Skip to main content

Stability of the Peierls instability for ring-shaped molecules

  • Chapter
Condensed Matter Physics and Exactly Soluble Models

Abstract

We investigate the conventional tight-binding model of L π electrons on a ring-shaped molecule of L atoms with nearest-neighbor hopping. The hopping amplitudes t(w) depend on the atomic spacings w with an associated distortion energy V(w). A Hubbard-type on-site interaction as well as nearest-neighbor repulsive potentials can also be included. We prove that when L =4k +2 the minimum energy E occurs either for equal spacing or for alternating spacings (dimerization); nothing more chaotic can occur. In particular, this statement is true for the Peierls-Hubbard Hamiltonian, which is the case of linear t(w) and quadratic V(w), i.e., t(w)=t o−αw and V(w)=k(w −a)2,but our results hold for any choice of couplings or functions t (w) and V(w). When L =4k we prove that more chaotic minima can occur, as we show in an explicit example, but the alternating state is always asymptotically exact in the limit L→∞. Our analysis suggests three interesting conjectures about how dimerization stabilizes for large systems. We also treat the spin-Peierls problem and prove that nothing more chaotic than dimerization occurs for L =4k +2 and L =4k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Hückel, Z. Phys. 70, 204 (1931); 72, 310 (1931); 76, 628 (1932).

    Google Scholar 

  2. L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966 ).

    Google Scholar 

  3. F. London, J. Phys. Radium Sér. VII, Tome VIII, 397 (1937).

    Google Scholar 

  4. H. Jones, Proc. R. Soc. London Ser. A 147, 396 (1934).

    Article  ADS  Google Scholar 

  5. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  6. R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 (1953).

    Article  ADS  Google Scholar 

  7. J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953).

    Article  Google Scholar 

  8. E. H. Lieb, in Advances in Dynamical Systems and Quantum Physics,Proceedings of 1993 conference in honor of G. F. Dell'Antonio, edited by R. Figari (World Scientific, Singapore, in press); and in The Physics and Mathematical Physics of the Hubbard Model,Proceedings of 1993 NATO ASW, edited by D. K. Campbell and F. Guinea (Plenum, New York, in press). An updated version appears in Proceedings of the XIth International Congress of Mathematical Physics, Paris, 1994,edited by D. Iagolnitzer (Diderot/International, 1994).

    Google Scholar 

  9. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22, 2099 (1980).

    Article  ADS  Google Scholar 

  10. S. Kivelson and D. E. Heim, Phys. Rev. B 26, 4278 (1982).

    Google Scholar 

  11. D. Baeriswyl, D. K. Campbell, and S. Mazumdar, in Conjugated Conducting Polymers,edited by H. Kiess, Springer Series in Solid State Sciences Vol. 102 (Springer, New York, 1992), pp. 7-133.

    Google Scholar 

  12. D. Baeriswyl and E. Jeckelmann (unpublished).

    Google Scholar 

  13. R. E. Peieris, Quantum Theory of Solids ( Clarendon, Oxford, 1955 ), p. 108.

    Google Scholar 

  14. H. Fröhlich, Proc. R. Soc. London Ser. A 223, 296 (1954).

    Article  ADS  MATH  Google Scholar 

  15. H. C. Longuet-Higgins and L. Salem, Proc. R. Soc. London Ser. A 251, 172 (1959).

    Article  ADS  Google Scholar 

  16. H. Labhart, J. Chem. Phys. 27, 957 (1957).

    Article  ADS  Google Scholar 

  17. Y. Ooshika, J. Phys. Soc. Jpn. 12, 1238 (1957).

    Article  Google Scholar 

  18. T. Kennedy and E. H. Lieb, Phys. Rev. Lett. 59, 1309 (1987). We, take the opportunity to note three minor technical misstatements in this paper. (A) The paragraph after Eq. (6) is not correct for N=2 because T,3=t,t2+t314 and not t,í2 in this case. Thus z has to be replaced by 2z, but the rest of the argument works. Alternatively, one can compute the eigen-values of T2 explicitly since it reduces to a 2 X 2 matrix. (B) The uniqueness proof for N =2 needs strengthening. T 2 =(T 2 ) implies only that t,=t3 or t 2 =t 4 However, this case can be analyzed explicitly and uniqueness holds. (C) The statement in case 1 that TV(z)mTr(2yr+ztl)'n is an even function of z is correct only when N is even (because the sub-lattices are then themselves bipartite). However, in all cases W(z) is certainly concave and dW(z)/dz = fTr(2y2 +z11)-1/211, which is zero at z =0. Thus W(z) is decreasing for z 003E 0 and increasing for z 003C0, which is what is needed in case 1 and case 2.

    Google Scholar 

  19. Y. Imry, in Directions in Condensed Matter Physics,edited by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986), pp. 101-163.

    Google Scholar 

  20. P. W. Wiegmann, Physica C 153, 102 (1988).

    Article  ADS  Google Scholar 

  21. E. H. Lieb, Hely. Phys. Acta 65, 247 (1992).

    Google Scholar 

  22. E. H. Lieb and M. Loss, Duke Math. J. 71, 337 (1993).

    Google Scholar 

  23. E. H. Lieb, Phys. Rev. Lett. 73, 2158 (1994).

    Google Scholar 

  24. Y. Ooshika, J. Phys. Soc. Jpn. 12, 1246 (1957).

    Article  Google Scholar 

  25. P. J. Garratt, Aromaticity (McGraw-Hill, London, 1971).

    Article  Google Scholar 

  26. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Google Scholar 

  27. D. B. Chesnut, J. Chem. Phys. 45, 4677 (1966).

    Article  ADS  Google Scholar 

  28. P. Pincus, Solid State Commun. 9, 1971 (1971).

    Article  ADS  Google Scholar 

  29. G. Beni and P. Pincus, J. Chem. Phys. 57, 3531 (1972).

    Google Scholar 

  30. M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).

    Google Scholar 

  31. Z. G. Soos, S. Kuwajima, and J. E. Mihalick, Phys. Rev. B 32, 3124 (1985).

    Article  ADS  Google Scholar 

  32. M. Aizenman and B. Nachtergaele, Commun. Math. Phys. 164, 17 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. lnteracting Electrons in Reduced Dimensions Vol. 213 of NATO Advanced Study Institute, Series B: Physics,edited by D. Baeriswyl and D. K. Campbell (Plenum, New York, 1989). 345. N. Dixit and S. Mazumdar, Phys. Rev. B 29, 1824 (1984). 35S. Kivelson, W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 58, 1899 (1987).

    Google Scholar 

  34. N. Dixit and S. Mazumdar, Phys. Rev. B 29, 1824 (1984).

    Google Scholar 

  35. S. Kivelson, W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 58, 1899 (1987).

    Google Scholar 

  36. Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 63, 798 (1989).

    Article  ADS  Google Scholar 

  37. O. Entin-Wohlman, Y. Gefen, Y. Meir, and Y. Oreg, Phys. Rev. B 45, 11 890 (1992).

    ADS  Google Scholar 

  38. S. Fujimoto and N. Kawakami, Phys. Rev. B 48,.17406 (1993).

    Google Scholar 

  39. D. C. Mattis and W. D. Langer, Phys. Rev. Lett. 25, 376 (1970).

    Article  ADS  Google Scholar 

  40. J. V. Pulé, A. Verbeure, and V. A. Zagrebnov, J. Stat. Phys. 76, 155 (1994).

    Article  ADS  Google Scholar 

  41. K. R. Subbaswamy and M. Grabowski, Phys. Rev. B 24, 2168 (1981).

    Article  ADS  Google Scholar 

  42. G. W."Hayden and E. J. Mele, Phys. Rev. B 24, 5484 (1986).

    Google Scholar 

  43. E. J. Mele and M. Rice, Phys. Rev. B 23, 5397 (1981).

    Article  ADS  Google Scholar 

  44. K. C. Ung, S. Mazumdar, and D. Toussaint (unpublished).

    Google Scholar 

  45. S. Mazumdar, Phys. Rev. B 36, 7190 (1987).

    Article  ADS  Google Scholar 

  46. S. Tang and J. E. Hirsch, Phys. Rev. B 37, 9546 (1988).

    Article  ADS  Google Scholar 

  47. T. Kennedy and E. H. Lieb, Physica A 138, 320 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  48. U. Brandt and R. Schmidt, Z. Phys. B 63, 45 (1986).

    Article  Google Scholar 

  49. J. L. Lebowitz and N. Maoris, J. Stat. Phys. 76, 91 (1994).

    Article  ADS  MATH  Google Scholar 

  50. E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

    Article  Google Scholar 

  51. F. J. Dyson, E. H. Lieb, and B. Simon, J. Stat. Phys. 18, 335 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  52. I Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Commun. Math. Phys. 62, 1 (1978).

    Article  ADS  Google Scholar 

  53. T. Kennedy, E. H. Lieb, and B. S. Shastry, J. Stat. Phys. 53, 1019 (1988).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Nachtergaele, B. (2004). Stability of the Peierls instability for ring-shaped molecules. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics