Binaural Hearing — Listening with Both Ears

  • Manfred R. Schroeder
Part of the Springer Series in Information Sciences book series (SSINF, volume 35)


Although, at present, telephone speech is mostly monaural, the future promises much binaural business. Think of tele-conferences and virtual acoustic spaces. The following informal overview of binaural hearing covers directional hearing (in the horizontal and vertical planes), the precedence and Haas effects (and their applications in public-address and “assisted-resonance” systems), artificial reverberation, pseudo-stereophony, binaural release from masking, the cocktail-party effect, central-pitch phenomena, Deutsch’s octave illusion, the creation of virtual sound images, and the faithful reproduction of concert hall recordings in an anechoic environment for acoustical quality studies. The chapter concludes with a brief review of sound-diffusing surfaces based on number theory that have become standard equipment in sound recording studios, including those for speech signals.


Sound Source Broadband Noise Reverberation Time Group Delay Differenee Binaural Hearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 10.1
    D. Lehnhardt: Physiologie der Schalleitung (G. Thieme, Stuttgart 1979)Google Scholar
  2. 10.2
    J. Blauert: Sound localization in the median plane. Acustica 22, 205–213 (1969)Google Scholar
  3. 10.3
    M.B. Gardner: Distance estimation of 0° or apparent 0°-oriented speech signals in anechoic space. J. Acoust. Soc. Am. 45, 47–53 (1969)ADSCrossRefGoogle Scholar
  4. 10.4
    M.B. Gardner: Historical background of the Haas and/or precedence effect. J. Acoust. Soc. Am. 43, 1243–1248 (1968)ADSCrossRefGoogle Scholar
  5. 10.5
    J. Blauert: Spatial Hearing (MIT Press, Cambridge, Massachusetts 1983)Google Scholar
  6. 10.6
    V. Mellert, K.F. Siebrasse, S. Mehrgardt: Determination of the transfer function of the external ear by impulse response measurements. J. Acoust. Soc. Am. 56, 1913–1915 (1974)ADSCrossRefGoogle Scholar
  7. 10.7
    W.M. Hartmann, A. Wittenberg: On the externalization of sound images. J. Acoust. Soc. Am. 99, 3678–3688 (1996).ADSCrossRefGoogle Scholar
  8. 10.7a
    See also P. Laws: Zum Problem des Entfernungshorens und der Im-Kopf-Lokalisation von Horereignissen (Ph.D. thesis, Technische Hochschule Aachen, Germany, 1972)Google Scholar
  9. 10.8
    M.R. Schroeder, B.S. Atal: Computer simulation of sound transmission in rooms. IEEE International Conventive Record, Part 7 (1963)Google Scholar
  10. 10.9
    M.R. Schroeder: Computers in acoustics: Symbiosis of an old science and a new tool. J. Acoust. Soc. Am. 45, 1077–1088 (1969)ADSCrossRefGoogle Scholar
  11. 10.10
    N.I. Durlach: Binaural signal detection: Equalization and cancellation theory. In J.V. Tobias (ed.): Foundations of Modern Auditory Theory, Vol. 2 (Academic Press, New York 1972)Google Scholar
  12. 10.11
    M.R. Schroeder: Speech Privacy System (U.S. Patent 3,328,526, filed Decem-ber 20, 1963, issued June 27, 1967)Google Scholar
  13. 10.12
    A.J. Fourcin: Central pitch and auditory lateralization. In R. Plomp, G.F. Smoorenburg (eds.): Frequency Analysis and Periodicity Detection in Hearing 319–328 (Sijthoff, Leiden 1970)Google Scholar
  14. 10.13
    D. Deutsch: The octave illusion and auditory perceptual integration. In J.V. Tobias, E.D. Schubert (eds.): Hearing Research and Theory, Vol. 1 (Academic Press, New York 1981) pp. 99–142Google Scholar
  15. 10.14
    J.C.R. Licklider: Periodicity pitch and related auditory process models. Intern. Audiol. 1, 11–36 (1962).CrossRefGoogle Scholar
  16. 10.14a
    See also J.C.R. Licklider: A duplex theory of pitch perception. Experientia 7, 128–134 (1951).CrossRefGoogle Scholar
  17. 10.15
    H. Lauridsen: Some experiments on a system of stereophonic sound (in Danish with English summary). Ingenioren 47, 906 (December 1954)Google Scholar
  18. 10.16
    M.R. Schroeder: An artificial stereophonic effect obtained from a single audio signal. J. Audio Eng. Soc. 6, 74–79 (1958)Google Scholar
  19. 10.17
    M.R. Schroeder: Improved quasi-stereophony and “colorless” artificial reverberation. J. Acoust. Soc. Am. 33, 1061–1064 (1961)ADSCrossRefGoogle Scholar
  20. 10.18
    M.R. Schroeder: Computer models for concert hall acoustics. Am. J. Physics 41, 461–471 (1973)ADSCrossRefGoogle Scholar
  21. 10.19
    J. Chowning: Methods of synthesizing a musical sound. J. Acoust. Soc. Am. 63, 1002 (1978)Google Scholar
  22. 10.20
    M. Barron, A.H. Marshall: Spatial impression due to early lateral reflections in concert halls: The derivative of a physical measure. J. Sound & Vibrations 77, 211–232 (1981)ADSCrossRefGoogle Scholar
  23. 10.21
    M.R. Schroeder, D. Gottlob, K.F. Siebrasse: Comparative study of European concert halls. J. Acoust. Soc. Am. 56, 1195–1201 (1974).ADSCrossRefGoogle Scholar
  24. 10.21a
    See also P. Damaske: Head-related two-channel stereophony with loudspeaker reproduction. J. Acoust. Soc. Am. 50, 1109–1115 (1971)ADSCrossRefGoogle Scholar
  25. 10.22
    M.R. Schroeder: Binaural dissimilarity and optimum ceilings for concert halls: More lateral diffusion. J. Acoust. Soc. Am. 65, 958–963 (1979)ADSCrossRefGoogle Scholar
  26. 10.23
    M.R. Schroeder: Number Theory in Science and Communication, 3rd ed. (Springer, Berlin, Heidelberg 1997)MATHGoogle Scholar
  27. 10.24
    M.R. Schroeder: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (W.H. Freeman, New York 1991)MATHGoogle Scholar
  28. 10.25
    P. D’Antonio: A new 1- or 2-dimensional fractal sound diffusor. J. Acoust. Soc. Am. 87, suppl. 1, S10 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Manfred R. Schroeder
    • 1
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations