Advertisement

Respiratory Pigments

  • Klaus Urich
Chapter

Abstract

In the animal kingdom there are four types of O2-binding (respiratory) pigment with different structures but very similar functional properties. They have characteristic colours in their oxygenated states and the absorption spectra of the pigments with bound O2 or another ligand, such as CO or CN, are used for purposes of identification (Table 7.1). The structures of the binding sites vary (Fig. 7.1): the prosthetic group of the globins is protohaem, i.e. Fe(II)-protoporphyring (Fig. 7.2), which can bind one ligand. Chlorocruorin is also a haemoprotein but with a haem component (spirographis haem) which differs from protohaem in one substituent (Fig. 7.2). In the copper protein haemocyanin and the iron protein haemerythrin, the binding site in each case contains two metal atoms (Fig. 7.1). Chlorocruorins and haemocyanins are always found dissolved in the blood plasma; haemerythrins occur only intracellularly, and haemoglobins are both intra-and extracellular (Table 7.2). The intracellular respiratory pigments consistently have molecular masses under 100 kDA and only one to eight O2-binding sites per molecule. Most of the extracellular blood pigments have far larger molecular masses of up to several million kDA and often more than 100 O2-binding sites; in this way, the colloid osmotic effects in the blood plasma are reduced. There are, however, some exceptions to this rule, e.g. the extracellular haemoglobins of chironomid larvae are only 16–32 kDA.

Keywords

Globin Gene Globin Chain Haem Pocket Bohr Effect Root Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasi A. and Braunitzer G.: The primary structure of hemoglobins from the domestic cat (Felis catus, Felidae). Biol. Chem. Hoppe-Seyler 366: 699–704 (1985)PubMedGoogle Scholar
  2. 2.
    Abbasi A. et al.: Molecular basis for ATP/2,3bisphosphoglycerate control switch-over (poikilotherm/homeotherm): An intermediate amino-acid sequence in the hemoglobin of the great Indian rhinoceros (Rhinoceros unicornis, Perissodactyla). Biol. Chem. Hoppe-Seyler 368: 323–332 (1987)PubMedGoogle Scholar
  3. 3.
    Arents G. and Love W. E.: Glycera dibranchiata hemoglobin. Structure and refinement at 1.5 A resolution. J. mol. Biol. 210: 149–161 (1989)PubMedGoogle Scholar
  4. 4.
    Aschauer H., Weber R. E. and Braunitzer G.: The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias). Antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biol. Chem. Hoppe-Seyler 366: 589–599 (1985)PubMedGoogle Scholar
  5. 5.
    Bak H. J. and Beintema J. J.: Panulirus interruptus hemocyanin–The elucidation of the complete amino acid sequence of subunit a. Eur. J. Biochem. 169: 333–348 (1987)PubMedGoogle Scholar
  6. 6.
    Banville D. and Williams J. G.: The pattern of expression of the Xenopus laevis tadpole a-globin genes and the amino acid sequence of the three major tadpole a-globin polypeptides. Nucleic Acids Res. 13: 5407–21 (1985)PubMedGoogle Scholar
  7. 7.
    Banville D. and Williams J H.: Developmental changes in the pattern of larval ß-globin gene expression in Xenopus laevis. Identification of two early larval 13-globin mRNA sequences. J. mol. Biol. 184: 611–620 (1985)PubMedGoogle Scholar
  8. 8.
    Bartlett G. R.: Phosphate compounds in vertebrate red blood cells. Amer. Zool. 20: 103–114 (1980)Google Scholar
  9. 9.
    Bashford D., Chothia C. and Lesk A. M.: Determinants of a protein fold. Unique features of the globin amino acid sequences. J. mol. Biol. 196: 199–216 (1987)PubMedGoogle Scholar
  10. 10.
    Bellelli A. et al.: Haem disorder in two myoglobins: comparison of reorientation rate. Biochem. J. 246: 787–789 (1987)PubMedGoogle Scholar
  11. 11.
    Bieber E. A. and Braunitzer G.: Prae-and perinatal oxygen transport in mammals: The embryonic hemoglobins of the pig (Sus scrofa domestica). Hoppe-Seyler’s Z. physiol. Chem. 365: 321–334 (1984)Google Scholar
  12. 12.
    Bijlholt M. and van Bruggen E. F. J.: A model for the architecture of the hemocyanin from the arthropod Squilla mantis (Crustacea, Stomatopoda). Eur. J. Biochem. 155: 339–344 (1986)PubMedGoogle Scholar
  13. 13.
    Biswanger H.: Theorie and Methoden der Enzymkinetik. Verlag Chemie, Weinheim 1979Google Scholar
  14. 14.
    Blanchetot A., Price M. and Jeffreys A. J.: The mouse myoglobin gene–Characterization and sequence comparison with other mammalian myoglobin genes. Eur. J. Biochem. 159: 469–474 (1986)PubMedGoogle Scholar
  15. 15.
    Bogusz D. et al.: Functioning haemoglobin genes in non-nodulating plants. Nature 331: 178–180 (1988)PubMedGoogle Scholar
  16. 16.
    Boisset N. et al.: Three-dimensional reconstruction of native Androctonus australis hemocyanin. J. mol. Biol. 216: 743–760 (1990)PubMedGoogle Scholar
  17. 17.
    Borgese T. A., Harrington J. P. and Hoffman D.: Anadara ovalis hemoglobins: distinct dissociation and ligand binding characteristics. Comp. Biochem. Physiol. Pt. B. 86: 155–165 (1987)Google Scholar
  18. 18.
    Borgese T. A. et al.: Haemoglobin properties and polymerization in the marine teleost Lophius americanus (goosefish). Comp. Biochem. Physiol. Pt. B 91: 663–670 (1988)Google Scholar
  19. 19.
    Braunitzer G. and Hiebl I.: Molecular aspects of high altitude respiration in birds (In German). Naturwissenschaften 75: 280–287 (1988)PubMedGoogle Scholar
  20. 20.
    Brittain T. and Wells R. M. G.: Characterization of the changes in the state of aggregation induced by ligand binding in the hemoglobin system of a primitive vertebrate, the hagfish Eptatretus cirrhatus. Comp. Biochem. Physiol. Pt. A 85: 785–790 (1986)Google Scholar
  21. 21.
    Brittain T.: The Root effect. Comp. Biochem. Physiol. Pt. B 86: 473–481 (1987)Google Scholar
  22. 22.
    Brittain T.: Co-operative functioning of the dimeric haemoglobin obtained from the radular muscle of the amphineurian mollusc Amaurochiton glaucus. Comp. Biochem. Physiol. Pt. B 96: 96–295 (1990)Google Scholar
  23. 23.
    Brix O.: The adaptive significance of the reversed Bohr and Root shifts in blood from the marine gastropod, Buccinum undatum. J. exp. Zool. 221: 27–36 (1982)Google Scholar
  24. 24.
    Brix O. et al.: The chloride shift may faciliatate oxygen loading and unloading to/from the hemoglobin from the brown bear (Ursus arctos L.). Comp. Biochem. Physiol. Pt. B 95: 865–868 (1990)Google Scholar
  25. 25.
    Brouwer M. and Serigstad B.: Allosteric control in Limulus polyphemus hemocyanin: Function relevance of interactions between hexamers. Biochemistry 28: 8819–27 (1989)PubMedGoogle Scholar
  26. 26.
    Brunori M. et al.: Is there a Root effect in Xenopus hemoglobin? FEBS Letters 221: 161–166 (1987)PubMedGoogle Scholar
  27. 27.
    Bunn H. F.: Regulation of hemoglobin function in mammals. Amer. Zool. 20: 199–211 (1980)Google Scholar
  28. 28.
    Bunn H. F. and Forget B. G.: Hemoglobin. Molecular, genetic and clinical aspects. Saunders, Washington 1986Google Scholar
  29. 29.
    Burnett L. E., Scholnick D. A. and Mangum C. P.: Temperature sensitivity of molluscan and arthropod hemocyanins Biol. Bull. 174: 153–162 (1988)Google Scholar
  30. 30.
    Cardellini P and Sala M.: Developmental time of the hemoglobin transition in the anuran Bombina orientalis. Comp. Biochem. Physiol. Pt. B 75: 259–262 (1983)Google Scholar
  31. 31.
    Chacko V. P. et al.: Proton-magnetic-resonance investigation of the dynamics of the conformational transition in allosteric monomeric insect hemoglobins. Eur. J. Biochem. 161: 375–381 (1986)PubMedGoogle Scholar
  32. 32.
    Cheng, J. E, Krane D. E. and Hardison R. C.: Nucleotide sequence and expression of rabbit globin genes zeta-1, zeta-2 and zeta-3. Pseudogenes generated by block duplications are transcriptionally competent. J. Biol. Chem. 263: 9981–93 (1988)PubMedGoogle Scholar
  33. 33.
    Cirotto C. and Arangi I.: Koelliker haemoglobins in developing chick embryo. Comp. Biochem. Physiol. Pt. B 92: 103–109 (1989)Google Scholar
  34. 34.
    Clegg J. B.: Gene conversions in the horse a-globin gene complex. Mol. Biol. Evol. 4: 492–503 (1987)PubMedGoogle Scholar
  35. 35.
    Colacino J. M. and Kraus D. W.: Hemoglobin-containing cells of Neodasys (Gastrotricha, Chaetonotida)–II. Respiratory significance. Comp. Biochem. Physiol. Pt. A 79: 363–369 (1984)Google Scholar
  36. 36.
    Coletta M. et al.: Ligand-dependent behaviour of the hemoglobin from the ascarid Parascaris equorum. Biochim. biophys. Acta 870: 169–175 (1986)Google Scholar
  37. 37.
    Coletta M. et al.: A novel mechanism of heme-heme interaction in the homodimeric hemoglobin from Scapharca inaequivalis as manifested upon cleavage of the proximal Fe-N bond at low pH. J. Biol. Chem. 265: 4828–30 (1990)PubMedGoogle Scholar
  38. 38.
    Dafré A. L. and F ° D. W.: Root effect hemoglobins in marine fish. Comp. Biochem. Physiol. Pt. A 92: 267–471 (1989)Google Scholar
  39. 39.
    Darawshe S., Tsafandya Y and Daniel E.: Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem. J. 242: 689–694 (1987)PubMedGoogle Scholar
  40. 40.
    Decker H. and Sterner R.: Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus). J. mol. Biol. 211: 281–293 (1990)PubMedGoogle Scholar
  41. 41.
    Douglas E. L. et al.: Myoglobin in the heart tissue of fishes lacking hemoglobin. Comp. Biochem. Physiol. Pt. A 81: 885–888 (1985)Google Scholar
  42. 42.
    Drexel R. et al.: Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol. Chem. Hoppe-Seyler 368: 617–635 (1987)PubMedGoogle Scholar
  43. 43.
    Ellerton H. D., Bearman C. H. and Loong P. C.: Erythrocruorin from the New Zealand earthworm Maoridrilus montanus: a multi-subunit annelid extra-cellular hemoglobin. Comp. Biochem. Physiol. Pt. B 87: 1017–23 (1987)Google Scholar
  44. 44.
    Fitch D. H. A. et al.: Molecular history of gene conversions in the primate fetal gamma-globin genes. Nucleotide sequences from the common gibbon, Hylobates lar. J. Biol. Chem. 265: 781–793 (1990)PubMedGoogle Scholar
  45. 45.
    Focesi A. jr., Ogo S. H. and Matsuura M. S. A.: Dimer-tetramer transition in hemoglobins from Liophis miliaris II Evidence with the stripped proteins. Comp. Biochem. Physiol. Pt. B 96: 119–122 (1990)Google Scholar
  46. 46.
    Garey J. R. and Riggs A. E.: The hemoglobin of Urechis caupo. The cDNA-derived amino acid sequence. J. biol. Chem. 261: 16446–50 (1986)PubMedGoogle Scholar
  47. 47.
    Garner K. J. and Lingrei J. B.: A comparison of the 13A- and 3B-globin gene clusters of sheep. J. mol. Evol. 28: 175–184 (1989)PubMedGoogle Scholar
  48. 48.
    Gelissen G., Hennecke R. and Spindler K. D.: The site of synthesis of hemocyanin in the crayfish, Astacus leptodactylus. Experientia 47: 194-/195 (1991)Google Scholar
  49. 49.
    Giardina B. et al.: Interaction of hemoglobin with chloride and 2,3-bisphophoglycerate: A comparative approach. Eur. J. Biochem. 194: 61–65 (1990)PubMedGoogle Scholar
  50. 50.
    Gibson Q. H. et al.: Ligand binding in a hierarchy of globin complexes: The hexagonal bilayer hemoglobin of Lumbricus terrestris and its heme-containing subunits. J. Biol. Chem. 266: 13097–102 (1991)PubMedGoogle Scholar
  51. 51.
    Gielens C. et al.: Identification, separation and characterization of the haemocyanin components of Helix aspersa. Comp. Biochem. Physiol. Pt. B 88: 181–186 (1987)Google Scholar
  52. 52.
    Gonzalez-Redondo J. M. et al.: Nucleotide sequence of the human theta-1 globin gene. Biochem. Genet. 26: 207–211 (1988)PubMedGoogle Scholar
  53. 53.
    Goodman M. et al: Amino acid sequence evidence on the phylogeny of primates and other eutherians. In: Goodman M (ed.): Macromolecular sequences in systematics and evolutionary biology, pp. 115–191. Plenum, New York 1982Google Scholar
  54. 54.
    Goodman M. et al.: The eta-globin gene. Its long evolutionary history in the 13-globin gene family of mammals. J. mol. Biol. 180: 803–823 (1984)PubMedGoogle Scholar
  55. 55.
    Goodman M. et al.: An evolutionary tree for invertebrate globin sequences. J. mol. Evol. 27: 236–249 (1988)PubMedGoogle Scholar
  56. 56.
    Gotoh T. and Suzuki T.: Molecular assembly and evolution of multi-subunit extracellular annelid hemoglobins. Zool. Sci. 7: 1–16 (1990)Google Scholar
  57. 57.
    Grinich N. R, Terwilliger R. C. and Terwilliger N. B.: Oxygen equilibria and structural characteristics of the tetrameric and polymeric intracellular hemoglobins from the bivalve mollusc Barbatia reeveana. J. comp. Physiol. B 156: 675–682 (1986)Google Scholar
  58. 58.
    Hardison R. C. and Gelinas R. E.: Assignment of orthologous relationships among mammalian aglobin genes by examining flanking regions reveals a rapid rate of evolution. Mol. Biol. Evol. 3: 243–261 (1986)PubMedGoogle Scholar
  59. 59.
    Hardison R. C. et al.: A previously undetected pseudogen in the human alpha globin gene cluster. Nucleic Acids Res. 14: 1903–11 (1986)PubMedGoogle Scholar
  60. 60.
    Harris S. et al.: Nucleotide sequence analysis of the lemur 3-globin gene family: Evidence for major rate fluctuations in globin polypeptide evolution. Mol. Biol. Evol. 3: 465–484 (1986)PubMedGoogle Scholar
  61. 61.
    Herskovits T. T. and Hamilton M. G.: The hemoglobin of the aquatic snail, Planorbella duryi (Wetherby). Comp. Biochem. Physiol. Pt. B 95: 321–326 (1990)Google Scholar
  62. 62.
    Herskovits T. T. et al: Light-scattering and scanning transmission electron microscopic investigation of the hemocyanin of the bivalve, Yoldia limatula (Say). Comp. Biochem. Physiol. Pt. B 96: 497–503 (1990)Google Scholar
  63. 63.
    Herskovits T. T. and Hamilton M. G.: Higher order assemblies of molluscan hemocyanins (Minireview). Comp. Biochem. Physiol. Pt. B 99: 19–34 (1991)Google Scholar
  64. 64.
    Hirsch R. E. and Noble R. W.: Intrinsic fluorescence of carp hemoglobin: a study of the R-T-transition. Biochim. biophys. Acta 914: 213–219 (1987)Google Scholar
  65. 65.
    Hombrados I. et al.: Primary structure of the minor hemoglobins from the sea lamprey (Petromyzon mar-inns, Cyclostomata). Biol. Chem. Hoppe-Seyler 368: 145–154 (1987)PubMedGoogle Scholar
  66. 66.
    Honig G. R. and Adams J. G. (eds.): Human hemoglobin genetics. Springer, Wien 1986Google Scholar
  67. 67.
    Honzatko R. B. and Hendrickson W. A.: Molecular models for the putative dimer of sea lamprey hemoglobin. Proc. Nat. Acad. Sci. USA 83: 8487–91 (1986)PubMedGoogle Scholar
  68. 68.
    Hsu L. et al.: Structure and expression of the human theta-globin gene. Nature 331: 94–96 (1988)PubMedGoogle Scholar
  69. 69.
    Huber E. and Brausitzer G.: The primary structure of the hemoglobin of the electric eel (Electrophorus electricus). Biol. Chem. Hoppe-Seyler 370: 245–250 (1989)PubMedGoogle Scholar
  70. 70.
    Huisman T. H. J.: A comprehensive list of all hemoglobin variants and their references. Hemoglobin 13: 221–323 (1989)Google Scholar
  71. 71.
    van Iersel A. A. J. and Blaauboer B. J.: NADHferrihemoglobin reductase in avian erythrocytes. Comp. Biochem. Physiol. Pt. B 81: 1027–31 (1985)Google Scholar
  72. 72.
    di Iorio E. E. et al.: Kinetics of oxygen and carbon monoxide binding to liver fluke (Dicrocoelium dendriticum) hemoglobin. J. biol. Chem. 260: 2160–64 (1985)PubMedGoogle Scholar
  73. 73.
    Iwaasa H., Takagi T. and Shikama K.: Protozoan hemoglobin from Tetrahymena pyriformis. Isolation, characterization, and amino acid sequence. J. Biol. Chem. 265: 8603–09 (1990)PubMedGoogle Scholar
  74. 74.
    Jannasch H. W.: Deepsea life on the basis of chemical synthesis (In German). Naturwissenschaften 72: 285–290 (1985)Google Scholar
  75. 75.
    Jensen E. B. et al.: A three-state MWC analysis of oxygenation in tench (Tina tinca) hemoglobin. J. comp. Physiol. B 160: 407–411 (1990)Google Scholar
  76. 76.
    Jhiang S. M. and Riggs A. F: The structure of the gene encoding chain c of the hemoglobin of the earthworm, Lumbricus terrestris. J. Biol. Chem. 264: 19003–08 (1989)PubMedGoogle Scholar
  77. 77.
    Johnson B. A.: Structure and function of the hemocyanin from a semiterrestrial crab, Ocypode quadrata. J. comp. Physiol. B 157: 501–509 (1987)PubMedGoogle Scholar
  78. 78.
    Jones G. et al.: Molecular cloning, regulation, and complete sequence of a hemocyanin-related, juvenile hormone-suppressible protein from insect hemolymph. J. Biol. Chem. 265: 8596–8602 (1990)PubMedGoogle Scholar
  79. 79.
    Kapp O. H. et al.: Quaternary structure of the giant extracellular hemoglobin of the leech Macrobdella decora. J. mol. Biol. 213: 141–158 (1990)PubMedGoogle Scholar
  80. 80.
    Karlson S. and Nienhuis A. W.: Developmental regulation of human globin genes. Annual Rev. Biochem. 54: 1071–1108 (1985)Google Scholar
  81. 81.
    Kleinschmidt T. and Sgouros J. G.: Hemoglobin sequences. Biol. Chem. Hoppe-Seyler 368: 579–615 (1987)PubMedGoogle Scholar
  82. 82.
    Kleinschmidt T., Keyl H. G. and Braunitzer G.: Comparison of insect hemoglobins (erythrocruorins) from Chironomus thummi thummi and Chironomus thummi piger (Diptera): The primary stucture of the monomeric hemoglobin CPTIII. Biol. Chem. HoppeSeyler 370: 839–845 (1989)PubMedGoogle Scholar
  83. 83.
    Klippenstein G. L.: Structural aspects of hemerythrin and myohemerythrin. Amer. Zool. 20: 39–51 (1980)Google Scholar
  84. 84.
    Knöchel W et al.: Globin evolution in the genus Xenopus: Comparative analysis of cDNAs coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis. J. mol. Evol. 23: 211–223 (1986)PubMedGoogle Scholar
  85. 85.
    Kobayashi M., Nezu T. and Tanaka Y.: Hypoxic induction of hemoglobin synthesis in Daphnia magna. Comp. Biochem. Physiol. Pt. A 97: 513–517 (1990)Google Scholar
  86. 86.
    Kolatkar P. R. et al.: Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo. J. biol. Chem. 263: 3462–65 (1988)PubMedGoogle Scholar
  87. 87.
    Komiyama M. H. et al.: Was the loss of the D-helix in a-globin a functional neutral mutation? Nature 352: 349–351 (1991)PubMedGoogle Scholar
  88. 88.
    Koop B. F. and Goodman M.: Evolutionary and developmental aspects of two hemoglobin 13-chain genes (epsilon-M and beta-M) of opossum. Proc. Nat. Acad. Sci. USA 85: 3893–97 (1988)PubMedGoogle Scholar
  89. 89.
    Koop B. F. et al.: Tarsius delta-and beta-globin genes: conversions, evolution and systematic implications. J. Biol. Chem. 264: 68–79 (1989)PubMedGoogle Scholar
  90. 90.
    Kortt A. A., Trinick M. J. and Appleby C A: Amino acid sequences of hemoglobins I and II from root nodules of the non-leguminous Parasponia rigida-Rhizobium symbiosis, and a correction of the sequence of hemoglobin I from Parasponia andersonii. Eur. J. Biochem. 175: 141–149 (1988)PubMedGoogle Scholar
  91. 91.
    van Kuik J. A. et al.: Primary structure of the neutral carbohydrate chains of hemocyanin from Panulirus interruptus. Eur. J. Biochem. 159: 297–301 (1986)PubMedGoogle Scholar
  92. 92.
    van Kuik J. A. et al.: Primary structure of the acidic carbohydrate chain of hemocyanin from Panulirus interruptus. FEBS Letters 221: 150–154 (1987)Google Scholar
  93. 93.
    van Kuik J. A. et al.: Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis–3–0Methyl-D-galactose and N-acetyl-D-galactosamin as constituents of xylose-containing N-linked oligosaccharides in an animal glycoprotein. Eur. J. Biochem. 169: 399–411 (1987)PubMedGoogle Scholar
  94. 94.
    Lallier E. and Truchot J. P.: Modulation of hemocyainn oxygen affinity by L-lactate and urate in the prawn Penaeus japonicus. J. exp. Biol. 147: 133–146 (1989)Google Scholar
  95. 95.
    Landsmann J. et al.: Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324: 166–168 (1986)Google Scholar
  96. 96.
    Lang W. H.: cDNA cloning of the Octopus dofleini hemocyanin: Sequence of the carboxyl-terminal domain Biochemistry 27: 7276–82 (1988)Google Scholar
  97. 97.
    Lecomte J. T. J. et al.: Structural and electronic properties of the liver fluke heme cavity by nuclear magnetic resonance and optical spectroscopy. Evidence for a distal tyrosine residue in a normally functioning hemoglobin. J. mol. Biol. 209: 235–247 (1989)PubMedGoogle Scholar
  98. 98.
    Lee A. W. and Karplus M.: Structure-specific model of hemoglobin cooperativity. Proc. Nat. Acad. Sci. USA 80: 7055–59 (1983)PubMedGoogle Scholar
  99. 99.
    Leidescher T. and Decker H.: Conformational changes of tarantula (Eurypelma californicum) hemocyanin detected with a fluorescent probe, 7chloro-4-nitrobenzo-2-oxa-1,3-diazole. Eur. J. Biochem. 187: 617–625 (1990)PubMedGoogle Scholar
  100. 100.
    Lerch K. et al.: Different origins of metal binding sites in binuclear copper proteins, tyrosinase and hemocyanin J inorg. Biochem. 26: 213–217 (1986)Google Scholar
  101. 101.
    Lesk A. M. and Chothia C.: How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins. J. mol. Biol. 136: 225–270 (1980)PubMedGoogle Scholar
  102. 102.
    Leung S. O., Proudfoot N. J. and Whitelaw E.: The gene for theta-globin is transcribed in human fetal erythroid tissues. Nature 329: 551–554 (1987)PubMedGoogle Scholar
  103. 103.
    Levy M. J. et al.: Isolation and characterization of methemoglobin reductase from yellowfin tuna (Thun-nus albacares). Comp. Biochem. Physiol. Pt. B 81: 809–814 (1985)Google Scholar
  104. 104.
    Leyko W. and Osmulski P. A.: Seasonal variability of hemoglobin content and component composition of Chironomus thummi larvae. Comp. Biochem. Physiol. Pt. B 89: 613–616 (1985)Google Scholar
  105. 105.
    Li Q. L. et al.: Beta-globin locus activation regions. Conservation of organization, structure and function. Proc. Nat. Acad. Sci. USA 87: 8207–11 (1990)PubMedGoogle Scholar
  106. 106.
    Liebhaber S. A., Cash E E. and Ballas S. K.: Human a-globin gene expression. The dominant role of the a2-locus in mRNA and protein synthesis. J. biol. Chem. 261: 15327–33 (1986)PubMedGoogle Scholar
  107. 107.
    Lima A. A. B. et al.: Allosteric effect of protons and adenosine triphosphate on hemoglobins from aquatic amphibia. J. comp. Physiol. B 155: 353–355 (1985)Google Scholar
  108. 108.
    Linzen B. (ed.): Invertebrate oxygen carriers. Springer, Berlin 1986Google Scholar
  109. 109.
    Linzen B.: Blue blood. Structure and evolution of hemocyanins (In German). Naturwissenschaften 76: 206–211 (1989).PubMedGoogle Scholar
  110. 110.
    Livingston D. J., Watts D. A. and Brown W. D.: Myoglobin interspecies structural differences: effects on autoxidation and oxygenation. Arch. Biochem. Biophys. 249: 106–115 (1986)PubMedGoogle Scholar
  111. 111.
    Makino N.: Subunits of Panulirus japonicus hemocyanin. 2. Cooperativity of the homogonous hexamers. Eur. J. Biochem. 173: 431–435 (1988)PubMedGoogle Scholar
  112. 112.
    Mangum C. P. (ed.): Blood and oxygen carriers. Springer, New York 1992Google Scholar
  113. 113.
    Manwell C. and Baker C. M. A.: Magelona haemerythrin: tissues specificity, molecular weights and oxygen equilibiria. Comp. Biochem. Physiol. Pt. B 89: 453–463 (1988)Google Scholar
  114. 114.
    Margot J. B., Demers G. W. and Hardison R. C.: Complete nucleotide sequence of the rabbit 13-like globin gene cluster. J. mol. Biol. 205: 15–40 (1989)PubMedGoogle Scholar
  115. 115.
    Markl J.: Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol. Bull. 171: 90–115 (1986)Google Scholar
  116. 116.
    Markl J. et al.: Quaternary and subunit structure of Calliphora arylphorin as deduced from electron microscopy, electrophoresis, and sequence similarities with arthropod hemocyanin. J. comp. Physiol. B 162: 665–680 (1992)PubMedGoogle Scholar
  117. 117.
    Martin K. D. and Parkhurst L. J.: Kinetics and thermodynamics of oxygen and carbon monoxide binding to the T-state hemoglobin of Urechis caupo. Biochemistry 29: 5718–26 (1990)PubMedGoogle Scholar
  118. 118.
    Matsuura M. S. A., Fushitani K and Riggs A. E: The amino acid sequences of the a and ß chains of hemoglobin from the snake, Liophis miliaris. J. Biol. Chem. 264: 5515–21 (1989)PubMedGoogle Scholar
  119. 119.
    Mayr G. W. and Dietrich W.: The only inositol tetrakisphosphate detectable in avian erythrocytes is the isomer lacking phosphate at position 3: a NMR study. FEBS Letters 213: 278–282 (1987)PubMedGoogle Scholar
  120. 120.
    Miller K. I. and Mangum C. P.: An investigation of the nature of Bohr, Root, and Haldane effects in Octopus dofleini hemocyanin. J. comp. Physiol. B 158: 547–552 (1988)PubMedGoogle Scholar
  121. 121.
    Miller K. I., Schabtach E. and van Holde K. E.: Arrangement of subunits and domains within the Octopus dofleini hemocyanin. Proc. Nat. Acad. Sci. USA 87: 1496–1500 (1990)PubMedGoogle Scholar
  122. 122.
    Mintorovitch J., van Pelt D. and Satterlee J. D.: Kinetic study of the slow cyanide binding to Glycera dibranchiata monomer hemoglobin. Biochemistry 28: 6099–6104 (1989)PubMedGoogle Scholar
  123. 123.
    Miyashita N. et al.: Allelic constitution of the hemoglobin beta chain in wild populations of the house mouse, Mus musculus. Biochem. Genetics 23: 975–986 (1985)Google Scholar
  124. 124.
    Moon A. M. and Ley T. J.: Conservation of the primary structure, organization, and function of the human and mouse 13-globin locus-activating regions. Proc. Nat. Acad. Sci. USA 87: 7693–97 (1990)PubMedGoogle Scholar
  125. 125.
    Myers C. R. et al.: Haemoglobin-producing tissue of larvae and pupae of Chironomus thummi (Diptera). J. Insect Physiol. 32: 845–851 (1986)Google Scholar
  126. 126.
    Nakashima H. et al.: Structure of hemocyanin II from the horseshoe crab, Limulus polyphemus. Sequences of two overlapping peptides, ordering the CNBr fragments, and the complete amino acid sequence. J. biol. Chem. 261: 10526–33 (1986)PubMedGoogle Scholar
  127. 127.
    Neuteboom B. et al.: Partial amino acid sequence of a hemocyanin subunit from Palinurus vulgaris. Comp. Biochem. Physiol. Pt. B 94: 593–597 (1989)Google Scholar
  128. 128.
    Osmulski P. A. and Leyko W.: Structure, function and physiological role of Chironomus haemoglobin (Review). Comp. Biochem. Physiol. Pt. B 85: 701–722 (1986)Google Scholar
  129. 129.
    Padgett R. W. et al.: The molecular organization of the beta-globin complex of the deer mouse, Peromyscus maniculatus. Mol. Biol. Evol. 4: 30–45 (1987)PubMedGoogle Scholar
  130. 130.
    Peeters K. et al.: The globin composition of Daphnia pulex hemoglobin and the comparison of the amino acid composition of invertebrate hemoglobins. Comp. Biochem. Physiol. Pt. B 97: 369–381 (1990)Google Scholar
  131. 131.
    Perutz M. F.: Species adaptation in a protein molecule. Mol. Biol. Evol. 1: 1–28 (1983)PubMedGoogle Scholar
  132. 132.
    Perutz M. E.: Species adaptation in a protein molecule. Adv. Protein Res. 36: 213–244 (1984)Google Scholar
  133. 133.
    Petruzzelli R. et al.: Amino acid sequence of a-chain of hemoglobin IV from trout (Salmo irideus). Biochim. biophys. Acta 995: 255–258 (1989)Google Scholar
  134. 134.
    Petruzzelli R. et al.: Scapharca hemoglobins, type cases of a novel mode of chain assembly and hemeheme communication. Amino acid sequence and subunit interactions of the tetrameric. FEBS Letters 259: 133–136)1889)Google Scholar
  135. 135.
    Powers D. A.: Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Amer. Zool. 20: 139–162 (1980)Google Scholar
  136. 136.
    Reischl E. et al.: Bohr effect, electroin spin resonance spectroscopy and subunit dissociation of the hemoglobin components from the turtle Phrynops hilarii. Comp. Biochem. Physiol. Pt. B 78: 251–157 (1984)Google Scholar
  137. 137.
    Rendell M. et al.: An interspecies comparison of normal levels of glycosylated hemoglobin and glycosylated albumin Comp. Biochem. Physiol. Pt. B 81: 819–822 (1985)Google Scholar
  138. 138.
    Richardson D. E. et al.: Allosteric interactions in sipunculid and brachiopod hemerythrins. Biochemistry 26: 1003–13 (1987)PubMedGoogle Scholar
  139. 139.
    Riggs A. F.: The Bohr effect. Annual Rev. Physiol. 50: 181–204 (1988)Google Scholar
  140. 140.
    Robinson I. B. and Ingram V. M.: Gene evolution in the chicken (3-globin cluster. Cell 28: 515–521 (1982)Google Scholar
  141. 141.
    Royer W. E. jr., Hendrickson W. A. and Chiancone E.: Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249: 518–521 (1990)PubMedGoogle Scholar
  142. 142.
    Rozynek P., Hankeln T. and Schmidt E. R.: Structure of a hemoglobin gene cluster and nucleotide sequence of three hemoglobin genes from the midge Chironomus thummi piger (Diptera, Insecta). Biol. Chem. Hoppe-Seyler 370: 533–542 (1989)PubMedGoogle Scholar
  143. 143.
    Schartau W. et al.: Hemocyanins in spiders. XIII. Complete amino acid sequence of subunit a Eurypelma californicum. Biol. Chem. Hoppe-Seyler 371: 557–565 (1990)PubMedGoogle Scholar
  144. 144.
    Schimenti J. C. and Dumcan C. H.: Structure and organization of the bovine 3-globin genes. Mol. Biol. Evol. 2: 514–525 (1985)PubMedGoogle Scholar
  145. 145.
    Scott E. M. and Harrington J. P.: Methemoglobin reductase activity in fish erythrocytes. Comp. Biochem. Physiol. Pt. B 82: 511–513, (1985)Google Scholar
  146. 146.
    Shaw J. P., Marks J. and Shen C. K. J.: Evidence that the recently discovered theta-1-globin gene is functional in higher primates. Nature 326: 717–720 (1987)PubMedGoogle Scholar
  147. 147.
    Shehee W. R. et al.: Nucleotide sequence of the BALB/c mouse 13-globin complex. J. mol. Biol. 205: 41–62 (1989)PubMedGoogle Scholar
  148. 148.
    Shishikura E et al.: Amino acid sequence of the monomer subunit of the extracellular hemoglobin of Lumbricus terrestris. J. biol. Chem. 262: 3123–31 (1987)PubMedGoogle Scholar
  149. 149.
    Simpson C. E., Taylor W. J. and Jacobson E. R.: Sickling hemoglobin polymerization in iguana erythrocytes. Comp. Biochem. Physiol. Pt. A 73: 703–708 (1982)Google Scholar
  150. 150.
    Sizaret P. Y. et al.: A refined quaternary structure of Androctonus australis hemocyanin Eur. J. Biochem. 127: 501–506 (1982)PubMedGoogle Scholar
  151. 151.
    Smit J. D. G. et al.: Acid Bohr effect of a monomeric haemoglobin from Dicrocoelium dendriticum–Mechanism of the allosteric conformation transition. Eur. J. Biochem. 155: 231–237 (1986)PubMedGoogle Scholar
  152. 152.
    Stalder J. et al.: Primary structure and evolutionary relationship between the adult a-globin genes and their 5’-flanking regions of Xenopus laevis and Xeno-pus tropicalis. J. mol. Evol. 28: 64–71 (1989)Google Scholar
  153. 153.
    Standley P. R. et al.: The calcium, copper and zinc content of some annelid extracellular haemoglobins. Biochem. J. 249: 915–916 (1988)PubMedGoogle Scholar
  154. 154.
    Stern M. S. et al.: Amino acid sequence of the monomer subunit of the giant extracellular hemoglobin of the aquatic oligochaete, Tubifex tubifex. Eur. J. Biochem. 194: 67–73 (1990)PubMedGoogle Scholar
  155. 155.
    Stoecker W. et al.: The quatenary structure of four crustacean two-hexameric hemocyanins• immunocorrelation, stoichiometry, reassembly and topology of individual subunits. J. comp. Physiol. B 158: 271–289 (1988)Google Scholar
  156. 156.
    Suzuki T: Amino acid sequence of myoglobin from the mollusc Dolabella auricularia. J. biol. Chem. 261: 3692–99 (1986)PubMedGoogle Scholar
  157. 157.
    Suzuki T.: Amino acid sequence of a major globin from the sea cucumber Paracaudina chilensis. Biochim. biophys. Acta 998: 292–296 (1989)Google Scholar
  158. 158.
    Suzuki T. et al.: Hemoglobins from the two closely related clams Barbatia lima and Barbatia virescens. Comparison of their subunit structures and N-terminal sequence of the unusual two-domain chain. Zool. Sci. 6: 269–281 (1989)Google Scholar
  159. 159.
    Suzuki T., Takagi T. and Ohta S.: Amino acid sequence of the dimeric hemoglobin (Hb I) from the deep-sea cold-seep clam Calyptogena soyoae and the phylogenetic relationship with other molluscan hemoglobins. Biochim. biophys. Acta 999: 254–259 (1989)Google Scholar
  160. 160.
    Suzuki T., Takagi T. and Gotoh T.: Primary structure of the two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. J. Biol. Chem. 265: 12168–77 (1990)PubMedGoogle Scholar
  161. 161.
    Suzuki T., Takagi T. and Ohta S.: Primary structure of a constituent polypeptide chain (AIII) of the giant hemoglobin from the deep-sea tube worm Lamellibrachia. A possible hydrogen sulfide-binding site. Biochemistry 266: 221–225 (1990)Google Scholar
  162. 162.
    Tam L. T., Gray G. P. and Riggs A. E: The hemoglobins of the bullfrog Rana catesbeiana. The structure of the f3-chain of component C and the role of the a-chain in the formation of intermolecular disulfide bonds. J. biol. Chem. 261: 8290–94 (1986)PubMedGoogle Scholar
  163. 163.
    Terwilliger R. C. and Terwilliger N. B.: Molluscan hemoglobins (Review). Comp. Biochem. Physiol. Pt. B 81: 255–261 (1985)Google Scholar
  164. 164.
    Terwilliger N. B. et al.: Bivalve hemocyanins–a comparison with other molluscan hemocyanins Comp. Biochem. Physiol. Pt. B 89: 189–195 (1988)Google Scholar
  165. 165.
    Toulmond A., Jouin C. and de Frescheville J.: Hemocyanin of the protobranch bivalve mollusc Nucula hanleyi Winckworth. Comp. Biochem. Physiol. Pt. B 88: 71–74 (1987)Google Scholar
  166. 166.
    Trewitt P. M., Boyer D. R. and Bergstrom G.: Characterization of maternal haemoglobin in the eggs and embryos of Chironomus thummi. J. Insect Physiol. 32: 963–969 (1986)Google Scholar
  167. 167.
    Trotman C. N. A. et al.: The polymeric hemoglobin molecule of Artemia. Interpretation of translated cDNA sequence of nine domains J Biol. Chem. 266: 13789–95 (1991)PubMedGoogle Scholar
  168. 168.
    Utecht R. E. and Kurtz jr. D. M.: Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii. Biochim. biophys. Acta 953: 164–178 (1988)Google Scholar
  169. 169.
    Val A. L. et al.: Biological aspects of Amazonian fishes–I. Red blood cell phosphates of schooling fishes (genus Semaprochilodus: Prochilodontidae). Comp. Biochem. Physiol. Pt. B 78: 215–217 (1984)Google Scholar
  170. 170.
    Vandergon T. L. and Colacino J. M.: Characterization of hemoglobin from Phoronis architecta (Phoronida). Comp. Biochem. Physiol. Pt. B 94: 31–39 (1989)Google Scholar
  171. 171.
    Viana de Freitas T., Alfonso A. M. M. and Neves A. G. A.: Purification and characterization of the glycopeptide II from the hemoglobin of Biomphalaria glabrata. Comp. Biochem. Physiol. Pt. B 81: 743–747 (1985)Google Scholar
  172. 172.
    Vinson C. R. and Bonaventura J.: Structure and oxygen equilibrium of the three coelomic cell hemoglobins of the echiuran worm Thalassema mellita (Conn). Comp. Biochem. Physiol. Pt. B 87: 361–366 (1987)Google Scholar
  173. 173.
    Vincent K. A. and Wilson A. C.: Evolution and transcription of Old World monkey globin genes. J. mol. Biol. 207: 465–479 (1989)PubMedGoogle Scholar
  174. 174.
    Vinogradov S. N. and Kapp O. H. (eds.): Structure and function of invertebrate oxygen carriers. Springer, New York 1991Google Scholar
  175. 175.
    Vinogradov S. N., Sharma P. K. and Walz D. A.: Iron and heme content of the extracellular hemoglobins and chlorocruorins of annelids (Review). Comp. Biochem. Physiol. Pt. B 98: 187–194 (1991)Google Scholar
  176. 176.
    Vinogradov S. N. et al.: A dodecamer of globin chains is the principal functioning subunit of the extracellular hemoglobin of Lumbricus terrestris. J. Biol. Chem. 266: 13091–96 (1991)PubMedGoogle Scholar
  177. 177.
    Voit R. and Feldmaierfuchs G.: Arthropod hemocyanins: Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunit-A and subunit-E. J. Biol. Chem. 265: 19447–52 (1990)PubMedGoogle Scholar
  178. 178.
    Volbeda A. and Hol W. G. J.: Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. J. mol. Biol. 209: 249–279 (1989)PubMedGoogle Scholar
  179. 179.
    Wache S., Terwilliger N. B. and Terwilliger R. C.: Hemocyanin structure changes during early development of the crab Cancer productus. J. exp. Zool. 247: 23–32 (1988)Google Scholar
  180. 180.
    Wainwright B. and Hope R.: Cloning and chromosomal location of the a-and ß-globin genes from a marsupial. Proc. Nat. Acad. Sci. USA 82: 8105–08 (1985)PubMedGoogle Scholar
  181. 181.
    Wakabayashi S., Matsubara H. and Webster D. A.: Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481–483 (1986)PubMedGoogle Scholar
  182. 182.
    Weber R. E., Braunitzer G. and Kleinschmidt T.: Functional multiplicity and structural correlations in the hemoglobin system of larvae of Cironomus thummi thummi (Insecta, Diptera): Hb components CTT I, CTT IIß, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX and CTT X. Comp. Biochem. Physiol. Pt. B 80: 747–753 (1985)Google Scholar
  183. 183.
    Weber R. E. and Jensen E. B.: Functional adaptations in hemoglobins from ectothermic vertebrates. Annual Rev. Physiol. 50: 161–179 (1988)Google Scholar
  184. 184.
    Wichertjes T. et al.: The quaternary structure of Sepia officinalis haemocyanin Biochim. biophys. Acta 872: 183–194 (1986)Google Scholar
  185. 185.
    Willard C. et al.: Comparison of human and chimpanzee zeta-globin genes. J. mol. Evol. 22: 309–315 (1985)PubMedGoogle Scholar
  186. 186.
    Wills C.: Genetic variability. Clarendon Press, Oxford 1981Google Scholar
  187. 187.
    Wilson jr. R. R. and Knowles E. C.: Temperature adaptation of fish hemoglobins reflected in rates of autoxidation. Arch. Biochem. Biophys. 255: 210–213 (1987)PubMedGoogle Scholar
  188. 188.
    Wood E. J. et al.: Relative molecular mass of the polypeptide chain of ßc-haemocyanin of Helix pomatia and carbohydrate composition of the functional units. Comp. Biochem. Physiol. Pt. B 82: 179–186 (1985)Google Scholar
  189. 189.
    Zafar R. S. et al.: The cDNA sequences encoding two components of the polymeric fraction of the intracellular hemoglobin of Glycera dibranchiata. J. Biol. Chem. 265: 21843–51 (1990)PubMedGoogle Scholar
  190. 190.
    Zhang K. et al.: The active site of hemerythrin as determined by X-ray absorption fine structure. Biochemistry 27: 7470–79 (1988)PubMedGoogle Scholar
  191. 191.
    Zimmer J. R. et al.: Kinetic study of the oxygenation process of hemerythrins from Lingula unguis and Siphonosoma crumanense. Biochim. biophys. Acta 874: 174–180 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Urich
    • 1
  1. 1.Institut für ZoologieUniversität MainzMainzGermany

Personalised recommendations