Skip to main content

Abstract

Two genuinely quantum mechanical models for an antiferromagnetic linear chain with nearest neighbor interactions are constructed and solved exactly, in the sense that the ground state, all the elementary excitations and the free energy are found. A general formalism for calculating the instantaneous correlation between any two spins is developed and applied to the investigation of short- and long-range order. Both models show nonvanishing long-range order in the ground state for a range of values of a certain parameter X which is analogous to an anisotropy parameter in the Heisenberg model. A detailed comparison with the Heisenberg model suggests that the latter has no long-range order in the isotropic case but finite long-range order for any finite amount of anisotropy. The unreliability of variational methods for determining long-range order is emphasized. It is also shown that for spin ½ systems having rather general isotropic Heisenberg interactions favoring an antiferromagnetic ordering, the ground state is nondegenerate and there is no energy gap above the ground state in the energy spectrum of the total system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bethe, Z. Physik 71, 205 (1931).

    Article  ADS  Google Scholar 

  2. L. Hulthén, Arkiv. Mat. Astron. Fysik 26A, No. 11 (1938).

    Google Scholar 

  3. P. W. Anderson, Phys. Rev. 86, 694 (1952).

    Article  ADS  MATH  Google Scholar 

  4. R. Kubo, Revs. Modern Phys. 25, 344 (1953).

    Article  ADS  MATH  Google Scholar 

  5. P. W. Kasteleijn, Physica 18, 104 (1952).

    Article  ADS  MATH  Google Scholar 

  6. H. Taketa and T. Nakamura, J. Phys. Soc. (Jap.) 11, 919 (1956).

    Article  ADS  Google Scholar 

  7. W. Marshall, Proc. Roy. Soc. A232, 48 (1955).

    Article  ADS  MATH  Google Scholar 

  8. R. Orbach, Phys. Rev. 112, 309 (1958).

    Article  ADS  Google Scholar 

  9. L. R. Walker, Phys. Rev. 116, 1089 (1959).

    Article  ADS  Google Scholar 

  10. T. W. Ruijgrok and S. Rodriguez, Phys. Rev. 119, 596 (1959).

    Article  ADS  Google Scholar 

  11. H. L. Davis, Phys. Rev. 120, 789 (1960).

    Article  ADS  MATH  Google Scholar 

  12. P. Jordan and E. Wigner, Z. Physik 47, 631 (1928);

    Article  ADS  MATH  Google Scholar 

  13. H. A. Kramers, “Quantum Mechanics” (translated by D. TER HAAR), p. 328 ff. Inter-science, New York, 1957;

    MATH  Google Scholar 

  14. K. Meyer, Z. Naturforsch. 11A, 865 (1956);

    ADS  MATH  Google Scholar 

  15. S. Rodriguez, Phys. Rev. 116, 1474 (1960);

    Article  ADS  Google Scholar 

  16. Y. Nambu, Progr. Theoret. Phys. Japan 5, 1 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Jahnke and F. Emde, “Tables of Functions,” 4th ed., p. 73. Dover, New York, 1945.

    MATH  Google Scholar 

  18. G. C. Wick, Phys. Rev. 80, 268 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E. Whittaker and G. Watson, “Modern Analysis,” Am. ed., p. 212. Cambridge Univ. Press, London and New York, 1948.

    Google Scholar 

  20. T. Matsubara, Prog. Theoret. Phys. Japan 14, 351 (1955);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. D. J. Thouless, Phys. Rev. 107, 1162 (1957).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E., Schultz, T., Mattis, D. (2004). Two Soluble Models of an Antiferromagnetic Chain. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics