Confounding of Effects in Rank-Based Conjoint-Analysis

  • Thorsten Teichert


Conjoint analysis enjoys large popularity among marketing researchers, as it combines easy-to-handle data collection with sophisticated evaluation methods. Dating back to the 70th, rank-based conjoint analysis is traditionally used to approximate metric utility functions of individual respondents within its given limits (see overview in: Green and Srinivasan 1978, 1990). This approach constitutes the basis for many past academic research studies and practical applications (Schubert 1991) and thus shapes their findings. Today, rating scales are applied more often (Wittink et al. 1994), partly because of the scale requirements of new methods, such as hybrid models (e.g., Green 1984) or the standardized software package ACA (Green et al. 1991). Accordingly, this paper is intended for those who either (still) apply rank-based Conjoint-analyses or who want to compare their findings with those from past rank-based conjoint studies.


Conjoint Analysis Importance Weight Fractional Factorial Design Orthogonal Design Ranking Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Akiva, M., Morikawa, T. and Shiroishi, F. (1992), Analysis of the Reliability of Preference Ranking Data, Journal of Business Research, 24, 149–164.CrossRefGoogle Scholar
  2. Box, G., Hunter, W. and Hunter, J. St. (1978), Statistics for Experimenters.: An Introduction to Design, Data Analysis and Model Building,New York.Google Scholar
  3. Bradley, M. and Daly, A (1994), Use of the Logit Scaling Approach to Test for Rank-Order and Fatigue effects in Stated Preference Data, Transportation, 21, 167–184.CrossRefGoogle Scholar
  4. Carmone, F. J. and Green, P. E. (1981), Model Misspecifications in Multiattribute Parameter Estimation, Journal of Marketing Research, 18, 87–93.CrossRefGoogle Scholar
  5. Carmone, F. J., Green, P. E. and Jain, A. (1978), Robustness of Conjoint Analysis: Some Monté Carlo Results, Journal of Marketing Research, 15, 300–303.CrossRefGoogle Scholar
  6. Cattin, Ph. and Bliemel, F. (1978), Metric versus Nonmetric Procedures for Multiattribute Modeling: Some Simulation Results, Decision Science, 9, 472–480.CrossRefGoogle Scholar
  7. Cattin, Ph. and Weinberger, M. G. (1980), Some Validity and Reliability Issues in the Measurement of Attribute Utilities, in: Olson, J.C., ed., Advances in Consumer Research, 7, Ann Arbor, 780–783.Google Scholar
  8. Currim, I. S., Weinberg, C. B. and Wittink, D. R. (1981), The Design of Subscription Programs for a Performing Arts Series, Journal of Consumer Research, 8, 67–75.CrossRefGoogle Scholar
  9. Darmon, R. and Rouziès, D. (1991), Internal Validity Assessment of Conjoint Estimated Attribute Importance Weights, Journal of the Academy of Marketing Science, 9 /4, 315–322.CrossRefGoogle Scholar
  10. Darmon, R. and Rouziès, D. (1994), Reliability and Internal Validity of Conjoint Estimated Utility Functions under Error-Free versus Full-Error Conditions, International Journal of Research in Marketing, 11, 465–476.CrossRefGoogle Scholar
  11. Darmon, R. and Rouziès, D. (1999), Internal Validity of Conjoint Analysis Under Alternative Measurement Procedures, Journal of Business Research, 46, 67–81.CrossRefGoogle Scholar
  12. Green, P. E. (1984), Hybrid Models for Conjoint Analysis: An Expository Review, Journal of Marketing Research, 21, 155–169.CrossRefGoogle Scholar
  13. Green, P. E. and Srinivasan, V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, Journal of Consumer Research, 5, 103–123.CrossRefGoogle Scholar
  14. Green, P. E. and Srinivasan, V. (1990), Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice, Journal of Marketing, 54, 3–19.CrossRefGoogle Scholar
  15. Green, P. E., Carroll, J. D. and Carmone, F. J. (1978), Some New Types of Fractional Factorial Designs for Marketing Experiments, in: Sheth, J., ed., Research in Marketing Greenwich, 1, CT: JAI Press, 99–122.Google Scholar
  16. Green, P. E., Krieger, A. M. and Agarwal, M. K. (1991), Adaptive Conjoint Analysis: Some Caveats and Suggestions, Journal of Marketing Research, 28, 215–222.CrossRefGoogle Scholar
  17. Hahn, G. J. and Shapiro, S. S. (1966), A Catalogue and Computer Programme for the Design and Analysis of Orthogonal Symmetric and Asymmetric Fractional Factorial Experiments, Report No. 66C - 165, General Electric Research and Development Center, Schenectady, New York.Google Scholar
  18. Kuhfeld, W., Tobias, R. and Garratt, M. (1994), Efficient Experimental Design with Marketing Research Applications, Journal of Marketing Research, 31, 545–557.CrossRefGoogle Scholar
  19. Louviere, J. J. (1988), Analyzing Decision Making - Metric Conjoint Analysis,London, New Dehli.Google Scholar
  20. Mengen, A. (1993), Konzeptgestaltung von Dienstleistungsprodukten: Eine Conjoint-Analyse im Luftfrachtmarkt unter Berücksichtigung der Qualitätsunsicherheit beim Dienstleistungskauf,Stuttgart.Google Scholar
  21. Müller-Hagedorn, L., Sewing, E. and Toporowski, W. (1993), Zur Validität von Conjoint-Analysen, Zeitschrift für betriebswirtschaftliche Forschung, 2, 123–148.Google Scholar
  22. Pocsi, L., Miller, B., Huang, C. and Turner, S. (1994), An International Shelled Peanut Futures Contract: The Use of Conjoint Analysis in New Contract Design, The Review of Futures Market,13(1), 219247.Google Scholar
  23. Schirm, K. (1995), Die Glaubwürdigkeit von Produktvorankündigungen,Wiesbaden.Google Scholar
  24. Schubert, B. (1991), Entwicklung von Konzepten für Produktinnovationen mittels Conjointanalyse,Stuttgart.Google Scholar
  25. Steenkamp, J.-B. and Wittink, D. R. (1994), The Metric Quality of Full-Profile Judgments and the Number-of-Attribute-Levels Effect in Conjoint Analysis, International Journal of Research in Marketing, 11, 275–286.CrossRefGoogle Scholar
  26. Teichert, Th. (1994), Zur Validität der in Conjoint-Analysen ermittelten Nutzenwerte, Zeitschrift für betriebswirtschaftliche Forschung, 7, 610–629.Google Scholar
  27. Teichert, Th. (1998), Schätzgenauigkeit von Conjoint-Analysen, Zeitschrift für Betriebswirtschaft, 68 (11), 1245–1266.Google Scholar
  28. Toy, D., Rager, R. and Guadagnolo, F. (1989), Strategic Marketing for Recreational Facilities: A Hybrid Conjoint Analysis Approach, Journal of Leisure Research, 21, 276–296.Google Scholar
  29. Wittink, D. R., and Cattin, Ph. (1981), Alternative Estimation Methods for Conjoint Analysis: A Monté Carlo Study, Journal of Marketing Research, 18 (2), 101–106.CrossRefGoogle Scholar
  30. Wittink, D. R., Krishnamurthi, L. and Reibstein, D. J. (1989), The Effects of Differences in the Number of Attribute Levels on Conjoint Results, Marketing Letters, 1, 113–123.CrossRefGoogle Scholar
  31. Wittink, D. R., Vriens, M. and Burhenne, W. (1994), Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections, International Journal of Research in Marketing, 11, 41–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Thorsten Teichert

There are no affiliations available

Personalised recommendations