Skip to main content

Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum

  • Chapter
Condensed Matter Physics and Exactly Soluble Models

Abstract

We continue the analysis of the one-dimensional gas of Bose particles interacting via a repulsive delta function potential by considering the excitation spectrum. Among other things we show that: (i) the elementary excitations are most naturally thought of as a double spectrum, not a single one; (ii) the velocity of sound derived from the macroscopic compressibility is shown to agree with the velocity of sound derived from microscopic considerations, i.e., from the phonon spectrum. We also introduce a distinction between elementary excitations and quasiparticles, on the basis of which we give some heuristic reasons for expecting the double spectrum to be a general feature, even in three dimensions, and not an exception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963) (referred to here as I).

    Google Scholar 

  2. See I, Sec. IV.

    Google Scholar 

  3. See, for example, The Many Body Problem, edited by C. DeWitt ( John Wiley & Sons, Inc., New York, 1958 ), pp. 347–355.

    Google Scholar 

  4. R. P. Feynman, Phys. Rev. 91, 1291 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. P. Feynman, Phys. Rev. 91, 1301 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. P. Feynman, Phys. Rev. 94, 262 (1954).

    Article  ADS  MATH  Google Scholar 

  7. See, for example, F. London, Superfluids (John Wiley & Sons, Inc., New York, 1954 ), Vol. II, p. 83.

    Google Scholar 

  8. M. Girardeau, J. Math. Phys. 1, 516 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V. M. Galitskii and A. B. Migdal, Soviet Phys.—JETP 7, 96 (1958).

    MathSciNet  Google Scholar 

  10. A. Maradudin, P. Mazur, E. Montroll, and G. Weiss, Rev. Mod. Phys. 30, 175 (1958).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2004). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics