, this technique has become a successful method in the treatment of patients with coronary artery disease [3]. The clinical application of PTCA, however, is limited by the occurrence of restenosis in 30–40% of primary successful treated patients [4, 5, 6]. Transluminal angioplasty, performed with an inflatable balloon, is associated with endothelial denudation and early accumulation of platelets and fibrin [7, 8], splitting of the intima and media [9-11], stretching of the medial layer, and overdistention of the adventitia [12, 13]. Platelet adhesion and aggregation induced by endothelial injury following balloon angioplasty has been shown to result in the release of several mitogens [14], including epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). These components, as well as expression of fibroblast growth factor (FGF) and activation of macrophages, are thought to stimulate migration and proliferation of smooth muscle cells (SMC) in the dilated artery [15–18]. In addition, stimulated smooth muscle cells are also capable of producing intrinsic growth factors [19]. Smooth muscle cell proliferation following PTCA was found to be important for the development of restenosis in several experimental and human postmortem studies [20–22] .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dotter CT, Judkins MP (1964) Transluminal treatment of arteriosclerotic obstruction. Description of a new technique and a preliminary report of its application.Circulation 30: 654–670

    CAS  Google Scholar 

  2. Grüntzig AR (1978) Transluminal dilatation of coronary artery stenosis. Lancet 1: 263

    Article  PubMed  Google Scholar 

  3. Block PC (1985) Percutaneous transluminal coronary angioplasty: role in the treatment of coronary artery disease. Circulation 72: V - 161

    Google Scholar 

  4. Holmes DR, Vliestra RE, Smith HC, Vetrovec GW, Kent KM, Cowley MJ, Faxon DP, Grüntzig AR, Kelsey SF, Detre KM, van Raden MJ, Mock MB (1984) Restenosis after percutaneous transluminal coronary angioplasty (PTCA): A report from the PTCA Registry of the National Heart, Lung and Blood Institute. Am J Cardiol 53: 77C

    Google Scholar 

  5. Kaltenbach M, Kober G, Scherer D, Vallbracht C (1985) Recurrence rate after successful coronary angioplasty. Eur Heart J 6: 276–281

    PubMed  CAS  Google Scholar 

  6. Serruys PW, Luijten HE, Beat KJ, Geuskens R, de Feyter PJ, van den Brand M, Reiber JHC, Ten Katen HJ, van Es GA, Hugenholtz PG (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon: A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 month. Circulation 77: 361–372

    CAS  Google Scholar 

  7. Pasternak RC, Baughman KL, Fallon JT, Block PC (1980) Scanning electron microscopy after transluminal angioplasty of normal canine coronary arteries. Am J Cardiol 45: 591–598

    Article  PubMed  CAS  Google Scholar 

  8. Wilentz JR, Sanborn TA, Haudenschild CC, Valeri CR, Ryan TJ, Faxon DP (1987) Platelet accumulation in experimental angioplasty: time course and relation to vascular injury. Circulation 75: 636–642

    Article  PubMed  CAS  Google Scholar 

  9. Castaneda-Zuniga WR, Formanek A, Tadavatrhy M, Vlodaver Z, Edwards JE, Zollikofer C, Amplatz K (1980) The mechanism of balloon angioplasty. Radiology 135: 565–571

    PubMed  CAS  Google Scholar 

  10. Lyon RT, Zarins CK, Lu CT, Yang CF, Gladov S (1987) Vessel, plaque, and lumen morphology after transluminal balloon angioplasty. Quantitative study in distended human arteries. Arteriosclerosis 1987; 7: 306–314

    Google Scholar 

  11. Block PC, Myler RK, Sterzer S, Fallon JT (1981) Morphology after transluminal angioplasty in human beings. N Engl J Med 305: 382–385

    Article  PubMed  CAS  Google Scholar 

  12. Sanborn TA, Faxon DP, Haudenschild CC, Gottsman SB, Ryan TJ (1983) The mechanism of transluminal angioplasty: evidence for formation of aneurysmas in experimental atherosclerosis. Circulation 68: 1136–1140

    Article  PubMed  CAS  Google Scholar 

  13. McBride W, Lange RA, Hillis LD (1988) Restenosis after successful coronary angioplasty. N Engl J Med 318: 1734–1737

    Article  PubMed  CAS  Google Scholar 

  14. Monsen CH, Adams PC, Badimon L, Chesebro JH, Fuster V (1987) Platelet-vessel wall interactions in the development of restenosis after coronarz angioplasty. Z Kardiol 1987; 76: Suppl. 6, 23–28

    Google Scholar 

  15. Bernstein LR, Antoniades H, Zetter BR (1982) Migration of cultured vascular cells in response to plasma and platelet-derived factors. J Cell Sci 56: 71–82

    PubMed  CAS  Google Scholar 

  16. Ihnatowycz IO, Winocour PD, Moore S (1981) A platelet-derived factor chemotatic for rabbit smooth muscle cells in culture. Artery 9: 316–317

    PubMed  CAS  Google Scholar 

  17. Grotendorst GR, Seppa HEJ, Kleinman HK, Martin GR (1981) Attachment of smooth muscle cells to collagen and their migration toward plateled-derived growth factor. Proc Nat Acad Sci USA 78: 3669–3672

    Article  PubMed  CAS  Google Scholar 

  18. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin G (1982) Platelet-derived growth factor is chemotactic for fibroblasts. Cell Biol Int Rep 5: 813–819

    Article  Google Scholar 

  19. Ross R (1986) The pathogenesis of atherosclerosis–an update. N Engl J Med 20: 488–500

    Article  Google Scholar 

  20. Essed CE, van den Brand M, Becker AE (1983) Transluminal coronary angioplasty and early restenosis. Fibrocellular occlusion after wall laceration. Br Heart J 49: 393–396

    Google Scholar 

  21. Austin GE, Ratliff NB, Hollmann J, Tabei S, Phillips DF (1985) Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 6: 369–375

    Article  PubMed  CAS  Google Scholar 

  22. Steele PM, Chesebro JH, Stanson AW, Holmes DR Jr, Dewanjee MK, Badimon L, Fuster V (1985) Balloon angioplasty: Natural history of the pathophysiological response to injury in a pig model. Circ Res 57: 105–112

    Google Scholar 

  23. Selzer PM, Murphy-Chutorian D, Ginsburg R, Wexler L (1985) Optimizing strategies for laser angioplasty. Invest Radiol 20: 860–866

    Article  PubMed  CAS  Google Scholar 

  24. Isner JM, Donaldson RF, Funai JT, Deckelbaum LI, Pandian NG, Clarke RH, Konstam MA, Salem DN, Bernstein JS (1985) Factors contributing to perforations resulting from laser coronary angioplasty. Circulation 72: II 191–199

    Google Scholar 

  25. Abela GS, Crea F, Smith W, Pepine CJ, Conti CR (1985) In vitro effects of argon laser radiation on blood; quantitative and morphological analysis. JACC 5: 231–237

    PubMed  CAS  Google Scholar 

  26. Abela G, Norman S, Cohen R, Feldman R, Geiger F, Conti CR (1982) Effects of carbon dioxide, Nd-YAG and argon laser radiation on coronary atheromatous plaque. Am J Cardiol 50: 1129–1205

    Google Scholar 

  27. Gerrity R, Loop F, Golding L, Ehrhart L, Argenyi Z (1983) Arterial response to laser operation for removal of atherosclerotic plaques. J Thorac Cardiovasc Surg 85: 409–421

    PubMed  CAS  Google Scholar 

  28. Lawrence PF, Dries DJ, Moatamed F, Dixon J (1984) Acute effects of argon laser on human atherosclerotic plaque. J Vasc Surg 1: 852–859

    PubMed  CAS  Google Scholar 

  29. Isner J (1986) The paradox of thermal ablation without thermal injury. Proceedings 3rd European Laser Association; Amsterdam: Echo Med Verlag, B-609–611

    Google Scholar 

  30. Grundfest WS, Litvack F, Forrester JS, Goldenberg T, Swan HJC, Morgenstern L, Fishbein M, McDermid S, Rider DM, Pacala TJ, Laudenslager JB (1985) Laser ablation of human atherosclerotic plaque without adjacent tissue injury. JACC 5: 929–933

    PubMed  CAS  Google Scholar 

  31. Srinivasan R, Leigh W (1982) Ablative photodecomposition: Action of far ultraviolet (193 nm) laser radiation on poly (ethylene terephthalate) films. J Am Chem Soc 104: 6784–6785

    Article  CAS  Google Scholar 

  32. Karsch KR, Haase KK, Mauser M, Ickrath O, Voelker W, Duda S, Seipel L (1989) Percutaneous coronary excimer laser angioplasty: Initial clinical results. Lancet 2: 647–650

    Google Scholar 

  33. Karsch KR, Haase KK, Voelker W, Baumbach A, Mauser M, Seipel L (1990) Percutaneous coronary excimer laser angioplasty in patients with stable and unstable angina pectoris: Acute results and incidence of restenosis during 6-month follow-up. Circulation 81: 1849–1859

    Article  PubMed  CAS  Google Scholar 

  34. Litvack F, Grundfest W, Margolis J, Eigler N, Segalowitz J, Hestrin L, Rothbaum D, Linnemeier T, Goldenberg T, Forrester J (1989) Complications during excimer laser angioplasty are similar to those during PTCA (abstract). Circulation 80 (suppl II): II - 254

    Google Scholar 

  35. Margolis JR, Litvack F, Grundfest W, Eigler N, Goldenberg T, Laudenslager J, Tsoi D, Wong S, Segalowitz J, Hestrin L, Rothbaum D, Linnemeier T, Helfant R, Forrester J (1980) Excimer laser coronary angioplasty: results of a multicenter study (abstract). Circulation (suppl II): II - 477

    Google Scholar 

  36. Betz E, Schlote W (1979) Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74: 10–20

    Article  PubMed  CAS  Google Scholar 

  37. Betz E, Hämmerle H (1984) Arterienwandproliferate and Zellkulturen als Indikatoren für Hemmstoffe der Atherogenese. Funkt Biol Med 3: 46–55

    CAS  Google Scholar 

  38. Hanke H, Strohschneider T, Oberhoff M, Betz E, Karsch KR (1990) Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res 67: 651–659

    Article  PubMed  CAS  Google Scholar 

  39. Strohschneider T, Hämmerle H, Betz E (1988) Evidence for the development in phases of stenosing processes of arteries with a method of quanifying cell-kinetic reactions of smooth muscle cells in experimentally induced intima cushions (abstract). Pflügers Arch 412 (suppl 1): 56

    Google Scholar 

  40. Guesdon JL, Ternyck T, Avrameas S (1979) The use of avidinbiotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27: 771–776

    Article  Google Scholar 

  41. Falini B, de Solas I, Halverson C, Parker JW, Taylor CR (1982) Double labelled antigen method for demonstration of intracellular antigens in paraffin-embedded tissues. J Histochem Cytochem 30: 21–26

    Article  PubMed  CAS  Google Scholar 

  42. Hanke H, Haase KK, Hanke S, Oberhoff M, Hassenstein S, Betz E, Karsch KR (1991) Morphological changes and smooth muscle cell proliferation following excimer laser treatment. Circulation: 83; 1380–1389

    Article  PubMed  CAS  Google Scholar 

  43. Sachs L (1978) Angewandte Statistik. 5. Auflage. Berlin Springer Verlag

    Google Scholar 

  44. Liu WM, Roubin GS, King III SB (1989) Restenosis after coronary angioplasty, potential biologic determinants and role if intimal hyperplasia. Circulation 79: 1374–1387

    Article  PubMed  CAS  Google Scholar 

  45. Clowes AW, Schwartz SM (1985) Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res 56: 139–145

    Article  PubMed  CAS  Google Scholar 

  46. Faxon DP, Weber VJ, Haudenschild CC, Gottsman SB, McGovern WA, Ryan TJ (1982) Acute effects of transluminal angioplasty in three experimental models of atherosclerosis. Arteriosclerosis 2: 125–133

    Article  PubMed  CAS  Google Scholar 

  47. Clowes AW, Reidy MA, Clowes MM (1983) Mechanisms of stenosis after arterial injury. Lab Invest 49: 208–215

    PubMed  CAS  Google Scholar 

  48. Grünwald J, Haudenschild CC (1984) Intimal injury in vivo activates vascular smooth muscle cell migration and explant outgrowth in vitro. Arteriosclerosis 4: 183–188

    Article  PubMed  Google Scholar 

  49. Kling D, Holzschuh T, Betz E (1987) Temporal sequence of morphological alterations in artery walls during experimental atherogenesis: occurence of leucocytes. Res Exp Med 187: 237–250

    Article  CAS  Google Scholar 

  50. Betz E, Hämmerle H, Strohschneider T (1985) Inhibition of smooth muscle cell proliferation and endothelial permeability with flunarizine in vitro and in experimental atheromas. Res Exp Med 185: 325–340

    Article  CAS  Google Scholar 

  51. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. N Engl J Med 295: 369–377

    Article  PubMed  CAS  Google Scholar 

  52. Geer JC, McGill HC Jr, Strong JP (1968) The fine structure of human atherosclerotic lesions. Am J Pathol 33: 263–287

    Google Scholar 

  53. Clowes AW, Clowes MM (1985) Kinetics of cellular proliferation after arterial injury II. Inhibition of smooth muscle growth by heparin. Lab invest 52: 611–616

    Google Scholar 

  54. Linker R, Srinivasan R, Wynne JJ, Alonso DR (1984) Farultraviolet laser ablation of atherosclerotic lesions. Lasers Surg Med 4: 201–206

    Article  Google Scholar 

  55. Leon MB, Underhill DJ, Smith PD (1986) Excimer lasers for angioplasty: comparison of KrF and XeC1 and mechanism of tissue ablation (abstract). JACC 7: 207 A

    Google Scholar 

  56. Cross FW, Al-Dhahir RK, Dyer PE (1988) Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment. J Appl Phys 64: 2194–2201

    Article  Google Scholar 

  57. Prevosti LG, Leon MB, Smith PD, Dodd JT, Bonner RF, Robinowitz M, Clark RE, Virmani R (1988) Early and late healing responses of normal canine artery to excimer laser irradiation. J Thorac Cardiovasc Surg 96: 150–156

    PubMed  CAS  Google Scholar 

  58. Macruz R, Ribeiro MP, Brum JM (1985) Laser surgery in enclosed spaces: a review. Lasers Surg Med 5: 199–218

    Article  PubMed  CAS  Google Scholar 

  59. Giraldo AA, Esponso OM, Meis JM (1985) Intimal hyperplasia as a cause of restenosis after percutaneous transluminal coronary angioplasty. Arch Pathol Lab Med 109: 173–175

    PubMed  CAS  Google Scholar 

  60. Karsch KR, Haase KK, Wehrmann M, Hassenstein S, Hanke H (1991) Smooth muscle cell proliferation and restenosis after stand alone coronary excimer laser angioplasty. JACC 17: 991–994

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanke, H., Haase, K.K., Oberhoff, M., Karsch, K.R. (1991). Time-Course of Smooth Muscle Cell Proliferation following Balloon Angioplasty and Excimer Laser Treatment in an Experimental Animal Model. In: Karsch, K.R., Haase, K.K. (eds) Coronary Laser Angioplasty. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-06416-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06416-0_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-06418-4

  • Online ISBN: 978-3-662-06416-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics