Categorical Language and Hierarchical Models for Cell Systems

  • R. Brown
  • R. Paton
  • T. Porter
Part of the Natural Computing Series book series (NCS)


The aim is to explain and explore some of the current ideas from category theory that enable various mathematical descriptions of hierarchical structures. We review some aspects of the history and motivations behind the development of category theory and how it has impacted on developments in theoretical biology and theoretical computer science. This leads on to a discussion of hierarchical systems and a discussion of some simple examples. The important idea of colimit is then introduced. Towards the end of the chapter a number of open questions and problems are discussed.


Hierarchical Model Category Theory Linear Logic Hierarchical System Iterate Function System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Rosen, Life itself, Columbia University Press, New York (1991).Google Scholar
  2. 2.
    A. C. Ehresmann and J.-P. Vanbremersch, Hierarchical Evolutive Systems: A mathematical model for complex systems,Bull. of Math. Biol. 49 (1) (1987) 13–50. (For a full list of their work )
  3. 3.
    S. Eilenberg and S. Mac Lane, The general theory of natural equibvalences, Trans. Amer. Math. Soc. 58 (1945) 231–294.MathSciNetMATHGoogle Scholar
  4. 4.
    J. Lambek, and P. J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK, 1986.MATHGoogle Scholar
  5. 5.
    M. A. Arbib and E. G. Manes, Algebraic approaches to program semantics, Springer-Verlag, Berlin Heidelberg New York (1986).MATHGoogle Scholar
  6. 6.
    J. Meseguer, A logical theory of concurrent objects and its relation to the MAUDE language,In: Agha, G., Wegner, P., Yonezawa, A. (Eds.) Research Directions in object oriented based concurrency, MIT Press, Cambridge, Mass., 314–390. (see also
  7. 7.
    M. J. Fisher, G. Malcolm and R. C. Paton, Spatio-logical processes in intracellular signalling, Biosystems 55 (2000) 83–92.CrossRefGoogle Scholar
  8. 8.
    J. Goguen, An introduction to algebraic semiotics with application to user interface design, Computation for Metaphor, Analogy and Agents, C. Nehaniv, Ed., Springer Lecture Notes in Artificial Intelligenc 1562 (1999) 242–291.Google Scholar
  9. 9.
    A. Bell and M. Holcombe, Computational models of cellular processing, in: Computation in Cellular and Molecular Biological Systems, R. Cuthbertson, M. Holcombe and R. Paton, eds., Singapore: World Scientific (1996).Google Scholar
  10. 10.
    N. Dioguardi, Fegato a Pin Dimensioni, Etas Libri, RCS Medecina, Milan.Google Scholar
  11. 11.
    R. C. Paton, Glue, verb and text metaphors in biology, Acta Biotheoretica 45 (1997) 1–15.Google Scholar
  12. 12.
    R. C. Paton, Process, structure and context in relation to integrative biology, Biosystems 64 (2002) 63–72.Google Scholar
  13. 13.
    F.Gadducci, and U. Montanari, Enriched Categories as Models of Computation, in: Alfredo De Santis, Ed., Fifth Italian Conference on Theoretical Computer Science, pp. 20–42, World Scientific, Singapore, 1995.Google Scholar
  14. 14.
    F. Girault, Formalisation en logique lindire du fonctionnement des réseaux de Petri, Thèse, LAAS, Université Paul Sabatier Toulouse, Déc., 1997.Google Scholar
  15. 15.
    F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, UK, 1998.Google Scholar
  16. 16.
    R. Brown and Anne Heyworth, Using rewriting systems to compute left Kan extensions and induced actions of categories, J. Symbolic Computation 29 (2000) 5–31.Google Scholar
  17. 17.
    C. N. G. Dampney, M. Johnson. On the value of commutative diagrams in information modelling, Springer Workshops in Computing, eds. Nivat et al, 1994, 47–60, Springer, London.Google Scholar
  18. 18.
    R. Brown and T. Porter, The intuitions of higher dimensional algebra for the study of structured space, Seminar at the series of G. Longo ‘Géometrie et Cognition’, École Normale Supérieure, May, 2001.Google Scholar
  19. 19.
    S. Krsti, J. Launchbury, and D. Pavlovic,Categories of Processes Enriched in Final Coalgebras, SLNCS 2030 331ffsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Brown
    • 1
  • R. Paton
    • 2
  • T. Porter
    • 1
  1. 1.Mathematics Division, School of InformaticsUniversity of WalesGwyneddUK
  2. 2.Department of Computer ScienceThe University of LiverpoolLiverpoolUK

Personalised recommendations