Computational Intelligence in Economics and Finance

  • Shu-Heng Chen
  • Paul P. Wang
Part of the Advanced Information Processing book series (AIP)


Computational intelligence is a consortium of data-driven methodologies which includes fuzzy logic, artificial neural networks, genetic algorithms, probabilistic belief networks and machine learning as its components. We have witnessed a phenomenal impact of this data-driven consortium of methodologies in many areas of studies, the economic and financial fields being no exception. In particular, this volume of collected works will give examples of its impact on various kinds of economic and financial modeling, prediction and forecasting, and the analysis of various phenomena which sheds new light on a fundamental understanding of the research issues. This volume is the result of the selection of high-quality papers presented at the Second International Workshop on Computational Intelligence in Economics and Finance (CIEF’2002), held at the Research Triangle Park, North Carolina,United State of America, March 8–14, 2002. To complete a better picture of the landscape of this subject, some invited contributions from leading scholars were also solicited.


Fuzzy Logic Computational Intelligence European Monetary Union Grey Model Grey System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    Aha, D. (1997): Lazy Learning. KluwerGoogle Scholar
  2. 1.2
    Aoki, M. (1987): State Space Modeling of Time Series. Springer-VerlagGoogle Scholar
  3. 1.3
    Armano, G., Minnt A., Marchesi, M. (2002): NXCS-A Hybrid Approach to Stock Indexes Forecasting. In: Chen, S.-H. (Ed.), Genetic Algorithms and Genetic Programming in Computational Finance, KluwerGoogle Scholar
  4. 1.4
    Aussem, A., Campbell, J., Murtagh F. (1998): Wavelet-Based Feature Extraction and Decomposition Strategies for Financial Forecasting. Computational Intelligence in Economics and Finance, Vol. 6, No. 2, 5–12Google Scholar
  5. 1.5
    Azoff, M. (1994): Neural Network Time Series: Forecasting of Financial Markets. WileyGoogle Scholar
  6. 1.6
    Baestaens, 1).-E., Van Den Bergh, W., Wood D. (1991): Neural Network Solutions for Trading in Financial Markets, PitmanGoogle Scholar
  7. 1.7
    Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B. (2000): “Evolutionary Multiperiod Asset Allocation,” In: Whitley, D., Goldberg, D., Cantti-Paz, E., Spector, L., Parrnee, I., Beyer, H. -G. (Eds.), Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B, 597–604. Morgan KaufmannGoogle Scholar
  8. 1.8
    Balakrishnan, A. (1987): Kalman Filtering Theory. Optimization SoftwareGoogle Scholar
  9. 1.9
    Balakrishnan, A. (1988): State Space Theory of Systems. Optimization SoftwareGoogle Scholar
  10. 1.10
    Bauer, R., Jr. (1994): Genetic Algorithms and Investment Strategies. WileyGoogle Scholar
  11. 1.11
    Billot, A. (1995): Economic Theory of Fuzzy Equilibria: an Axiomatic Analysis. Springer-Verlag, 2nd editionGoogle Scholar
  12. 1.12
    Bojadziev, G., Bojadziev, M., Zadeh, L. (1997): Fuzzy Logic for Business, Finance, and Management. World ScientificGoogle Scholar
  13. 1.13
    Boguslayskij, 1. (1988): Filtering and Control. Optimization SoftwareGoogle Scholar
  14. 1.14
    Bonabeau, E., Meyer, C. (2002): Swarm Intelligence: a Whole New Way to Think About Business. Harvard Business School PressGoogle Scholar
  15. 1.15
    Chang, K., Osier, C. (1994), “Evaluating Chart-Based Technical Analysis: the Head-and-Shoulders Pattern in Foreign Exchange Markets,” Working Paper, Federal Reserve Bank of New YorkGoogle Scholar
  16. 1.16
    Chen, 5.-11. (2002a): Evolutionary Computation in Economics and Finance, Physica, VerlagGoogle Scholar
  17. 1.
    Chen, S.-H. (20021r): Genetic Algorithms and Genetic Programming in Computational Finance, KluwerGoogle Scholar
  18. 1.18
    Chen, T., Chen, H. (1995): Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Transactions on Neural Netwroks, Vol. 6, 911–917Google Scholar
  19. 1.19
    Cordon, O., Herrera, F., Hoffmann, F., Magdalena. L. (2001): Genetic Fuzzy Systems. World ScientificGoogle Scholar
  20. 1.20
    Crisan, I). (2001): Particle Filters-a Theoretical Perspective. In: Doucel A., Freitag, N., Cordon, N. ( 2001 ) ( Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 17–41Google Scholar
  21. 1.21
    Cristiarrini, N., Shawe-Taylor, J. (2000): An Introduction I Srtpport Vector Machines and Other Kernel-Based Learning Methods. Cambridge University PressGoogle Scholar
  22. 1.22
    Deboeck, G., Kohonen, T. (1998), Visual Explorations in Finance with Self-organizing Maps, Springer-VerlagGoogle Scholar
  23. 1.23
    Deng, J. (1982): Control Problems of Grey System. System and (.’ou trol Letters, No. 5, 288 299Google Scholar
  24. 1.24
    Deng, J. (1989): Introduction to Grey Syeierri Theory, Journal of Carey System; Vol. 1, No. 11. 121Google Scholar
  25. 1.25
    Dorigo, M. (1992): Optimization, Learning and Natural Algorithms, 1’h. I ). Thesis, Politecnice di Milano, Italy, in ItalianGoogle Scholar
  26. 1.26
    Dorigo, V1., Marriezzo, V., Colorni, A. (1996): The Ant System: Optimization by a Colony of Cooperating Agents, IEEE, Transactions on Systems, Klan. and Cybernetics, Part B, Vol. 26, No. I, 29–41Google Scholar
  27. 1.27
    Duffy, J., McNelis, P. D. (2001): Approximating and Simulating the Stoehast,k: Growth Model: Parameterized Expectations, Neural Networks, and the (ïcnet is Algorithm. Journal of Economic Dynamics and Control 25(9), 1273 130: 1Google Scholar
  28. 1.28
    Eberhart, R., Simpson, R, Dobbins, R. (1996): Computational Intelligence PC Tools. AP ProfessionalGoogle Scholar
  29. 1.21)
    Epstein, J., Axtell, 11. (1996): Growing Artificial Societies: Social Science from the Bottom Up. MIT PressGoogle Scholar
  30. 1.30
    Farr, J., Gijbels, I. (1996): Local Polynomial Modeling and Its Applications. Chapman & Hall.Google Scholar
  31. 1.31
    Fischer, R. (2001): “l’lie New Fibonacci ‘Trader: Tools and Strategies for ‘Trading Success. WileyGoogle Scholar
  32. 1.
    Fogel, D. (1995): livolut.ionary Computation toward a New Philosophy of Machine Intelligence. IEEE PressGoogle Scholar
  33. 1.33
    Fogel, D., Chellapilla, K., Angeline, P. (2002): Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences. In: Chen, S. 11. (Ed.), Evolutionary Computation in Economics and Finance, Physics Verlag, 215 269Google Scholar
  34. 1.34
    Vogel, L. (1964): On the Organization of Intellect, l’h.l). “Thesis, UCLAGoogle Scholar
  35. 1.35
    Vogel, L. (1997): A Retrospective View and Outlook on Evolutionary Algorithms. In: Reusch, B. (Ed.), Computational Intelligence: ‘Theory and Applications, 5th Fuzzy Days, Springer-Verlag, Berlin, 337 312Google Scholar
  36. 1.36
    Fogel, L. J., Owens, A..1., Walsh, NI..J. (1966): Artificial Intelligence through Simulated Evolution, WileyGoogle Scholar
  37. 1.37
    Carey, NI., Johnson, D. (1979): Computers and Intractability, a Guide to the Theory of NP-(ompleteness. FreemanGoogle Scholar
  38. 1.38
    I.38 Gately. E. (1996): Neural Networks for f’inancial Forecasting. WileyGoogle Scholar
  39. 1.
    Gencay, R.., Selcuk, I“., Whitcher, B. (2001): an Introduction to Wavelet, and Other Filtering Methods in Finance and Economies, Academic PressGoogle Scholar
  40. 1.40
    Granger, C., Flatanal:a. M. (1964): Spectral Analysis of Economic Thne Series. PrincetonGoogle Scholar
  41. 1.41
    Goffe, W. (1996): SIMANN: A Global Optimization Alogorithm Using Simulated Annealing. Studies in Nonlinear Dynamics and Econometrics. Vol. I. No. 3Google Scholar
  42. 1.42
    Goffe, W., Ferrier, (1, Rogers. J. (1992): Simulated Annealing: an Initial Application in Econometrics. Computer Science in Economics and Managenrent. Vol. 5Google Scholar
  43. 1.43
    Goffe, W., Ferrier, G., Rogers. J. (1991): Global Optimization of Stat ist ienI Functions with Simulated Annealing. Journal of fir onometrics. Vol. 60. No. 1/2. January/February. 65 99Google Scholar
  44. 1.44
    Cross. S., Aron. S., Deneubourg, J. L., Pasteels, J. M. (1989): Self-organized Shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581CrossRefGoogle Scholar
  45. 1.45
    Hampton, J. (1997): Rough Set Theory The Basics (Part 1). Journal of Computational Intelligence in Finance, Vol. 5, No. 6, 25–29Google Scholar
  46. 1.46
    Ilampton, J. (1998): Rough Set Theory—The Basics (Part 2). Journal of Computational Intelligence in Finance, Vol. 6, No. 1, 40–42Google Scholar
  47. 1.47
    Hampton, J. (1998): Rough Set Theory The Basics (Part 3). Journal of Computational Intelligence in Finance, Vol. 6, No. 2, 35–37Google Scholar
  48. 1.48
    Harvey, A. (1989): Forecasting Structural Time Series Models and the Kalman Filter. CambridgeGoogle Scholar
  49. 1.49
    Hiemetra, Y. (1996): Applying Neural Networks and Genetic Algorithms to Tactical Asset Allocation, NeuroveSt Journal, 4 (3), 8–15Google Scholar
  50. 1.50
    Keber, C. (2002): Collective Intelligence in Option Pricing-Determining Black-Scholes Implied Volatilities with the Ant Programming Approach, working paper, University of ViennaGoogle Scholar
  51. 1.51
    Kirkpatrick, S., Gelatt, C., Vecchi, M. (1983), Optimization by Simulated Annealing, Science, Vol. 220, 671–680Google Scholar
  52. 1.52
    Kitagawa, G., Sata, S. (2001): Monte Carlo Smoothing and Self-organizing State Space Model. In: Doucet, A., Freitas, N., Gordon, N. (2001) (Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 177–196Google Scholar
  53. 1.53
    Kohonen, T. (1982): Self-organized Foundation of Topologically Correct Feature Nlaps. Biological Cybernetics 43, 59–69MathSciNetMATHCrossRefGoogle Scholar
  54. 1.54
    Lin, C. -T., Yang, S. -Y. (1999): Selection of Home Mortgage Loans Using Grey Relational Analysis. Journal of Grey System, Vol. 11, No. 4, 359–368Google Scholar
  55. 1.55
    Lin, C. -T., Chen, L. -H. (1999): A Grey Analysis of Bank Re-decreasing the Required Reserve Ratio. Journal of Grey System, Vol. 11, No. 2, 119–132Google Scholar
  56. 1.56
    Lin, C. -T., Chang, P. -C. (2001): Forecast the Output Value of Taiwan’s Machinery Industry Using the Grey Forecasting. Journal of Grey System, Vol. 1.3, No. 3, 259 268Google Scholar
  57. 1.57
    Lo, A., Mama,ysky, HI., Wang, J. (2000): Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation, Journal of Finance. Vol. LV, No. 4, 1705–1765Google Scholar
  58. 1.58
    Mansur, Y. (1995): Fuzzy Sets and Economics: Applications of Fuzzy Mathematics to Non-cooperative Oligopoly. Edward ElgarGoogle Scholar
  59. 1.59
    Marks, R. (2002): Playing Games with Genetic Algorithms. In: Chen, S. H. (Ed.), l’volutionary Computation in Economics and Finance, Physica-Verlag,:i 1 44Google Scholar
  60. 1.60
    Messier, W. 1U’., Hansen, J. V. (1988): Inducing Rule for Expert System Development: art Example Using Default and Bankruptcy Data. Management Science 34, 1403 H15Google Scholar
  61. 1.61
    Modzek, A., Skabek, K. (1998): Rough Sets in Economic Applications. In: Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Physica-Verlag. Chap. 13Google Scholar
  62. 1.62
    Mortensen, R. (1987): Random Signals and Systems. WileyGoogle Scholar
  63. 1.63
    Osier, C’., Chang, K. (1995): Head and Shoulder: Not Just a Flaky Pattern. Staff Report: No. 1, federal Researve Bank of New YorkGoogle Scholar
  64. 1.61
    Pan, Z., Wang, X. (1998): Wavelet-Based Density Estimator Model for Forecasting. (’output at.ional Intelligence in Economics and Finance, Vol. 6, No. 1, 13MathSciNetGoogle Scholar
  65. 1.65
    l’ackard, N. (1990): A Genetic Learning Algorithm for the Analysis of Complex Data, Complex Systems 4, No. 5, 543–572MathSciNetGoogle Scholar
  66. 1.66
    Pedrycz, W. (1997): Computational Intelligence: An Introduction. CRC I’n ss 1.67 Peray, K. ( 1999 ): Investing in Mutual Funds Using]Fuzzy Logic. CRC PressGoogle Scholar
  67. 1.68
    Quinlan, R. (1986): Induction of Decision Trees. iVlachine Learning 1(1), 81. 106Google Scholar
  68. 1.69
    Quinlan, R. (1987): Simplifying I)ecisiou ‘Frees. International Journal of \Ian-Machine Studies 27 (3), 221–231CrossRefGoogle Scholar
  69. 1.70
    Quinlan, R. (1993): C4. 5: Programs for Machine Learning. Morgan KaufmannGoogle Scholar
  70. 1.71
    Rechenberg, 1. (1965): Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Library ‘Translation No. 1122, August. Farnborough, UKGoogle Scholar
  71. 1.72
    Refenes, A. -P. (1995): Neural Networks in the Capital Markets. WileyGoogle Scholar
  72. 1.73
    Refenes, A.-P., Zapranis, A. (1999): Principles of Neural Model Identification, Selection and Adequacy: with Applications in Financial Econometrics. SpringerGoogle Scholar
  73. 1.74
    Shadbolt, J., Taylor, J. (2002): Neural Networks and the Financial Markets-Predicting, Combining, and Portfolio Optimisation. SpringerGoogle Scholar
  74. 1.75
    Schmertmann, C. P. (1996): Functional Search in Economics Irving Genetic Programming. Computational Economics 9(4), 275 298Google Scholar
  75. 1.76
    Schwefel, H. -P. (1965): Kybernetische Evolution als Strategies der Experimentellen Forschung in der Strömungst.echnik. I)iplonma, Thesis, ‘kiln ncal versity of BerlinGoogle Scholar
  76. 1.77
    Schwwfel, II. -P. (1995): Evolution and Optimum Seeking, ‘WileyGoogle Scholar
  77. 1.78
    Skalkoz, C. (1996): Rough Sets help Time the Bi X. M uralvelt. Journal. Nov./Dec., 20–27Google Scholar
  78. 1.79
    Slowinski, R., Zopounidis, C. (1995): Applications of the (tough Set. Approach to Evaluation of Bankruptcy Risk. International Journal of Intelligent Systems in Accounting, Finance and Management 4. 27–41Google Scholar
  79. 1.80
    Smithson, M. J. (1987): Fuzzy Set Analysis for Behavioral anda Social Sciences. Springer-Verlag, New YorkCrossRefGoogle Scholar
  80. 1.81
    Sugeno, M., Yasukawa, T. (1993): A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on Fuzzy Systems, Vol. I, 7: 31Google Scholar
  81. 1.82
    Suykens,I., Vandewalle. J. (1998): The K.U. Leuven Time Series Prediction Competition. In: Suykens, J., Vandewalle, J. (Eds.), Nonlinear Alodeling: Advanced Black-Box Techniques, Kluwer, 241–253CrossRefGoogle Scholar
  82. 1.83
    Takagi, ‘T., Sugeno, M. (1985): Fuzzy Identification of Systems and Its Applications to.Modeling and Control. IEEE Transactions on Systems,: Alan, and Cybernetics, Vol. 15, 116–132Google Scholar
  83. 1.84
    Tac, N., Linn, S. (2001): Fuzzy Inductive Reasoning, Expectation Formation and the Behavior of Security Prices. Journal of Economic Dynamics and Control. Vol. 25, 321 361Google Scholar
  84. 1.85
    I.85 Taylor P., Abdul-Kader, Vl., Dngdale. D. (1998): Investment Decisions in Advanced Manufacturing “i(ehnology\Fuzzy Set ”T henry Approach. AshgateGoogle Scholar
  85. 1.86
    Thomason, M. R. (1997): Financial Forecasting with Wavelet Filters and Neural Networks. C’’DorpoLational Intelligence in Economics and Finance, Vol. No. 2, 27 32Google Scholar
  86. 1.87
    Trippi, R. It., “Turban, E. (1993): Vernal Networks in Finance and Investing. IrwinGoogle Scholar
  87. 1.88
    Ici, Y.-C., Lin. C.-`I’., “Tsai, II.-.1. (2001): `Ilre Performance Evaluation Model of Stock-Listed Banks in Taiwan liv (irev Relational Analysis and Factor Analysis. ‘Che Journal of (trey Systeu n. Vol. 13, No. 2, 153–164Google Scholar
  88. 1.89
    Vapnik, V. (1998a): Statistical Learning “Theory. WileyGoogle Scholar
  89. 1.90
    Vapnik, V. (1998b): The Support Vector Method of Function Estimation. In: Suykens, J.. Vandewalle,.1. (Eds.). Nonlinear Modeling: advanced Black-Box Techniques. Kluwer, Boston, 55–85Google Scholar
  90. 1.91
    Von Altrock, C. (1996): Fuzzy Logic and Neurofnzzy Applieatious iu Busirncse and finance. Prentice HallGoogle Scholar
  91. 1.92
    White, IL (1988): Economic Prediction Using Neural Networks. the Case of IBM Daily Stock Returns. Proceedings of IEEE International Conference on Neural Networks, Vol. 2, IEEE, New York, 451–458CrossRefGoogle Scholar
  92. 1.93
    White, II. (1992): Artificial Neural Networks-Approximation ‘Theory and Learning Theory. BlackwellGoogle Scholar
  93. 1.94
    Wolberg, J. (2000): Expert Trading Systems: Modeling Financial Markets with Kernel Regression. WileyGoogle Scholar
  94. 1.95
    Zirilli, J. (1996): Financial Prediction Using Neural Networks. International Thomson PublishingGoogle Scholar
  95. 1.96
    Zopounidis, C., Pardalos, P., Baourakis, C. (2002): Fuzzy Sets in Management, Economy & Marketing. World ScientificGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shu-Heng Chen
    • 1
  • Paul P. Wang
    • 2
  1. 1.AI-ECON Research Center, Department of EconomicsNational Chengchi UniversityTaipeiTaiwan
  2. 2.Department of Electrical & Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations