Models of Genetic Regulatory Networks

  • M. Schilstra
  • H. Bolouri
Part of the Natural Computing Series book series (NCS)

Abstract

This chapter provides a short review of the modelling of Genetic Regulatory Networks (GRNs). GRNs have a basic requirement to model (at least) some parts of a biological system using some kind of logical formalism. They represent the set of all interactions among genes and their products for determining the temporal and spatial patterns of expression of a set of genes. The origin of modelling the regulation of gene expression goes back to the Nobel-prize winning work of Lwoff, Jacob and Monod on the mechanisms underlying the behaviour of bacterial viruses that switch between so-called lytic and lysogenic states. Some of the circuit-based approaches to GRNs such as the work of Kauffman, Thomas, and Shapiro and Adam are discussed.

Keywords

Retina Editing Univer Rene Lewin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., et al., Molecular biology of the cell. 3 ed. 1994, New York: Garland Publishing.Google Scholar
  2. 2.
    Lewin, B., Genes VII. 1999, Oxford: Oxford University Press.Google Scholar
  3. 3.
    Davidson, E.H., Genomic regulatory systems. 2001, San Diego Calif.: Academic Press.Google Scholar
  4. 4.
    Carroll, S.B., J.K. Grenier, and S. D. Weatherbee, From DNA to diversity: molecular genetics and the evolution of animal design. 2001, Cambridge MA: Blackwell Science Inc.Google Scholar
  5. 5.
    Gilbert, S.F., Developmental biology. 2000: Sunderland, Mass: Sinauer Associates Inc.Google Scholar
  6. 6.
    Gerhart, J. and M. Kirschner, Cells, embryos, and evolution. 1997, Malden Mass: Blackwell Science. 642.Google Scholar
  7. 7.
    Lwoff, A., Lysogeny. Bacteriol. Rev., 1953. 17: p. 269–337.Google Scholar
  8. 8.
    Jacob, F. and J.L. Monod, Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 1961. 3: p. 318–356.CrossRefGoogle Scholar
  9. 9.
    Jacob, F. and J. Monod, On the regulation of gene activity. Cold Spring Harb. Symp. Quant.Biol., 1961. 26: p. 193–211, 389–401.Google Scholar
  10. 10.
    Ptashne, M., A genetic switch. Phage Lambda and higher organisms. 2 ed. 1992, Oxford: Blackwell Scientific.Google Scholar
  11. 11.
    Bower, J.M. and H. Bolouri, eds. Computational modelling of genetic and biochemical networks. Computational molecular biology, ed. S. Istrail, P. Pevzner, and M. Waterman. 2001, MIT Press: Cambridge Mass.Google Scholar
  12. 12.
    Smolen, P., D.A. Baxter, and J.H. Byrne, Modelling transcriptional control in gene networks–Methods, recent results, and future. Bull. Math. Biol., 2000. 62: p. 247–292.CrossRefGoogle Scholar
  13. 13.
    Arkin, A., J. Ross, and H.H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 1998. 149: p. 1633–1648.Google Scholar
  14. 14.
    Van De Putte, P. and N. Goosen, DNA inversions in phages and bacteria.DNA inversions in phages and bacteria. Trends Genet., 1992. 8: p. 457–462.Google Scholar
  15. 15.
    McAdams, H.H. and A. Arkin, It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet., 1999(15): p. 65–69.Google Scholar
  16. 16.
    Johnson, A.D., et al., /1 repressor and cro-components of an efficient molecular switch. Nature, 1981. 294: p. 217–223.CrossRefGoogle Scholar
  17. 17.
    Ackers, G.K., A.D. Johnson, and M.A. Shea, Quantitative model for gene regulation by 2 phage repressor. Proc. Natl. Acad. Sci. USA, 1982. 79: p. 1129–1133.CrossRefGoogle Scholar
  18. 18.
    Keller, A.D., Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol., 1995. 172: p. 169–185.CrossRefGoogle Scholar
  19. 19.
    Mestl, T., E. Plahte, and S.W. Omholt, A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol., 1995. 176: p. 291–300.CrossRefGoogle Scholar
  20. 20.
    Gibson, M. and E. Mjolsness, Modelling the activity of single genes., in Computational modelling of genetic and biochemical networks., J.M. Bower and H. Bolouri, Editors. 2001, MIT Press: Cambridge, Mass. p. 1–48.Google Scholar
  21. 21.
    Snoussi, E.H., Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dynamics and Stabi’ity of Systems, 1989. 4 (3 & 4): p. 189–207.MathSciNetMATHGoogle Scholar
  22. 22.
    Thomas, R. and R. D’Ari, Biological feedback. 1990, Boca Raton Fla. CRC Press.MATHGoogle Scholar
  23. 23.
    Thomas, R., D. Thieffry, and M. Kaufman, Dynamical behaviour of biological regulatory networks. I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 1995. 57 (2): p. 247–276.MATHGoogle Scholar
  24. 24.
    Kauffman, S.A., The origins of order. Self-organization and selection in evolution. 1993, New York NY: Oxford University Press.Google Scholar
  25. 25.
    Akutsu, T., S. Miyano, and S. Kuhara, Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 2000. 16 (8): p. 727–734.CrossRefGoogle Scholar
  26. 26.
    Shea, M.A. and G.K. Ackers, The O R control system of bacteriophage lambda. A physical-chemical model for gene regulation. J. Mol. Biol., 1985. 181: p. 211–230.CrossRefGoogle Scholar
  27. 27.
    Thieffry, D. and R. Thomas, Dynamical behaviour of biological regulatory networks. II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 1995. 57(2): p. 277297.Google Scholar
  28. 28.
    Thieffry, D., et al., From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bio Essays, 1998. 20 (5): p. 433–440.Google Scholar
  29. 29.
    Yuh, C.-H., H. Bolouri, and E.H. Davidson, Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 1998. 279: p. 1896–1902.CrossRefGoogle Scholar
  30. 30.
    Yuh, C.-H., H. Bolouri, and E.H. Davidson, Cis-regulatory logic in the endol6 gene: switching from a specification to a differntiation mode of control. Development, 2001. 128: p. 617–629.Google Scholar
  31. 31.
    Arnone, M.I. and E.H. Davidson, The hardwiring of development: Organization and function of genomic regulatory systems. Development, 1997. 124 (10): p. 1851–1864.Google Scholar
  32. 32.
    Kauffman, S.A., Gene regulation networks: a theory for their global structure and behavior. Current Topics in Dev. Biol., 1969. 6(145).Google Scholar
  33. 33.
    McAdams, H.H. and A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, 1997. 94: p. 814–819.CrossRefGoogle Scholar
  34. 34.
    Gibson, M.A. and J. Bruck, Efficient stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 2000. 104: p. 1876–1889.CrossRefGoogle Scholar
  35. 35.
    Böttner, R., K. Bellmann, and T. Cierzynski, A discrete stochastic simulation model of the regulation of gene expression with variable control characteristics., in Molecular genetic information systems: modelling and simulation., K. Bellmann, Editor. 1983, Academic-Verlag: Berlin.Google Scholar
  36. 36.
    Endy, D., D. Kong, and J.Y. J, Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. Biotechnol. Bioeng., 1997. 55 (2): p. 375–389.CrossRefGoogle Scholar
  37. 37.
    Thieffry, D. and R. Thomas. Qualitative analysis of gene networks. in Pacific Symposium on Biocomputing. 1998. Maui, Hawai, USA: World Scientific.Google Scholar
  38. 38.
    Shimada, T., et al. Knowledge-based simulation of regulatory action in lambda phage. in 1st IEEE Int. Symposium on Intelligence in Neural and Biological Systems (INBS’95). 1995.Google Scholar
  39. 39.
    McAdams, H.H. and L. Shapiro, Circuit simulation of genetic networks. Science, 1995. 269 (5224): p. 650–656.CrossRefGoogle Scholar
  40. 40.
    Reinitz, J., E. Mjolsness, and D.H. Sharp, Model for cooperative control of positional information in Drosophila by Bicoid and Maternal Hunchback. J. Exp. Zool., 1995. 271: p. 47–56.CrossRefGoogle Scholar
  41. 41.
    Nair, T.M., S.S. Tambe, and B.D. Kulkarni, Analysis of transcription control signals using artificial neural networks. Computer Applications in the Biosciences, 1995. 11 (3): p. 293–300.Google Scholar
  42. 42.
    Stoffers, H.J., et al., METASIM: object-oriented modelling of cell regulation. Computer Applications in Biosciences., 1992. 8(5): p. 442–449.Google Scholar
  43. 43.
    Meyers, S. and P. Friedland, Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucleic Acids Res., 1984. 12(1): p. 1–9.Google Scholar
  44. 44.
    Friedland, P., et al., GENESIS, a knowledge-based genetic enigeering simulation system for representation of genetic data and experiment planning. Nucleic Acids Res., 1982. 10(1): p. 323–340.Google Scholar
  45. 45.
    Karp, P.D., Artificial-intelligence methods for theory representation and hypothesis formation. Comput. Appl. Biosci., 1991. 7 (3): p. 301–308.MathSciNetGoogle Scholar
  46. 46.
    Koza, J., Genetic programming: on the programming of computers by means of natural selection (complex adaptive systems). 1992, Cambridge MA: MIT Press. 819.Google Scholar
  47. 47.
    Dellaert, F. and R.D. Beer. Toward an evolvable model of development for autonomous agent synthesis. in Artificial Life IV: 4th Int. Workshop on the Synthesis and Simulation of Living Systems. 1994: MIT Press, Cambridge, Mass.Google Scholar
  48. 48.
    Gallagher, J.C. and R.D. Beer. Evolution and analysis of dynamical neural networks for agents integrating vision, locomotion and short-term memory. in Genetic and Evolutionary Computation Conference (GECCO-99). 1999. Orlando, Fla.Google Scholar
  49. 49.
    Rust, A.G., et al. Developmental Evolution of an Edge Detecting Retina. in 8th International Conference on Artificial Neural Networks (ICANN’98). 1998: Springer, Berlin Heidelberg New York.Google Scholar
  50. 50.
    Rust, A.G. and R. Adams. Developmental Evolution of Dendritic Morphology in a Multi-Compartmental Neuron Model. in 9th International Conference on Artificial Neural Networks (ICANN’99). 1999: London, IEEE.Google Scholar
  51. 51.
    Rust, A.G., R. Adams, and H. Bolouri. Evolutionary Neural Topiary: Growing and Sculpting Artificial Neurons to Order. in 7th International Conference on the Simulation and Synthesis of Living Systems (AlifeVII). 2000.Google Scholar
  52. 52.
    Beerli, R.R., B. Dreier, and C.F. Barbas III, Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA, 2000. 97 (4): p. 1495–1500.CrossRefGoogle Scholar
  53. 53.
    Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403: p. 335–338.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Schilstra
    • 1
  • H. Bolouri
    • 2
    • 3
  1. 1.Science and Technology Research CentreUniversity of HertfordshireUK
  2. 2.Institute for Systems BiologySeattleUSA
  3. 3.Division of Biology 156-29California Institute of TechnologyUSA

Personalised recommendations