Legal Strings

  • Andrzej Ehrenfeucht
  • Tero Harju
  • Ion Petre
  • David M. Prescott
  • Grzegorz Rozenberg
Part of the Natural Computing Series book series (NCS)


We move now to consider a substantial simplification of representing micronuclear and intermediate genes. We shall use only the sequence of pointers in the order in which they appear in such a gene, obtaining in this way just a string of pointers. This yields the framework of legal strings, which is more abstract than the framework of MDS descriptors because different MDS descriptors may yield the same legal string. In this chapter we investigate the basic properties of the representation of the MDS structure by legal strings. In particular, we characterize those legals string that either correspond directly to realistic MDS descriptors or that can be signed so as to correspond to realistic MDS descriptors.


Hamiltonian Path Realizable Signing Circle Graph Signed String Realistic Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes on References

  1. 5.
    Bouchet, A., Circle graphs. Combinatorica 7 (1987) 243–254MathSciNetMATHCrossRefGoogle Scholar
  2. 13.
    de Fraysseix, H., A characterization of circle graphs. European J. Combin. 5 (1984) 223–238MathSciNetMATHGoogle Scholar
  3. 14.
    de Fraysseix, H., and Ossona de Mendez, P., A short proof of a Gauss problem. Lecture Notes in Comput. Sci. 1353 (1997) 230–235CrossRefGoogle Scholar
  4. 16.
    Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Patterns of micronuclear genes in cliates. Lecture Notes in Comput. Sci. 2340 (2002) 279–289 Google Scholar
  5. 17.
    Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the micronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 (2002) 501–519Google Scholar
  6. 20.
    Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12 (2001) 113–134Google Scholar
  7. 24.
    Hannenhalli, S., and Pevzner, P. A., Transforming cabbage into turnip (Polynomial algorithm for sorting signed permutations by reversals). In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing (1995) pp. 178–189Google Scholar
  8. 26.
    Harju, T., and Rozenberg, G., Computational processes in living cells: gene assembly in ciliates. Lecure Notes in Comput. Sci. 2450 (2003) 1–20MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrzej Ehrenfeucht
    • 1
  • Tero Harju
    • 2
  • Ion Petre
    • 3
  • David M. Prescott
    • 4
  • Grzegorz Rozenberg
    • 5
  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderUSA
  2. 2.Department of MathematicsUniversity of TurkuTurkuFinland
  3. 3.Department of Computer ScienceÅbo Akademi UniversityTurkuFinland
  4. 4.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA
  5. 5.Leiden Institute for Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations