Skip to main content

Bacteria as a Source of Coral Nutrition

  • Chapter

Abstract

Coral reefs are diverse and important communities in tropical and subtropical marine environments. Hermatypic corals play a key role in forming the structure of coral reefs and in providing substrata and shelter for a wide variety of organisms. The symbiotic association between corals and their photosynthetic algae (zooxanthellae) is one of the primary keys to coral success in this ecosystem (Fallowski et al. 1984; Sebens 1994). Hermatypic corals attain a large part of their nutrition from photosynthetic products of the zooxanthellae, which are located in their gastrodermal cell layer. However, corals must utilize other particulate matter to gain enough nitrogen and phosphorus to grow (Sorokin 1990; Sebens 1994; Schlichter and Brendelberger 1998; Rosenfeld et al. 1999; Anthony and Fabricius 2000).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson A, Miloh T, Loya Y (1993) Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles. Limnol Oceanogr 38: 1116–1124

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. I Exp Mar Biol Ecol 232: 85–106

    Article  Google Scholar 

  • Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19: 59–67

    Article  Google Scholar 

  • Anthony KRN, Fabricius EF (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252: 221–253

    Article  PubMed  Google Scholar 

  • Bak RPM, Joenje M, de Jong I, Lambrechts DYM, Nieuwland G (1998) Bacterial suspension feeding by coral reef benthic organisms. Mar Ecol Prog Ser 175: 285–288

    Article  Google Scholar 

  • Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141: 47–55

    Article  Google Scholar 

  • Capone DG (2001) Marine nitrogen fixation: what’s the fuss? Curr Opin Microbiol 4 (3): 341–348

    Article  PubMed  CAS  Google Scholar 

  • Ducklow WH (1990) The biomass, production and fate of bacteria in coral reefs. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 265–289

    Google Scholar 

  • Ducklow WH, Mitchell R (1979a) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24 (4): 715–725

    Article  Google Scholar 

  • Ducklow WH, Mitchell R (1979b) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24: 706–714

    Article  CAS  Google Scholar 

  • Edmundes JP (1991) Extent and effect of black band disease. Coral Reefs 10: 161–165

    Article  Google Scholar 

  • Fallowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of symbiotic coral. Bioscience 34 (11): 705–709

    Article  Google Scholar 

  • Ferrer LM, Szmant AM (1988) Nutrient regeneration by the endolithic community in coral skeletons. Proceeding of the 6th International Coral Reef Symposium, Australia, 3, pp 1–4

    Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae–an alternative source of energy during coral bleaching. Proc R Soc Lond B 269: 1205–1210

    Article  Google Scholar 

  • Frias-Lopez J, Zerkle LA, Bonheyo T, Fouke WB (2002) Partitioning of bacterial communities between seawater and healthy, black-band diseased, and dead coral surfaces. Appl Environ Microbiol 68: 2214–2228

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MW (2002) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34 (4): 232–245

    Article  PubMed  Google Scholar 

  • Hansen JA, Klumpp DW, Alongi DM, Dayton PK, Riddle MJ (1992) Detrital pathways in a coral reef lagoon II. Detritus deposition, benthic microbial biomass and production. Mar Biol 113: 363–372

    Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Ostrerhaus A, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Review: marine ecology–emerging marine diseases–climate links and anthropogenic factors. Science 285 (5433): 1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296: 1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Krupp AD (1985) An immunochemical study of the mucus from the solitary coral Fongia scutaria. Bull Mar Sci 36 (1): 163–176

    Google Scholar 

  • Kuhl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech PN (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117: 159–172

    Article  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380: 396

    Article  CAS  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147: 159–165

    Article  Google Scholar 

  • Kushmaro A, Rosenberg E, Loya Y (1999) Species-specific properties of the coral mucus microbial communities. 7th International Conference of the Israel Society for Ecology And Environmental Quality Sciences on Environmental Challenges for the Next Millennium

    Google Scholar 

  • Kushmaro A, Banin A, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov, the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51: 1383–1388

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata ( Moorea, French Polynesia). Mar Ecol Prog Ser 117: 149–157

    Google Scholar 

  • Lewis JB, Price WS (1975) Feeding mechanisms and feeding strategies of Atlantic reef corals. J Zool Lond 176: 527–544

    Article  Google Scholar 

  • Loya Y (1978) Plotless and transect methods. In: Stoddart DR, Johannes RE (eds) Monographs on oceanic methodology. Coral reefs: research methods, vol 5. UNESCO Press, Paris, pp 197–218

    Google Scholar 

  • Lubbock R (1979) Mucus antigenicity in sea anemones and corals. Hydrobiologia 66: 3–6

    Article  Google Scholar 

  • Meikle P, Richards NG, Yellowlees D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99: 187–193

    Article  CAS  Google Scholar 

  • Mitchell R, Chet I (1975) Bacterial attack of corals in polluted seawater. Microb Ecol 2: 227–233

    Article  Google Scholar 

  • Palincsar EE, Warren RJ, Palincsar SJ, Glogowski AM, Mastro LJ (1989) Bacterial aggregates within the epidermis of the sea anemone Aiptasia pallida. Biol Bull 177 (30): 140

    Google Scholar 

  • Patterson KL, Porter JW, Ritchie KE et al. (2002) The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci USA 99 (13): 8725–8730

    Article  PubMed  CAS  Google Scholar 

  • Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33: 29–40

    Article  Google Scholar 

  • Ritchie KB, Smith WG (1995) Preferential carbon utilization by surface bacterial communities from water mass, normal, and white-band diseased Acropora cervicornis. Mol Mar Biol Biotechnol 4 (4): 345–352

    CAS  Google Scholar 

  • Ritchie KB, Smith WG (1997) Physiological comparison of bacterial communities from various species of scleractinian corals. Proc 8th Int Coral Reef Symp 1: 521–526

    Google Scholar 

  • Ritchie KB, Dennis JH, McGrath T, Smith GW (1994) Bacteria associated with bleached and nonbleached areas of Montastrea annularis. In: Kass L (ed) Bahamian field station. Proc 5th Symp Nat Hist Bahamas, San Salvador, Bahamas, pp 75–79

    Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam A, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20: 85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam A, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243: 1–10

    Article  Google Scholar 

  • Rosenfeld M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2 (6): 345–348

    Article  Google Scholar 

  • Rublee AP, Lasker RH, Gottfried M, Roman RM (1980) Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull Mar Sci 30 (4): 888–893

    Google Scholar 

  • Santavy DL, Peters EC (1997) Microbial pests: coral disease in the western Atlantic. Proc 8th Int Coral Reef Symp 1: 607–612

    Google Scholar 

  • Schiller C, Herndl JG (1989) Evidence of enhanced microbial activity in the interstitial space of branched corals: possible implication for coral metabolism. Coral Reefs 7: 179–184

    Article  Google Scholar 

  • Schlichter D, Brendelberger H (1998) Plasticity of the scleractinian body plan: functional morphology and trophic specialization of Mycedium elephantotus (Pallas, 1766). FACIES 39: 227–242

    Article  Google Scholar 

  • Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82 (12): 561–564

    Article  CAS  Google Scholar 

  • Sebens PK (1994) Biodiversity of coral reefs: what are we losing and why? Am Zool 34: 115–133

    Google Scholar 

  • Sebens PK (1997) Adaptive responses to water flow: morphology, energetics, and distribution of reef corals. Proc 8th Int Coral Reef Symp 2: 1053–1058

    Google Scholar 

  • Sebens PK, Grace PS, Helmuth B, Maney JE Jr, Miles SJ (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Poritas porites, in a field enclosure. Mar Biol 131: 347–360

    Article  Google Scholar 

  • Segel AL, Ducklow WH (1982) A theoretical investigation into the influence of sublethal stresses on coral-bacterial ecosystem dynamics. Bull Mar Sci 32 (4): 919–935

    Google Scholar 

  • Shashar N, Cohen Y, Loya Y, Sar N (1994) Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral bacteria interactions. Mar Ecol Prog Ser 11 (3): 259–264

    Article  Google Scholar 

  • Sorokin YI (1973a) Trophical role of bacteria in the ecosystem of coral reef. Nature 242: 415–417

    Article  Google Scholar 

  • Sorokin YI (1973b) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18: 380–385

    Article  CAS  Google Scholar 

  • Sorokin YI (1978) Microbial production in the coral-reef community. Arch Hydrobiol 83: 281–323

    Google Scholar 

  • Sorokin YI (1990) Aspects of trophic relation, productivity and energy balance in coral-reef ecosystem. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 401–410

    Google Scholar 

  • Wahbeh IM, Mahasneh MA (1988) Composition and bacterial utilization of mucus of corals from Aqaba (Red Sea), Jordan. Proceeding of the 6th International Coral Reef Symposium, Australia, 3, pp 53–57

    Google Scholar 

  • Williams WM, Viner AB, Broughton WL (1987) Nitrogen fixation (acetylene reduction) associated with the living coral Acropora variabilis. Mar Biol 94: 531–535

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kushmaro, A., Kramarsky-Winter, E. (2004). Bacteria as a Source of Coral Nutrition. In: Rosenberg, E., Loya, Y. (eds) Coral Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06414-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06414-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05863-9

  • Online ISBN: 978-3-662-06414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics