Advertisement

Excursions

  • Daniel Revuz
  • Marc Yor
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 293)

Abstract

Throughout this section, we consider a measurable space (U, U) to which is added a point δ and we set U δ = U ∪ {δ},U δ = σ (U, {δ}).

Keywords

Poisson Process Poisson Point Process Brownian Bridge Strong Markov Property Poisson Random Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments

  1. [5]
    Itô, K. Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp. Math. Stat. Prob., vol. 3. University of California, Berkeley, 1970, pp. 225–239.Google Scholar
  2. [4]
    Meyer, P.A. Processus de Poisson ponctuels, d’après K. Itô. Sém. Prob. V, Lect. Notes in Mathematics, vol. 191. Springer, Berlin Heidelberg New York 1971, pp. 177–190.Google Scholar
  3. [8]
    Pitman, J.W. Cyclically stationary Brownian local time processes. Prob. Th. Rel. Fields 106(1996) 299–329.MathSciNetMATHCrossRefGoogle Scholar
  4. [6]
    Maisonneuve, B. On the structure of certain excursions of a Markov process. Z.W. 47(1979) 61–67.MathSciNetMATHCrossRefGoogle Scholar
  5. [4]
    Pitman, J.W. Lévy systems and path decompositions. Seminar on stochastic processes. Birkhäuser, Basel 1981, pp. 79–110.Google Scholar
  6. [1]
    Itô, K., and McKean, H.P. Diffusion processes and their sample paths. Springer, Berlin Heidelberg New York 1965.MATHCrossRefGoogle Scholar
  7. [6]
    Williams, D. On Lévy’s downcrossing theorem. Z.W. 40(1977) 157–158.MATHCrossRefGoogle Scholar
  8. [1]
    Chung, K.L. Excursions in Brownian motion. Ark. för Math. 14(1976) 155–177.MATHCrossRefGoogle Scholar
  9. [4]
    Maisonneuve, B. On Lévy’s downcrossing theorem and various extensions. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 191–205.Google Scholar
  10. [1]
    Barlow, M.T., Emery, M., Knight, F.B., Song, S., Yor, M. Autour d’un théorème de Tsirel’son sur des filtrations browniennes et non-browniennes. Sém. Probab. XXXII, Lect. Notes in Mathematics, vol. 1686. Springer, Berlin Heidelberg New York 1998, pp. 264–305.Google Scholar
  11. [7]
    Maisonneuve, B. Excursions chevauchant un temps aléatoire quelconque. In: Hommage à P.A. Meyer et J. Neveu. Astérisque 236(1996) 215–226.Google Scholar
  12. [4]
    Getoor, R.K. Excursions of a Markov process. Ann. Prob. 7(2) (1979) 244–266.MathSciNetMATHCrossRefGoogle Scholar
  13. [1]
    Chung, K.L. Excursions in Brownian motion. Ark. för Math. 14(1976) 155–177.MATHCrossRefGoogle Scholar
  14. [6]
    Maisonneuve, B. On the structure of certain excursions of a Markov process. Z.W. 47(1979) 61–67.MathSciNetMATHCrossRefGoogle Scholar
  15. [1]
    Imhof, J.P. Density factorizations for Brownian motion and the three-dimensional Bessel Processes and applications. J. Appl. Prob. 21(1984) 500–510.MathSciNetMATHCrossRefGoogle Scholar
  16. [2]
    Imhof, J.P. On Brownian bridge and excursion. Studia Scient. Math. Hungaria 20(1985) 1–10.MathSciNetMATHGoogle Scholar
  17. [1]
    Durrett, R., and Iglehart, D.L. Functionals of Brownian meander and Brownian excursion. Ann. Prob. 5(1977) 130–135.MathSciNetMATHCrossRefGoogle Scholar
  18. [1]
    Denisov, I.V. A random walk and a Wiener process near a maximum. Theor. Prob. Appl. 28(1984) 821–824.MATHCrossRefGoogle Scholar
  19. [3]
    Biane, P. Comportement asymptotique de certaines fonctionnelles additives de plusieurs mouvements browniens. Sém. Prob. XXIII, Lect. Notes in Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 198–233.Google Scholar
  20. [3]
    Azéma, J. Sur les fermés aléatoires. Sém. Prob. XIX. Lect. Notes in Mathematics, vol. 1123. Springer, Berlin Heidelberg New York 1985, pp. 397–495.Google Scholar
  21. [5]
    Itô, K. Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp. Math. Stat. Prob., vol. 3. University of California, Berkeley, 1970, pp. 225–239.Google Scholar
  22. [2]
    Ikeda, N., and Watanabe, S. Stochastic differential equations and diffusion processes. Second edition North-Holland Publ. Co., Amsterdam Oxford New York; Kodansha Ltd., Tokyo 1989.Google Scholar
  23. [7]
    Williams, D. Diffusions, Markov processes and Martingales, vol. 1: Foundations. Wiley and Sons, New York 1979.Google Scholar
  24. [1]
    Rogers, L.C.G. Williams characterization of the Brownian excursion law: proof and applications. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 227–250.Google Scholar
  25. [1]
    Rogers, L.C.G. Williams characterization of the Brownian excursion law: proof and applications. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 227–250.Google Scholar
  26. [3]
    Bismut, J.M. Last exit decomposition and regularity at the boundary of transition probabilities. Z.W. 69 (1985) 65–98.MathSciNetMATHCrossRefGoogle Scholar
  27. [1]
    Biane, P. Relations entre pont brownien et excursion normalisée du mouvement brownien. Ann. I.H.P. 22, 1 (1986) 1–7.MathSciNetMATHGoogle Scholar
  28. [1]
    Biane, P. Relations entre pont brownien et excursion normalisée du mouvement brownien. Ann. I.H.P. 22, 1 (1986) 1–7.MathSciNetMATHGoogle Scholar
  29. [1]
    Vervaat, W. A relation between Brownian bridge and Brownian excursion. Aim. Prob. 7(1) (1979) 141–149.MathSciNetGoogle Scholar
  30. [3]
    Rogers, L.C.G. Itô excursions via resolvents. Z.W. 63(1983) 237–255.MATHCrossRefGoogle Scholar
  31. [8]
    Knight, F.B. Inverse local times, positive sojourns, and maxima for Brownian motion. Astérisque 157458 (1988) 233–247.Google Scholar
  32. [2]
    Biane, P. Sur un calcul de F. Knight. Sém. Prob. XXII, Lect. Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp. 190–196.Google Scholar
  33. [4]
    Biane, P., and Yor, M. Sur la loi des temps locaux browniens pris en un temps exponentiel. Sém. Prob. XXII, Lect. Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp. 454–466.Google Scholar
  34. [3]
    Biane, P., and Yor, M. Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112(1988) 101–109.MathSciNetMATHGoogle Scholar
  35. [2]
    Ikeda, N., and Watanabe, S. Stochastic differential equations and diffusion processes. Second edition North-Holland Publ. Co., Amsterdam Oxford New York; Kodansha Ltd., Tokyo 1989.Google Scholar
  36. [1]
    Rogers, L.C.G. Williams characterization of the Brownian excursion law: proof and applications. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 227–250.Google Scholar
  37. [2]
    Azéma, J. Représentation multiplicative d’une surmartingale bornée. Z.W. 45(1978) 191–212.MATHCrossRefGoogle Scholar
  38. [1]
    Biane, P. Relations entre pont brownien et excursion normalisée du mouvement brownien. Ann. I.H.P. 22, 1 (1986) 1–7.MathSciNetMATHGoogle Scholar
  39. [3]
    Azéma, J. Sur les fermés aléatoires. Sém. Prob. XIX. Lect. Notes in Mathematics, vol. 1123. Springer, Berlin Heidelberg New York 1985, pp. 397–495.Google Scholar
  40. [1]
    Biane, P., Le Gall, J.F., and Yor, M. Un processus qui ressemble au pont brownien. Sém. Prob. XXI, Lect. Notes in Math- ematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 270–275.Google Scholar
  41. [3]
    Biane, P., and Yor, M. Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112(1988) 101–109.MathSciNetMATHGoogle Scholar
  42. [6]
    Knight, F.B. On the duration of the longest excursion. Sem. Stoch. Prob. 1985. Birkhäuser, Basel 1986, pp. 117–147.Google Scholar
  43. [4]
    Biane, P., and Yor, M. Sur la loi des temps locaux browniens pris en un temps exponentiel. Sém. Prob. XXII, Lect. Notes in Mathematics, vol. 1321. Springer, Berlin Heidelberg New York 1988, pp. 454–466.Google Scholar
  44. [2]
    Pitman, J.W., and Yor, M. A decomposition of Bessel bridges. Z.W. 59(1982) 425–457.MathSciNetMATHCrossRefGoogle Scholar
  45. [1]
    Bertoin, J., Chaumont, L., and Pitman, J. Path transformation of first passage bridges. Elec. Comm. in Prob. 8(2003) 155–166.MathSciNetMATHGoogle Scholar
  46. [1]
    Bertoin, J., and Le Jan, Y. Representation of measures by balayage from a regular recurrent point. Ann. Prob. 20(1992) 538–548.MATHCrossRefGoogle Scholar
  47. [5]
    Le Gall. J.F., and Yor, M. Excursions browniennes et carrés de processus de Bessel. C.R. Acad. Sci. Paris, Série I 303(1986) 73–76.Google Scholar
  48. [5]
    Pitman, J.W. Cyclically stationary Brownian local time processes. Prob. Th. Rel. Fields 106(1996) 299–329.MathSciNetMATHCrossRefGoogle Scholar
  49. [3]
    Azéma, J., and Yor, M. Etude d’une martingale remarquable. Sém. Prob. XXIII. Lect. Notes in Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 88–130.Google Scholar
  50. [3]
    Bismut, J.M. Last exit decomposition and regularity at the boundary of transition probabilities. Z.W. 69 (1985) 65–98.MathSciNetMATHCrossRefGoogle Scholar
  51. [1]
    Borodin, A.N., and Salminen, P. Handbook of Brownian motion — Facts and formulae. Birkhäuser 2002 (second edn.).Google Scholar
  52. [1]
    Csâki, E. On some distributions concerning maximum and minimum of a Wiener process. In B. Gyires, editor, Analytic Function Methods in Probability Theory, number 21 in Colloquia Mathematica Societatis Janos Bolyai, p. 43–52. North-Holland, 1980 ( 1977, Debrecen, Hungary ).Google Scholar
  53. [3]
    Pitman, J.W., and Yor, M. Sur une décomposition des ponts de Bessel. In: Functional Analysis in Markov processes. Lect. Notes in Mathematics, vol. 923. Springer, Berlin Heidelberg New York 1982, pp. 276–285.CrossRefGoogle Scholar
  54. [1]
    Biane, P., and Yor, M. Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111(1987) 23–101.MathSciNetMATHGoogle Scholar
  55. [9]
    Williams, D. Brownian motion and the Riemann zeta function. In: D. Welsh and G. Grimmett (eds.) Disorder in Physical Systems. Festschrift for J. Hammersley. Oxford 1990, pp. 361–372.Google Scholar
  56. [1]
    Smith, L., and Diaconis, P. Honest Bernoulli excursions. J. Appl. Prob. 25(3) (1988) 464–477.MathSciNetMATHGoogle Scholar
  57. [1]
    Biane, P., Pitman, J., and Yor, M. Probabilistic interpretation of the Jacobi and the Riemann zeta functions via Brownian excursions. Bull. AMS 38(2001) 435–465.MathSciNetMATHCrossRefGoogle Scholar
  58. [1]
    Biane, P., and Yor, M. Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111(1987) 23–101.MathSciNetMATHGoogle Scholar
  59. [1]
    Bertoin, J. and Pitman, J. Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118(1994) 147–166.MathSciNetMATHGoogle Scholar
  60. [1]
    Leuridan, C. Une démonstration élémentaire d’une identité de Biane et Yor. Sém. Prob. XXX, Lect. Notes in Mathematics, vol. 1626. Springer, Berlin Heidelberg New York 1996, pp. 255–260.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Daniel Revuz
    • 1
  • Marc Yor
    • 2
  1. 1.Départment de MathématiquesUniversité Paris VIIParis Cedex 05France
  2. 2.Laboratoire de ProbabilitésUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations