Skip to main content

Macromolecules, Genomes and Ourselves

  • Chapter
Book cover Computation in Cells and Tissues

Part of the book series: Natural Computing Series ((NCS))

  • 229 Accesses

Abstract

‘Bioinformatics’ is used to describe computational topics in molecular and cellular biology. As a discipline it involves cross-fertilisation of ideas between computer science and modern biology. DNA, RNA and protein are classes of macromolecule whose members play several roles including inheritance, biological information processing, signal transduction and catalysis. Methods of classifying these molecules are central to current methods for elucidating relationships between sequence, structure and function. We take as a case study metaphors for the function of proteins and point to a unified view of proteins as computational devices capable of matching patterns as inputs and processing to result in alternative outputs. Finally we consider the requirement for a systems view of life in order to construct new models for the era of post-genomic biomedicine. The subject has an ethical dimension and we consider the case that such models are metaphoric constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parish, J. H. (1999) The language of proteins. In Visual Representations and Interpretations, (eds. Paton, R. & Neilson, I. ), Springer, Berlin Heidelberg new York, pp. 139–145.

    Chapter  Google Scholar 

  2. Dyson, H. J., Merutka, G., Waltho, J. P., Lerner, R. A. & Wright, P. E. (1992a). Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. Journal of Molecular Biology 226, 795–817.

    Article  Google Scholar 

  3. Dyson, H. J., Sayre, J. R., Merutka, G., Shin, H. C., Lerner, R. A. & Wright, P. E. (1992b). Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. Journal of Molecular Biology 226, 819–35.

    Article  Google Scholar 

  4. Varley, P., Gronenborn, A. M., Christensen, H., Wingfield, P. T., Pain, R. H. & Clore, G. M. (1993). Kinetics of folding of the all-beta sheet protein interleukin- I beta. Science 260, 1110–1113.

    Article  Google Scholar 

  5. Wright, P. E., Dyson, H. J. & Lerner, R. A. (1988). Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27, 7167–75.

    Article  Google Scholar 

  6. Maturana, H. R. and Varela F. J. (1992). The Tree of Knowledge,Shambhala Publications.

    Google Scholar 

  7. Barker, W. C., Garavelli, J. S., Huang, H. Z., McGarvey, P. B., Orcutt, B. C., Srinivasarao, G. Y., Xiao, C. L., Yeh, L. S. L., Ledley, R. S., Janda, J. F., Pfeiffer, F., Mewes, H. W., Tsugita, A. & Wu, C. (2000). The Protein Information Resource (PIR). Nucleic Acids Research 28, 41–44.

    Article  Google Scholar 

  8. Namboodiri, K., Pattabiraman, N., Lowrey, A., Gaber, B., George, D. G. & Barker, W. C. (1990). Nr1–3d - a Sequence-Structure Database. Biophysical Journal 57, A406 - A406.

    Google Scholar 

  9. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research 28, 235–242.

    Article  Google Scholar 

  10. Bairoch, A. & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28, 45–48.

    Article  Google Scholar 

  11. Lo Conte, L., Ailey, B., Hubbard, T. J. P., Brenner, S. E., Murzin, A. G. & Chothia, C. (2000). SCOP: a Structural Classification of Proteins database. Nucleic Acids Research 28, 257–259.

    Article  Google Scholar 

  12. Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. & Thornton, J. M. (1997). CATH–a hierarchic classification of protein domain structures. Structure 5, 1093–1108.

    Google Scholar 

  13. Holm, L. & Sander, C. (1996). The FSSP database: Fold classification based on structure structure alignment of proteins. Nucleic Acids Research 24, 206–209.

    Article  Google Scholar 

  14. Hofmann, K., Bucher, P., Falquet, L. & Bairoch, A. (1999). The PROSITE database, its status in 1999. Nucleic Acids Research 27, 215–219.

    Article  Google Scholar 

  15. Attwood, T. K., Flower, D. R., Lewis, A. P., Mabey, J. E., Morgan, S. R., Scordis, P., Selley, J. N. & Wright, W. (1999). PRINTS prepares for the new millennium. Nucleic Acids Research 27, 220–225.

    Article  Google Scholar 

  16. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. & Sonnhammer, E. L. L. (2000). The Pfam protein families database. Nucleic Acids Research 28, 263–266.

    Article  Google Scholar 

  17. Michie, A. D., Orengo, C. A. & Thornton, J. M. (1996). Analysis of domain structural class using an automated class assignment protocol. Journal of Molecular Biology 262, 168–185.

    Article  Google Scholar 

  18. Russell, R. B., Copley, R. R. & Barton, G. J. (1996). Protein fold recognition by mapping predicted secondary structures. Journal of Molecular Biology 259, 349–365.

    Google Scholar 

  19. Warner, G.J, Ison, J.C. & Parish, J.H., (1998). “Protein fold recognition from secondary structure signatures”, CCP11 Newsletter Issue 6 2.4. Available as http://www.hgmp.mrc.ac.uk/CCP11/newsletter/vol2_4/ccp11_article/full_article.html

  20. Zhang, C. T. & Zhang, R. (1998). A new criterion to classify globular proteins based on their secondary structure contents. Bioinformatics 14, 857–865.

    Google Scholar 

  21. Zhang, C. T. & Zhang, R. (1999). A quadratic discriminant analysis of protein structure classification based on the helix/strand content. Journal of Theoretical Biology 201, 189–199.

    Google Scholar 

  22. Daniel, S.C., Parish, J.H., Ison, J.C., Blades, M.J. & Findlay, J.B.C. (1999) Alignment of a sparse protein signature with protein sequences: application to fold prediction for three small globulins. FEBS Letters 459, 349–52.

    Google Scholar 

  23. Changeux, J. (1965) The control of biochemical reactions. Scientific American 214, 36–45.

    Article  Google Scholar 

  24. Paton, R.C., Staniford, G. and Kendall, G. (1996) Specifying logical agents in cellular heirarchies. In Computation in cellular and molecular biological systems (eds. Cuthbertson, R., Holcombe, M. & Paton, R.C. ), World Scientific: Singapore, pp. 105–119.

    Chapter  Google Scholar 

  25. Albrecht-Buehler, G. (1990), In Defense on ‘Non moleculuar’ Cell Biology, International Review of Cytology, 120, 191–241.

    Article  Google Scholar 

  26. Paton, R.C. (1997), Glue, Verb and Text Metaphors in Biology, Acta Biotheoretica, 45,1–15.

    Article  Google Scholar 

  27. Paton, R.C. & Matsuno, K. (1998), Some common yhemes for enzymes and verbs, Acta Biotheoretica, 46, 131–140.

    Article  Google Scholar 

  28. Fillmore, C.J. (1968), The Case for Case, In Universals in Linguistic Theory (eds. Bach, E. & Harms, R.T. ), Holt, Rinehart & Winston, pp. 1–88.

    Google Scholar 

  29. Welch, G.R. & Kell, D.B. (1986). Not just Catalysts–Molecular Machines in Bioenergetics. In The Fluctuating Enzyme (ed. Welch, G.R. ), John Wiley, pp. 451–492.

    Google Scholar 

  30. Conrad, M. (1992), The seed germination model of enzyme catalysis, BioSystems 27, 223–233.

    Article  Google Scholar 

  31. Uyeda, K. (1992), “Interactions of Glycolytic Enzymes with Cell Membrane”, Curent. Topics in Cell Regulation 33, 31–46.

    Google Scholar 

  32. Pilkis, S.J., Claus, T.H., Kurland, I.J. & Lange, A.J. 1995, “6-Phosphofructo-2-kinase/ Fructose-2,6-Bisphosphatase: A metabolic signalling enzyme”, Annu. Rev. Biochem., 64, 799–835.

    Article  Google Scholar 

  33. Giles, R.H., Peters, D.J.M. & Breuning, M.H. (1998), Conjunction dysfunction: CBP/p300 in human disease, Trends in Genetics, 14, 178–183.

    Article  Google Scholar 

  34. Blohm, D.H. & Guiseppi-Elie, A. (2001). New developments in microarray technology. Current Opinion in Biotechnology 12, 41–47.

    Article  Google Scholar 

  35. Williams, K. L. (1999). Genomes and proteomes: Towards a multidimensional view of biology. Electrophoresis 20, 678–688.

    Article  Google Scholar 

  36. Pandey, A. & Mann, M. (2000). Proteomics to study genes and genomes. Nature 405, 837–846.

    Google Scholar 

  37. Rain, J.-C. Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A. & Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215.

    Google Scholar 

  38. Nagl, S. B. (2000c). Protein evolution as a parallel-distributed process: A novel approach to evolutionary modelling and protein design. Complex Systems 12: 261–280.

    Google Scholar 

  39. Nagl, S. B. (2000a). Science and moral agency in a complex world. Paper presented at the 5th World Congress of Bioethics, Imperial College, London, September 2000.

    Google Scholar 

  40. Nagl, S. B. (2000b). Neural network models of protein domain evolution. HYLE-An International Journal for the Philosophy of Chemistry 6:143–159. An electronic version of the paper is available at

    Google Scholar 

  41. http://www.uni-karlsruhe.de/-ed01/Hyle/Hyle6/nagl.htm

  42. Beauchamp, T. L. and Childress, J. F. (1989). Principles of Biomedical Ethics, Oxford University Press, Oxford, p. 120.

    Google Scholar 

  43. Kemp, M. and Wallace, M. (2000). Spectacular Bodies: The Art and Science of the Human Body from Leonardo to Now. Hayward Gallery Publishing, p. 24.

    Google Scholar 

  44. Keller, H. (1992). Secrets of life, secrets of death,Routledge, p.5.

    Google Scholar 

  45. Holland, J. H. (1998). Emergence, Addison-Wesley, New York. p. 207.

    Google Scholar 

  46. Spanier, B. B. (1995) Im/Partial Science,Indiana University Press.

    Google Scholar 

  47. Leatherdale, W H. (1974) The Role of Analogy, Model and Metaphor in Science,North Holland.

    Google Scholar 

  48. MacCormac, E R. (1976). Metaphor and Myth in Science and Religion,Duke University Press.

    Google Scholar 

  49. Hesse, M. (1996). Models and Analogies in Science,University of Notre Dame Press.

    Google Scholar 

  50. Kuhn, T. S. (1970) The Structures of Scientific Revolutions 2nd edition, University of Chicago Press, Chicago, Ill., p. 175.

    Google Scholar 

  51. Gould, S. J. (1996) Why Darwin? The New York Review of Books 4 April, 1996: 1014, p. 10.

    Google Scholar 

  52. Thaler, D. S. (1996). Paradox as path: pattern as map. In The Philosophy and History of Molecular Biology: New Perspectives, (ed. Sahotra Sarkar), Kluwer, Dordrecht, pp. 233–248.

    Google Scholar 

  53. Depew, D. J. & Weber, B. H. (1996). Darwinism Evolving: Systems Dynamics and the Genealogy of Natural Selection. First paperback edition, MIT Press, Cambridge, Mass.,, pp. 21–30.

    Google Scholar 

  54. Margulis, L. and Sagan, D. (1995). What is Life?,Weidenfeld & Nicolson Ltd, p. 41.

    Google Scholar 

  55. Chandler, J.L.R. (1996) Complexity III. Emergence. Notation and symbolization. WESScomm 2, 34–37.

    Google Scholar 

  56. Nagl, S. B. (2001). Can correlated mutations in protein domain families be used for protein design? Briefings in Bioinformatics. In press.

    Google Scholar 

  57. Cilliers, P. (1998). Complexity & Postmodernism,Routledge, p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagl, S.B., Parish, J.H., Paton, R.C., Warner, G.J. (2004). Macromolecules, Genomes and Ourselves. In: Paton, R., Bolouri, H., Holcombe, M., Parish, J.H., Tateson, R. (eds) Computation in Cells and Tissues. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06369-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06369-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05569-0

  • Online ISBN: 978-3-662-06369-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics