Advertisement

Molecular Evolution

  • Klaus Urich
Chapter

Abstract

Ideas about the process and the laws of evolution are mainly based upon the comparison of characters of living organisms. Whilst classical research into evolution indirectly draws conclusions about evolutionary changes in the genotype by the observation of phenotypic differences, especially morphological characters, the molecular approach to evolution deals directly with the genome through sequence comparisons of nucleic acids and proteins. The amount of data now available at this level is enormous and increases continuously. DNA-sequence analysis, which has been available for only a few years, has already produced more information than the previous three decades of protein sequencing [377]. These days amino acid sequences are mostly determined from the coding nucleotide sequences rather than by direct analysis.

Keywords

Molecular Evolution Gene Conversion Molecular Clock Synonymous Substitution Sibling Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alahiotis S. N.: Adaptation of Drosophila enzymes to temperature. 4. Natural selection at the alcohol dehydrogenase locus. Genetica 59: 81–87 (1982)CrossRefGoogle Scholar
  2. 2.
    Alber T.: Mutational effects on protein stability. Annual Rev. Biochem. 58: 765–798 (1989)CrossRefGoogle Scholar
  3. 3.
    de Albuquerque C. M. R. and Napp M.: Genetic variability at the esterase-6 locus in natural populations of Drosophila simulans in relation to environmental heterogeneity. Genetics 98: 399–407 (1981)PubMedGoogle Scholar
  4. 4.
    Alonso S. et al.: Comparison of three actin-coding sequences in the monuse: evolutionary relationships between the actin genes of warm-blooded vertebrates. J. mol. Evol. 23: 11–22 (1986)PubMedCrossRefGoogle Scholar
  5. 5.
    Altruda E et al.: The primary structure of human hemopexin deduced from cDNA sequence: evidence for internal repeating homology. Nucleic Acids Res. 13: 3841–59 (1985)PubMedCrossRefGoogle Scholar
  6. 6.
    Altschul S. F. and Lipman D. J.: Protein database searches for multiple alignments. Proc. Nat. Acad. Sci. USA 87: 5509–13 (1990)PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson P. R. and Oakeshott J. G.: Parallel geographical patterns of allozyme variation in two sibling Drosophila species. Nature 308: 729–730 (1984)CrossRefGoogle Scholar
  8. 8.
    Anderson S. M. and McDonald J. F: Effect of environmental alcohol on in vivo properties of Drosophila alcohol dehydrogenase. Biochem. Genetics 19: 421–430 (1981)CrossRefGoogle Scholar
  9. 9.
    Aquadro C. E and Avise J. C.: An assessment of „hidden“ heterogeneity within electromorphs at three enzyme loci in deer mice. Genetics 102: 269–283 (1982)PubMedGoogle Scholar
  10. 10.
    Arcari P., Martinelli R. and Salvatore F.: Human glyceraldehyde-3-phosphate dehydrogenase pdeudogenes: Molecular evolution and possible mechanisms for amplification. Biochem. Genet. 27: 439–450 (1989)PubMedCrossRefGoogle Scholar
  11. 11.
    Argos P.: Sensitive procedure to compare amino acid sequences. J. mol. Biol. 193: 385–396 (1987)PubMedCrossRefGoogle Scholar
  12. 12.
    Aspinwall N.: Genetic analysis of North American populations of the pink salmon, Oncorhynchnus gorbnuscha, possible evidence for the neutral mutation-random drift hypothesis. Evolution 28: 295–305 (1974)CrossRefGoogle Scholar
  13. 13.
    Atchison M. and Adesnik M.: Gene conversion in a cytochrom P-450 gene family. Proc. Nat. Acad. Sci. USA 83: 2300–04 (1986)PubMedCrossRefGoogle Scholar
  14. 14.
    Avise J. C.: Is evolution gradual or rectangular? Evidence from living fishes. Proc. Nat. Acad. Sci. USA 74: 5083–87 (1977)PubMedCrossRefGoogle Scholar
  15. 15.
    Avise J. C. and Aquadro C. F.: A comparative summary of genetic distances in the vertebrates. In: Evolutionary Biology Vol. 15, pp. 151–185. Plenum, New York 1982CrossRefGoogle Scholar
  16. 16.
    Ayala F J.: Genetic differentiation during the speziation process. In: Evolutionary Biology Vol. 8, pp. 1–78. Plenum, New York 1975Google Scholar
  17. 17.
    Ayala E J.: Genetic polymorphism: from electrophoresis to DNA sequences. Experientia 39: 813–823 (1983)PubMedCrossRefGoogle Scholar
  18. 18.
    Barnes P. T. and Laurie-Ahlberg C. C.: Genetiv variability of flight muscle metabolism in Drosophila melanogaster. III. Effects of Gpdh allozymes and environmental temperature on power output. Genetics 112: 267–294 (1986)PubMedGoogle Scholar
  19. 19.
    Baroin A. et al.: Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc. Nat. Acad. Sci. USA 85: 3474–78 (1988)PubMedCrossRefGoogle Scholar
  20. 20.
    Baverstock P. R. et al.: SrRNA evolution and phylogenetic relationships of the genus Naegleria (Protista: Rhizopoda). Mol. Biol. Evol. 6: 243–257 (1989)PubMedGoogle Scholar
  21. 21.
    Bendall D. S. (ed.): Evolution from molecules to man. Cambridge Univ. Press, Cambridge 1983Google Scholar
  22. 22.
    van Beneden R. J. and Powers D. A.: Structural and functional differentiation of two clinally distributed glucosephosphate isomerase allelic isozymes from the teleost Fundulus heteroclitus. Mol. Biol. Evol. 6: 155–170 (1989)PubMedGoogle Scholar
  23. 23.
    Benson D. C.: Fourier methods for biosequence analysis. Nucleic Acids Res. 18: 6305–10 (1990)PubMedCrossRefGoogle Scholar
  24. 24.
    Berger D.: Esterases od Drosophila. II. Biochemical studies of esterase-5 in D. pseudoobscura. Genetics 78: 1157–72 (1974)PubMedGoogle Scholar
  25. 25.
    Berlocher S. H.: Insect molecular systematics. Annual Rev. Entomol. 29: 403–433 (1984)CrossRefGoogle Scholar
  26. 26.
    Bernardi G. et al.: Compositional patterns in vertebrate genomes: Conservation and change in evolution. J. mol. Evol. 28: 7–18 (1989)CrossRefGoogle Scholar
  27. 27.
    Beverley M., Ismach R. B. and McMahon Pratt D.: Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns. Proc. Nat. Acad. Sci. USA 84: 484–488 (1987)PubMedCrossRefGoogle Scholar
  28. 28.
    Beverley S. M. and Wilson A. C.: Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons. Proc. Nat. Acad. Sci. USA 82: 4753–57 (1985)PubMedCrossRefGoogle Scholar
  29. 29.
    Bishop M. J. and Rawlings C. J. (eds.): Nucleic acids and protein sequence analysis. IRL Press, Oxford 1987Google Scholar
  30. 30.
    Black IV W. C. and Krafsur E. S.: Electrophoretic analysis of genetic variability in the house fly (Musca domestica L.). Biochem. Genetics 23: 193–203 (1985)CrossRefGoogle Scholar
  31. 31.
    Blaisdell B. E.: A method of estimating from two aligned present day DNA sequences their ancestral composition and subsequent rates of substitution, possibly different in the two lineages, corrected for multiple and parallel substitutions at the same site. J. mol. Evol. 22: 69–81 (1985)PubMedCrossRefGoogle Scholar
  32. 32.
    Blaisdell B. E.: Effectiveness of measures requiring and not requiring prior sequence alignment for estimating the dissimilarity of natural sequences. J. mol. Evol. 29: 526–537 (1989)PubMedCrossRefGoogle Scholar
  33. 33.
    Bogart J. P. and Tandy M.: Polyploid amphibians: Three more diploid-tetraploid cryptic species of frogs. Science 193: 334–335 (1976)PubMedCrossRefGoogle Scholar
  34. 34.
    Bonhomme F. et al.: Biochemical diversity and evolution in the genus Mus. Biochem. Genetics 22: 275–303 (1984)CrossRefGoogle Scholar
  35. 35.
    Bonnell M. L. and Selander R. K.: Elephant seals: genetic variation and near extinction. Science 184: 908–909 (1974)CrossRefGoogle Scholar
  36. 36.
    Bonnet F. et al.: An unexpected sequence homology between link proteins of the proteoglycan complex and immunoglobulin-like proteins. Biochim. biophys. Acta 873: 152–155 (1986)Google Scholar
  37. 37.
    Brent L. et al.: Further studies on supposed lamarckian inheritance of immunological tolerance. Nature 295: 242–244 (1982)PubMedCrossRefGoogle Scholar
  38. 38.
    Britten R. J.: Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–98 (1986)PubMedCrossRefGoogle Scholar
  39. 39.
    Britten R. J. et al.: Sources and evolution of human Alu repeated sequences. Proc. Nat. Acad. Sci. USA 85: 4770–74 (1988)PubMedCrossRefGoogle Scholar
  40. 40.
    Brown A. J. L.: Variation of the 87A heat shock locus in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 80: 5350–54 (1983)PubMedCrossRefGoogle Scholar
  41. 41.
    Brown G. G. and Simpson M. V.: Intra-and interspecific variation of the mitochondrial genome in Rattus norwegicus and Rattus rattus: Restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships. Genetics 97: 125–143 (1981)PubMedGoogle Scholar
  42. 42.
    Brown G. G. and Simpson M. V.: Novel features of animal mtDNA evolution as shown by sequences of 2 rat cytochrome oxidase subunit-II genes. Proc. Nat. Acad. Sci. USA 79: 3246–50 (1982)PubMedCrossRefGoogle Scholar
  43. 43.
    Brownell E.: DNA/DNA hybridisation studies of muroid rodents: Symmetry and rates of molecular evolution. Evolution 37: 1034–51 (1983)CrossRefGoogle Scholar
  44. 44.
    Brunk C. E and Olson E. C. (eds.): The C.S.E.O.L. conference on DNA-DNA hybridisation and evolution, Lake Arrowhead, California, May 11–14, 1989. J. mol. Evol. 30: 101–297 (1990)Google Scholar
  45. 45.
    Bryan G., Garza D. and Hartl D.: Insertion and excision of the transposable element mariner in Drosophila. Genetics 125: 103–114 (1990)PubMedGoogle Scholar
  46. 46.
    Buchanan B. A. and Johnson D. L. E.: Hidden electrophoretic variation at the xanthine dehydrogenase locus in a natural population of Drosophila melanogaster. Genetics 104: 301–315 (1983)PubMedGoogle Scholar
  47. 47.
    Bulfield G., Moore E. A. and Kacser H.: Genetic variation in activity of the enzymes of glycolysis and gluconeogenesis between inbred strains of mice. Genetics 89: 551–561 (1978)PubMedGoogle Scholar
  48. 48.
    Burbaum J. J. et al.: Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry 28: 9293–9305 (1989)PubMedCrossRefGoogle Scholar
  49. 49.
    Burke W. D. and Eickbush T. H.: The silkworm late chorion locus. I. Variation within two paired multi-gene families. J. mol. Biol. 190: 343–356 (1986)Google Scholar
  50. 50.
    Burkhart B. D. et al.: Characterization of allozyme null and low activity alleles from two natural populations of Drosophila melanogaster. Genetics 107: 295–306 (1984)PubMedGoogle Scholar
  51. 51.
    Butler M. H. et al.: Molecular relationships between closely related strains and species of nematodes. J. mol. Evol. 18: 18–23 (1981)PubMedCrossRefGoogle Scholar
  52. 52.
    Cabrera V. M. et al.: Electrophoretic variability in natural populations of Drosophila melanogaster and Drosophila simulans. Genetica 59: 191–201 (1982)CrossRefGoogle Scholar
  53. 53.
    Caccone A., Desalle R. and Powell J. R.: Calibration of the change in thermal stability of DNA duplexes and degree of base pair mismatch. J. mol. Evol. 27: 212–216 (1988)PubMedCrossRefGoogle Scholar
  54. 54.
    Caccone A. and Powell J. R.: DNA divergence among hominids. Evolution 43: 925–942 (1989)CrossRefGoogle Scholar
  55. 55.
    Campbell C. A., Valentine J. W. and Ayala F. J.: High genetic variability in a population of Tridacna maxima from the Great Barrier Reef. Mar. Biol. 33: 341–345 (1975)CrossRefGoogle Scholar
  56. 56.
    Carlson D. A. and Service M. W.: Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207: 1089–91 (1980)PubMedCrossRefGoogle Scholar
  57. 57.
    Carr S. M., Brothers A. J. and Wilson A. C.: Evolutionary inferences from restriction maps of mitochondrial DNA from 9 taxa of Xenopus frogs. Evolution 41: 176–188 (1987)CrossRefGoogle Scholar
  58. 58.
    Castillo O., Lehmann H and Diamond R.: Selection at molecular level in mammalian myoglobins. FEBS Letters 96: 12–14 (1978)PubMedCrossRefGoogle Scholar
  59. 59.
    Catzeflis F. M. et al.: DNA-DNA hybridisation evidence of the rapid rate of muroid rodent DNA evolution. Mol. Biol. Evol. 4: 242–253 (1987)PubMedGoogle Scholar
  60. 60.
    Cavalli-Sforza L. L. et al.: Reconstruction of human evolution: Bringing together genetic, archaeological, and linguistic data. Proc. Nat. Acad. Sci. USA 85: 6002–06 (1988)PubMedCrossRefGoogle Scholar
  61. 61.
    Cavener D. R. and Clegg M. T.: Temporal stability of allozyme frequencies in a natural population of Drosophila melanogaster. Genetics 98: 613–623 (1981)PubMedGoogle Scholar
  62. 62.
    Chakraborty R. et al.: Heterozygosity and genetic distance of proteins. Nature 304: 755–756 (1983)PubMedCrossRefGoogle Scholar
  63. 63.
    Charlesworth B. and Langley C. H.: The evolution of self-regulated transposition of transposable elements. Genetics 112: 359–383 (1986)PubMedGoogle Scholar
  64. 64.
    Chernyshev A. I.: Further study of histone structural gene multiplication in Drosophila melanogaster. Mol. gen. Genetics 185: 176–180 (1982)Google Scholar
  65. 65.
    Christen R. et al.: An analysis of the origin of metazoa, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of the triplo-blasts. Embo J. 10: 499–503 (1991)PubMedGoogle Scholar
  66. 66.
    Clark R. L. et al.: Studies of enzyme polymorphism in the Kamuela population of Drosophila mercato-rum. III. Effects of variation at the aGPD locus and subflight stress on the energy charge and glycolytic intermediate concentrations. Genetics 104: 661–675 (1983)PubMedGoogle Scholar
  67. 67.
    Clegg J. B.: Gene conversions in the horse a-globin gene complex. Mol. Biol. Evol. 4: 492–503 (1987)PubMedGoogle Scholar
  68. 68.
    Clegg M. T. and Obrien S. J. (eds.): Molecular evolution. Wiley and Liss, New York 1990Google Scholar
  69. 69.
    Cochrane B. J. and Richmond R. C.: Studies of esterase-6 in Drosophila melanogaster. II. The genetics and frequency distribution of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics 93: 461–478 (1979)PubMedGoogle Scholar
  70. 70.
    Cockerham C. C. and Tachida H.: Evolution and maintenance of quantitative genetic variation by mutations. Proc. Nat. Acad. Sci. USA 84: 6205–09 (1987)PubMedCrossRefGoogle Scholar
  71. 71.
    Coen E., Strachan T. and Dover G.: Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J. mol. Biol. 158: 17–35 (1982)PubMedCrossRefGoogle Scholar
  72. 72.
    Cohen A. S. et al.: Speciation in molluscs from Turkana basin. Nature 304: 659–663 (1983)CrossRefGoogle Scholar
  73. 73.
    Cohen J. B. and Givol D.: Conservation and divergence of immunoglobulin VH pseudogenes. Embo J. 2: 1795–1800 (1983)PubMedGoogle Scholar
  74. 74.
    Cohn W. E. and Moldave K. (eds.): Transposable elements in mutagenesis and regulation of gene expression. Acad. Press, San Diego 1989Google Scholar
  75. 75.
    Collet C.: Recent origin for a thermostable alcohol dehydrogenase allele of Drosophila melanogaster. J. mol. Evol. 27: 142–146 (1988)PubMedCrossRefGoogle Scholar
  76. 76.
    Collier G. E. and Obrien S. J.: A molecular phylogeny of the felidae–Immunological distance. Evolution 39: 473–487 (1985)CrossRefGoogle Scholar
  77. 77.
    Conceicao M. B. et al.: Electrophoretic characterization of a hybrid between Eretmochelys imbricata and Caretta caretta (Cheloniidae). Comp. Biochem. Physiol. Pt. B 97: 275–278 (1990)CrossRefGoogle Scholar
  78. 78.
    Cooke P. H. and Oakeshott J. G • Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 86: 1426–30 (1989)PubMedCrossRefGoogle Scholar
  79. 79.
    Cornish-Bowden A.: Interpretation of amino acid compositions. Trends biochem. Sci. 6: 217–219 (1981)Google Scholar
  80. 80.
    Costa R. and Bisol P. M.: Genetic variability in deep-sea organisms. Biol. Bull. 155: 125–133 (1978)CrossRefGoogle Scholar
  81. 81.
    Crawford D. L. and Powers D. A.: Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc. Nat. Acad. Sci. USA 86: 9365–69 (1989)PubMedCrossRefGoogle Scholar
  82. 82.
    Crozier W. W.: Electrophoretic identification and comparative examination of naturally occurring Fl-hybrids between brown trout (Salmo trutta L.) and Atlantic salmon (S. salar L.). Comp. Biochem. Physiol. Pt. B 78: 785–790 (1984)CrossRefGoogle Scholar
  83. 83.
    Daar I. O. et al.: Human triose-phosphate isomerase deficiency: A single amino acid substitution results in a thermolabile enzyme. Proc. Nat. Acad. Sci. USA 83: 7903–07 (1986)PubMedCrossRefGoogle Scholar
  84. 84.
    Davies K. H • Amino acid analysis of Pleistocene marine molluscs from the Gower peninsula. Nature 302: 137–139 (1983)CrossRefGoogle Scholar
  85. 85.
    Davis B. D.: Transcriptional bias: A non-Lamarckian mechanism for substrate-induced mutations. Proc. Nat. Acad. Sci. USA 86: 5005–5009 (1989)PubMedCrossRefGoogle Scholar
  86. 86.
    Day T. H. and Buckley P. A.: Alcohol dehydrogenase polymorphism in the seaweed fly, Coelopa frigida. Biochem. Genetics 18: 727–742 (1980)CrossRefGoogle Scholar
  87. 87.
    Dayhoff M. O. (ed.): Atlas of protein sequence and structure, Vol. 5 and Suppl. 1–3. Nat. Biomed. Res. Foundation, Washington 1972–78Google Scholar
  88. 88.
    Densmore L. D. and Owen R. D.: Molecular systematics of the order Crocodilia. Amer. Zool. 29: 831–841 (1989)Google Scholar
  89. 89.
    Densmore L. D., Wright J. W. and Browns W. M.: Mitochondrial-DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophorus). 2. C. neomexicanus and the C. tesselatus complex. Evolution 43: 943–957 (1989)Google Scholar
  90. 90.
    Desalle R., Giddings E. V. and Kaneshiro K. Y.: Mitochondrial DNA variability in natural populations of Hawaiian Drosophila. II. Genetic and phylogenetic relationships of natural populations of D. silvestris and D. heteroneura. Heredity 56: 87–96 (1986)PubMedCrossRefGoogle Scholar
  91. 91.
    Dibb N. J. et al.: Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of the unc-54 myosin heavy chain of Caenorhabditis elegans. J. mol. Biol. 183: 543–551 (1985)PubMedCrossRefGoogle Scholar
  92. 92.
    Dimichele L. and Powers D. A.: Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science 216: 1014–16 (1982)PubMedCrossRefGoogle Scholar
  93. 93.
    Doolittle R. F: Similar amino acid sequences: Chance or common ancestry? Science 214: 149–159 (1981)PubMedCrossRefGoogle Scholar
  94. 94.
    Doolittle R. F.: The genealogy of some recently evolved vertebrate proteins (Review). Trends biochem. Sci. 10: 233–237 (1985)Google Scholar
  95. 95.
    Doolittle R. F.: Similar amino acid sequences revisited. Trends biochem. Sci. 14: 244–245 (1989)Google Scholar
  96. 96.
    Doolittle R. F. (ed.): Molecular evolution: Computer analysis of protein and nucleic acid sequences. Acad. Press, San Diego 1990Google Scholar
  97. 97.
    Doolittle R. F. et al.: A natural occurring horizontal gene transfer from a eukaryote to a prokaryote. J. mol. Evol. 31: 383–388 (1990)PubMedCrossRefGoogle Scholar
  98. 98.
    Dover G. A. and Flavell R. B. (eds.): Genome evolution. Acad. Press, New York 1982Google Scholar
  99. 99.
    Dwulet F. E. and Putnam F. W.: Internal duplication and evolution of human ceruloplasmin. Proc. Nat. Acad. Sci. USA 78: 2805–09 (1981)PubMedCrossRefGoogle Scholar
  100. 100.
    Eanes W. F., Katona L. and Longtine M.: Comparison of in vitro and in vivo activities associated with the G6PD allozyme polymorphism in Drosophila melanogaster. Genetics 125: 845–853 (1990)PubMedGoogle Scholar
  101. 101.
    Easteal S. and Oakeshott J. G.: Estimating divergence times of Drosophila species from DNA sequence comparisons. Mol. Biol. Evol. 2: 87–91 (1985)PubMedGoogle Scholar
  102. 102.
    Easteal S.: Generation time and the rate of molecular evolution. Mol. Biol. Evol. 2: 450–453 (1985)PubMedGoogle Scholar
  103. 103.
    Echelle A. A. et al.: Mitochondrial-DNA diversity and the origin of the Menidia-clarkhubbsi complex of unisexual fishes (Atherinidae). Evolution 43: 984–993 (1989)CrossRefGoogle Scholar
  104. 104.
    Eickbush T. H. and Burke W. D.: The silkmoth late chorion locus. II. Gradients of gene conversion in two paired multigene families. J. mol. Biol. 190: 357–366 (1986)PubMedCrossRefGoogle Scholar
  105. 105.
    Eisses K. T. et al.: Analysis of the gene encoding the multifunctional alcohol dehydrogenase allozyme ADH-71k of Drosophila melanogaster. Mol. Biol. Evol. 7: 459–469 (1990)PubMedGoogle Scholar
  106. 106.
    Eldredge N. and Stanley S. M. (eds.): Livings fossils. Springer, Berlin 1984CrossRefGoogle Scholar
  107. 107.
    Eldredge N.: Tune frames: The rethinking of Darwinian evolution and the theory of punctuated equilibria. Simon and Schuster, New York 1985Google Scholar
  108. 108.
    Ewens W. J., Spielman R. S. and Harris H.: Estimation of genetic variation at the DNA level from restriction endonuclease data. Proc. Nat. Acad. Sci. USA 78: 3748–50 (1981)PubMedCrossRefGoogle Scholar
  109. 109.
    Farmer J. L. and Carter M. W.: Properties og partially purified allozymes of esterase-5 of Drosophila pseudoobscura. Comp. Biochem. Physiol. Pt. B 93: 451–458 (1989)CrossRefGoogle Scholar
  110. 110.
    Feder J. H.: Natural hybridization and genetic divergence between toads Bufo borealis and Bufo punctatus. Evolution 33: 1089–97 (1979)CrossRefGoogle Scholar
  111. 111.
    Felsenstein J. (ed.): Numerical taxonomy. Springer, Berlin 1983Google Scholar
  112. 112.
    Felsenstein J.: Phylogenies from molecular sequences: Inference and reliability. Annual Rev. Genet. 22: 521–565 (1988)CrossRefGoogle Scholar
  113. 113.
    Feng D. F, Johnson M. S. and Doolittle R. F: Aligning amino acid sequences: Comparison of commonly used methods. J. mol. Evol. 21: 112–125 (1985)CrossRefGoogle Scholar
  114. 114.
    Feng D. F. and Doolittle R. F.: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. mol. Evol. 25: 351–352 (1987)PubMedCrossRefGoogle Scholar
  115. 115.
    Ferguson A.: Biochemical systematics and evolution. Blackie, Glasgow 1980Google Scholar
  116. 116.
    Ferris S. D. and Whitt G. S.: Evolution of the differential regulation of duplicate genes after polyploidization. J. mol. Evol. 12: 267–317 (1979)PubMedCrossRefGoogle Scholar
  117. 117.
    Ferris S. D. et al.: Extensive polymorphism in the mitochondria) DNA of apes. Proc. Nat. Acad. Sci. USA 78: 6319–23 (1981)PubMedCrossRefGoogle Scholar
  118. 118.
    Ferris S. D., Sage R. D. and Wilson A. C.: Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295: 163–165 (1982)PubMedCrossRefGoogle Scholar
  119. 119.
    Field K. G. et al.: Molecular phylogeny of the animal kingdom. Science 239: 748–753 (1988)PubMedCrossRefGoogle Scholar
  120. 120.
    Fitch W. M. and Margoliash E.: Construction of phylogenetic trees. Science 155: 279–284 (1967)PubMedCrossRefGoogle Scholar
  121. 121.
    Fitch W. M.: The molecular evolution of cytochrome c in eukaryotes. J. mol. Evol. 8: 13–40 (1976)PubMedCrossRefGoogle Scholar
  122. 122.
    Fitch W. M.: The challenges to darwinism since the last centennial and the impact of molecular studies. Evolution 36: 1133–43 (1982)CrossRefGoogle Scholar
  123. 123.
    Formas J. R., Vera M. I. and Lacrampe S.: Allozymic and morphological differentiation in the South American frog genus Eupsophus. Comp. Biochem. Physiol. Pt. B 75: 475–478 (1983)CrossRefGoogle Scholar
  124. 124.
    Freeth A. L., Gibson J. B. and de Couet H. G.: The partial characterization of alcohol dehydrogenase null alleles from natural populations of Drosophila melanogaster. Biochem. Genetics 24: 957–972 (1986)CrossRefGoogle Scholar
  125. 125.
    Fuerst P. A., Chakraborty R. and Nei M.: Statistical studies on protein polymorphism in natural populations. I. Distribution of single locus heterozygosity. Genetics 86: 455–483 (1977)PubMedGoogle Scholar
  126. 126.
    Garciadorado A.: The effect of niche preference on polymorphism protection in a heterogenous environment. Evolution 40: 936–945 (1986)CrossRefGoogle Scholar
  127. 127.
    Gardenal C. N., Sabattini M. S. and Blanco A.: Enzyme polymorphism in a population of Calomys musculinus (Rodentia, Cricetidae). Biochem. Genetics 18: 563–575 (1980)CrossRefGoogle Scholar
  128. 128.
    Gauldie R. W, Purnell D. and Robertson D. A.: Some biochemical similarities and differences between two jack mackerel species, T.achurus declivis and T. novaezelandiae. Comp. Biochem. Physiol. Pt. B 58: 389–391 (1977)CrossRefGoogle Scholar
  129. 129.
    Gelinas R. et al.: G to A substitution in the distal CCAAT box of the A-gamma-globin gene in Greek hereditary persistence of fetal hemoglobin. Nature 313: 323–325 (1985)PubMedCrossRefGoogle Scholar
  130. 130.
    Goeorge jr. M and Ryder O. A.: Mitochondrial DNA evolution in the genus Equus. Mol. Biol. Evol. 3: 535–546 (1986)Google Scholar
  131. 131.
    Georgiev G. P.: Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 145: 203–220 (1984)PubMedCrossRefGoogle Scholar
  132. 132.
    Ghazal P., Clark A. J. and Bishop J. O.: Evolutionary amplification of a pseudogene. Proc. Nat. Acad. Sci. USA 82: 4182–85 (1985)PubMedCrossRefGoogle Scholar
  133. 133.
    Ghiretti-Magaldi A. and Tamino G.: Evolutionary studies on haemocyanin In: Bannister J. V. (ed.): Structure and function of haemocyanin, pp. 271–278. Springer, Berlin 1977Google Scholar
  134. 134.
    Gibson J. B. and Wilks A. V.: Molecular structure of a naturally occurring alcohol dehydrogenase null activity alelle in Drosophila melanogaster. Biochem. Genet. 27: 679–688 (1989)PubMedGoogle Scholar
  135. 135.
    Gillespie J. H.: Could natural selection account for molecular evolution and polymorphism? Genome 31: 311–315 (1989)PubMedCrossRefGoogle Scholar
  136. 136.
    Godine J. E., Chin W. W. and Habener J. F: Subunit of rat pituitary glycoprotein hormones. Trimary structure of the precursor determined from the nucleotide sequence of cloned DNAs. J. biol. Chem. 257: 8368–71 (1982)PubMedGoogle Scholar
  137. 137.
    Golding G. B. and Glickman B. W.: Sequence-directed mutagenesis: Evidence from a pylogenetic history of human a-interferon genes. Proc. Nat. Acad. Sci. USA 82: 8577–81 (1985)PubMedCrossRefGoogle Scholar
  138. 138.
    Gomez E. et al.: What is a genus in the trypanosomatidae family. Phylogenetic analysis of two small rRNA sequences. Mol. Biol. Evol. 8: 254–259 (1991)PubMedGoogle Scholar
  139. 139.
    Gonzales I. L. et al.: Variation among human 28 S ribosomal RNA genes. Proc. Nat. Acad. Sci. USA 82: 7666–70 (1985)CrossRefGoogle Scholar
  140. 140.
    Gonzalesz I. L. et al.: Ribosomal RNA gene sequences and hominoid phylogeny. Mol. Biol. Evol. 7: 203–219 (1990)Google Scholar
  141. 141.
    Goodman E (ed.): Macromolecular sequences in systematics and evolutionary biology. Plenum, New York 1982Google Scholar
  142. 142.
    Goodman M., Weiss M. L. and Czelusiak J.: Molecular evolution above the species level: Branching pattern, rates, and mechanisms. Syst. Zool. 31: 376–399 (1983)CrossRefGoogle Scholar
  143. 143.
    Goodman M. et al.: Molecular phylogeny of the family of apes and humans. Genome 31: 316–335 (1989)PubMedCrossRefGoogle Scholar
  144. 144.
    Gorski J., Fiori M. and Mach B. A.: A new nonsense mutation as the molecular basis for 13° thalassemia. J. mol. Biol. 154: 537–540 (1982)PubMedCrossRefGoogle Scholar
  145. 145.
    Gosling E.: Hidden genetic variability in two populations of a marine mussel. Nature 279: 713–715 (1979)CrossRefGoogle Scholar
  146. 146.
    Graf J. D. and Fischberg M.: Albumin evolution in polyploid species of the genus Xenopus. Biochem. Genetics 24: 821–837 (1986)CrossRefGoogle Scholar
  147. 147.
    Grassle J. P. and Grassle J. F.: Sibling species in the marine pollution indicator Capitella (Polychaeta). Science 192: 567–569 (1976)PubMedCrossRefGoogle Scholar
  148. 148.
    Graur D.: Gene diversity in Hymenoptera. Evolution 39: 190–199 (1985)CrossRefGoogle Scholar
  149. 149.
    Graur D., Shuali Y. and Li W. H.: Deletions in processed pseudogenes accumulate faster in rodents than in humans. J. mol. Evol. 28: 279–285 (1989)PubMedCrossRefGoogle Scholar
  150. 150.
    Gribskov M., Maclachlan A. D. and Eisenberg D.: Profile analysis: detection of distantly related proteins. Proc. Nat. Acad. Sci. USA 84: 4355–58 (1987)PubMedCrossRefGoogle Scholar
  151. 151.
    Grula J. W. et al.: Sea urchin DNA sequence variation and reduced interspecies differences of the less variable sequences. Evolution 63: 665–676 (1982)CrossRefGoogle Scholar
  152. 152.
    Gupta J. P., Dwivedi Y. N. and Singh B. K.: Natural hybridization in Drosophila. Experientia 36: 290 (1980)CrossRefGoogle Scholar
  153. 153.
    Gutfreund H. (ed.): Biochemical evolution. Cambridge Univ. Press, Cambridge 1981Google Scholar
  154. 154.
    Guttman S. I., Grau G. A. and Karlin A. A.: Genetic variation in Lake Erie great blue herons (Ardea herodias). Comp. Biochem. Physiol. Pt. B 66: 167–169 (1980)CrossRefGoogle Scholar
  155. 155.
    Gyllensten U. B. et al.: Nucleotide sequence and genomic organization of bird minisatellites. Nucleic Acids Res. 17: 2203–14 (1989)PubMedCrossRefGoogle Scholar
  156. 156.
    Haj-Ahmad Y. and Hickley D. A.: A molecular explanation of frequency-dependent selection in Drosophila. Nature 299: 350–352 (1982)PubMedCrossRefGoogle Scholar
  157. 157.
    Halanych K. M.: 5S ribosomal RNA sequences inappropriate for phylogenetic reconstruction. M.l. Biol. Evol. 8: 249–253 (1991)Google Scholar
  158. 158.
    Hale L. R. and Singh R. S.: Extensive variation and heteroplasmy in size of mitochondrial DNA among geographical populations of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 83: 8813–17 (1986)PubMedCrossRefGoogle Scholar
  159. 159.
    Harrison R. G.: Parallel variation at an enzyme locus in sibling species of field crickets. Nature 266: 168–170 (1977)PubMedCrossRefGoogle Scholar
  160. 160.
    Hasegawa M. et al.: Mitochondrial DNA evolution in primates. Transition rate has been extremely low in the lemur. J. mol. Evol. 31: 113–121 (1990)PubMedCrossRefGoogle Scholar
  161. 161.
    Hayashi J. I. et al.: Evolutionary aspects of variant types of rat mitochondrial DNAs. Biochim. biophys. Acta 564: 202–211 (1979)Google Scholar
  162. 162.
    Hayashi J. I., Moriwaki K. and Yosida T. H.: Polymorphisms of mitochondrial DNAs in Norway rats (Rattus norwegicus)–Cleavage site variations and length polymorphism of restriction fragments. Mol. gen. Genetics 184: 337–341 (1981)Google Scholar
  163. 163.
    Hein J.: A new method that simultaneously aligns and reconstructs ancestral sequences for any numer of homologous sequences, when the phylogeny is given. Mol. Biol. Evol. 6: 649–668 (1989)PubMedGoogle Scholar
  164. 164.
    Hein J.: A tree reconstruction method that is economical in the number of pairwise comparisons used. Mol. Biol. Evol. 6: 669–684 (1989)PubMedGoogle Scholar
  165. 165.
    Heinstra P. W. H. et al.: Alcohol dehydrogenase of Drosophila melanogaster: metabolic differences mediated through cryptic allozymes. Heredity 57: 23–29 (1986)PubMedCrossRefGoogle Scholar
  166. 166.
    Heinstra P. W. H., Scharloo W. and Thorig G. E. W.: Physiological significance of the alcohol dehydrogenase polymorphism in larvae of Drosophila. Genetics 117: 75–84 (1987)PubMedGoogle Scholar
  167. 167.
    Heinstra P. W. H. et al.: The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae. Biochem. J. 259: 791–797 (1989)PubMedGoogle Scholar
  168. 168.
    Henikoff S. et al.: Two Drosophila melanogaster mutations block successive steps of de novo purine synthesis. Proc. Nat. Acad. Sci. USA 83: 3919–23 (1986)PubMedCrossRefGoogle Scholar
  169. 169.
    Henthorn P. S. et al.: Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proc. Nat. Acad. Sci. USA 83: 5597–5601 (1986)PubMedCrossRefGoogle Scholar
  170. 170.
    Hess J. F., Schmid C. W. and Shen C. K. J.: A gradient of sequence divergence in the human adult aglobin duplication units. Science 226: 67–70 (1984)PubMedCrossRefGoogle Scholar
  171. 171.
    Hewett-Emmett D., Welty R. J. and Tashian R. E.: A widespread silent polymorphism of human carbonic anhydrase III (31 Ile–Val)–implications for evolutionary genetics. Genetics 105: 409–420 (1983)PubMedGoogle Scholar
  172. 172.
    Higuchi R. G. et al.: Mitochondrial DNA of the extinct quagga: Relatedness and extent of postmortem change. J. mol. Evol. 25: 283–287 (1987)PubMedCrossRefGoogle Scholar
  173. 173.
    Hilbish T. J., Deaton L. E. and Koehn R. K.: Effect of an allozyme polymorphism on regulation of cell volume. Nature 298: 688–689 (1982)PubMedCrossRefGoogle Scholar
  174. 174.
    Hillis D. M., Frost J. S. and Wright D. A.: Phylogeny and biogeography of the Rana pipiens complex: a biochemical evaluation. Syst. Zool. 32: 132–143 (1983)CrossRefGoogle Scholar
  175. 175.
    Hillis D. M. and Moritz C.: Molecular systematics. Sinauer, Sunderland 1990Google Scholar
  176. 176.
    Hixson J. E. and Brown W. M.: A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol. Biol. Evol. 3: 1–18 (1986)PubMedGoogle Scholar
  177. 177.
    Hoffmann D. and van Regenmortel M. H. V.: Detection of distant antigenic relationships between insect and bird lysozymes by ELISA. J. mol. Evol. 21: 14–18 (1984)PubMedCrossRefGoogle Scholar
  178. 178.
    Hoffmann R. J.: Temperature modulation of the kinetics of phosphoglucose isomerase genetic variants from the sea anemone Metridium senile. J. exp. Zool. 227: 361–370 (1983)CrossRefGoogle Scholar
  179. 179.
    Holmquist R.: Transitions and transversions in evolutionary descent: an approach to understanding. J. mol. Evol. 19: 134–144 (1983)PubMedCrossRefGoogle Scholar
  180. 180.
    Holmquist R., Miyamoto M. M. and Goodman M.: Higher-primate phylogeny: Why can’t we decide? Mol. Biol. Evol. 5: 201–216 (1988)Google Scholar
  181. 181.
    Hornbach D. J., McLeod M. J. and Guttman S. I.: On the validity of the genus Musculium (Bivalvia: Sphaeriidae). Can. J. Zool. 58: 1703–07 (1980)CrossRefGoogle Scholar
  182. 182.
    Hudson R. R.: Estimating genetic variability with restriction endonucleases. Genetics 100: 711–719 (1982)PubMedGoogle Scholar
  183. 183.
    Hudson R. R., Kreitman M. and Aguadé M.: A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159 (1987)PubMedGoogle Scholar
  184. 184.
    Hung A. C. F. and Vinson S. B.: Interspecific hybridization and caste specificity of protein in fire ant. Science 196: 1458–60 (1977)PubMedCrossRefGoogle Scholar
  185. 185.
    Hung A. C. E, Hedlund R. C. and Day W. H.: High level of genetic heterozygosity in the hyperparasitic wasp, Mesochoris nigripes. Experientia 42: 1050–51 (1986)CrossRefGoogle Scholar
  186. 186.
    Hunt J. A. and Carson H. L.: Evolutionary relationships of four species of Hawaiian Drosophila as measured by DNA reassociation. Genetics 104: 353–364 (1983)PubMedGoogle Scholar
  187. 187.
    Huss V. A. R. and Sogin M. L.: Phylogenetic position of some Chlorella species within the chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. mol. Evol. 31: 432–442 (1990)PubMedCrossRefGoogle Scholar
  188. 188.
    Ikemura T.: Codon usage and tRNA content in unicellular and multicellular organisms (Review). Mol. Biol. Evol. 2: 13–34 (1985)PubMedGoogle Scholar
  189. 189.
    Jimenez-Marin D. and Dessauer H. C.: Protein phenotype variation in laboratory populations of Rattus norwegicus. Comp. Biochem. Physiol. Pt. B 46: 487–492 (1973)CrossRefGoogle Scholar
  190. 190.
    Jin L. and Nei M.: Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7: 82–102 (1990)PubMedGoogle Scholar
  191. 191.
    Johnson G. B.: Characterization of electrophoretically cryptic variation in alpine butterfly Colias meadii. Biochem. Genetics 15: 665–693 (1977)CrossRefGoogle Scholar
  192. 192.
    Johnson M. S., Clarke B. and Murray J.: Genetic variation and reproductive isolation in Portula. Evolution 31: 116–126 (1977)CrossRefGoogle Scholar
  193. 193.
    Johnson M. S., Sutcliffe M. J. and Blundell T. E.: Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins. J. mol. Evol. 30: 43–59 (1990)PubMedCrossRefGoogle Scholar
  194. 194.
    Jollès J. et al • Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J. mol. Evol. 30: 370–382 (1990)Google Scholar
  195. 195.
    Jones C. W. and Kafatos E. C.: Accepted mutations in a gene family. Evolutionary diversification of duplicated DNA. J. mol. Evol. 19: 87–103 (1982)PubMedCrossRefGoogle Scholar
  196. 196.
    Jones J. S. et al.: Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. Genetics 98: 157–178 (1981)PubMedGoogle Scholar
  197. 197.
    de Jong W.: Protein sequence evidence for a monophyly of the carnivore families Procyonidae and Mustelidae. Mol. Biol. Evol. 3: 276–281 (1986)PubMedGoogle Scholar
  198. 198.
    Joysey K. A. and Friday A. E. (eds.): Problems of phylogenetic reconstruction. Acad. Press, New York 1982Google Scholar
  199. 199.
    Jukes T.H.: Silent nucleotide substitutions and the molecular evolutionary clock. Science 210: 973–978 (1980)PubMedCrossRefGoogle Scholar
  200. 200.
    Jukes T. H. (ed.): Special issue - Molecular evolutionary clock. J. mol. Evol. 26: 1–164 (1987)Google Scholar
  201. 201.
    Kaplan N. L., Hudson R. R. and Langley C. H.: The „hitchhiking effect“ revisited. Genetics 123: 887–899 (1989)PubMedGoogle Scholar
  202. 202.
    Karlin S. et al.: Efficient algorithms for molecular sequence analysis. Proc. Nat. Acad. Sci. USA 85: 841–845 (1988)PubMedCrossRefGoogle Scholar
  203. 203.
    Kazazian jr. H. H. et al.: Haemophilia A resulting from de novo insertion of Ll sequences represents a novel mechanism for mutation in man. Nature 332: 164–166 (1988)PubMedCrossRefGoogle Scholar
  204. 204.
    Keith T. P.: Frequency distribution of esterase-5 alleles in two populations of Drosophila pseudoobscura. Genetics 105: 135–155 (1983)PubMedGoogle Scholar
  205. 205.
    Kessler L. G. and Avise J. C.: A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Mol. Biol. Evol. 2: 109–125 (1985)PubMedGoogle Scholar
  206. 206.
    Kidd S. and Young M. W.: Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature 323: 89–91 (1986)PubMedCrossRefGoogle Scholar
  207. 207.
    Kimura A. and Takagi Y.: A frameshift addition causes silencing in the S-globin gene in an old world monkey, an anubis (Papio doguera). Nucleic Acids Res. 11: 2541–50 (1983)PubMedCrossRefGoogle Scholar
  208. 208.
    Kimura M.: Evolutionary rate at the molecular level. Nature 217: 624–626 (1968)PubMedCrossRefGoogle Scholar
  209. 209.
    Kimura M. (ed.): Molecular evolution, protein polymorphism and the neutral theory. Springer, Berlin 1982Google Scholar
  210. 210.
    Kimura M.: The neutral theory of molecular evolution. Cambridge Univ. Press, Cambridge 1983CrossRefGoogle Scholar
  211. 211.
    Kimura M.: Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1: 84–93 (1983)PubMedGoogle Scholar
  212. 212.
    Kimura M. and Nakahata N. (eds.): New aspects of the genetics of molecular evolution. Springer, Berlin 1991Google Scholar
  213. 213.
    King J. L. and Jukes T. H.: Non-Darwinian evolution. Science 164: 788–798 (1968)CrossRefGoogle Scholar
  214. 214.
    King M. and Wilson A. C.: Evolution at two levels in humans and chimpanzees. Science 188: 107–116 (1975)PubMedCrossRefGoogle Scholar
  215. 215.
    Kirkwood T. B. L. and Rosenberger R. F. (eds.): Accuracy in molecular processes - Its control and relevance to living systems. Chapman and Hall, London 1986Google Scholar
  216. 216.
    Klarenberg A. J. et al.: Genetic and dietary regulation of tissue-specific expression patterns of cc-amylase in larvae of Drosophila melanogaster. Comp. Biochem. Physiol. Pt. B 89: 143–146 (1988)CrossRefGoogle Scholar
  217. 217.
    Klose J.: Genetic variability of soluble proteins studied by two-dimensional electrophoresis on different inbred mouse strains and on different mouse organs. J. mol. Evol. 18: 315–328 (1982)PubMedCrossRefGoogle Scholar
  218. 218.
    Konkel D. A., Maizel J. V. and Leder P.: The evolution and sequence comparison of two recently diverged mouse chromosome beta-globin genes. Cell 18: 865–873 (1979)CrossRefGoogle Scholar
  219. 219.
    Kornfield I. L.: Evidence for rapid speciation in African cichlid fishes. Experientia 34: 335–336 (1978)CrossRefGoogle Scholar
  220. 220.
    Krampitz G. et al.: Calcium-binding peptide in Dinosaur egg shells. Naturwissenschaften 64: 583 (1977)CrossRefGoogle Scholar
  221. 221.
    Kreitman M. E. and Aguadé M.: Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics 114: 93–110 (1986)PubMedGoogle Scholar
  222. 222.
    Lake J. A.: A rate-independent technique for analysis of nucleic acid sequences: Evolutionary parsimony. Mol. Biol. Evol. 4: 167–191 (1987)PubMedGoogle Scholar
  223. 223.
    Lakovaara S. and Keränen L.: Variation at the a-Gpdh locus of drosophilids. Hereditas 92: 251–258 (1980)CrossRefGoogle Scholar
  224. 224.
    Langley C. H. et al.: Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics 99: 151–156 (1981)PubMedGoogle Scholar
  225. 225.
    Lansman R. A. et al.: The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. J. mol. Evol. 17: 214–226 (1981)PubMedCrossRefGoogle Scholar
  226. 226.
    Lansman R. A. et al.: Extensive genetic variation in mitochondrial DNAs among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution 37: 1–16 (1983)CrossRefGoogle Scholar
  227. 227.
    Laurie-Ahlberg C. C. et al.: Genetic variability of flight muscle metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels. Genetics 111: 845–868 (1985)PubMedGoogle Scholar
  228. 228.
    Laurie C. C. and Stam L. F: Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 85: 5161–65 (1988)PubMedCrossRefGoogle Scholar
  229. 229.
    Lee Y. M., Misra H. P. and Ayala F J.: Superoxide dismutase in Drosophila melanogaster–Biochemical and structural characterization of allozyme variants. Proc. Nat. Acad. Sci. USA 78: 7052–55 (1981)PubMedCrossRefGoogle Scholar
  230. 230.
    Lehrman M A et al.: Exon-alu recombination deletes 5 kilobases from the low density lipoprotein receptor gene, producing a null phenotype in familian hypercholesterolemia. Proc. Nat. Acad. Sci. USA 83: 3679–83 (1986)PubMedCrossRefGoogle Scholar
  231. 231.
    Leibenguth F. and Kutz U.: Alcohol dehydrogenase polymorphism in the flour moth, Ephestia kuehniella. Comp. Biochem. Physiol. Pt. B 82: 455–459 (1985)CrossRefGoogle Scholar
  232. 232.
    Lennon G. G. and Nussinov R.: Homonyms, synonyms and mutations of the sequence/structure vocabulary. J. mol. Biol. 175: 425–430 (1984)PubMedCrossRefGoogle Scholar
  233. 233.
    Leslie J. F., Cain G. D. and Meffe G. K.: Enzyme polymorphism in Ascaris suum (Nematoda). J. Parasitol. 68: 576–587 (1982)PubMedCrossRefGoogle Scholar
  234. 234.
    Levinson G. and Gutman G. A.: Slipped-strand mis-pairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–221 (1987)PubMedGoogle Scholar
  235. 235.
    Levy J. A., Haimovici M. and Conceicao M.: Genetic evidences for two species to the genus Eledone (Cephalopoda: Octopodidae) in South Brazil. Comp. Biochem. Physiol. Pt. B 90: 275–277 (1988)CrossRefGoogle Scholar
  236. 236.
    Lewin R.: Molecular clocks turn a quarter century. Science 239: 561–563 (1988)PubMedCrossRefGoogle Scholar
  237. 237.
    Lewontin R. C.: The genetic basis of evolutionary change. Columbia Univ. Press, New York 1974Google Scholar
  238. 238.
    Lewontin R. C.: Inferring the number of evolutionary events from DNA coding sequence differences. Mol. Biol. Evol. 6: 15–32 (1989)PubMedGoogle Scholar
  239. 239.
    Li B. F. L. et al.: The catalytic consequences of experimental evolution. Transitionstate structure during catalysis by the evolved 13-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event. Biochem. J. 260: 109–114 (1989)PubMedGoogle Scholar
  240. 240.
    Li W. H. and Nei M.: Persistence of common alleles in two related populations or species. Genetics 86: 901–914 (1977)PubMedGoogle Scholar
  241. 241.
    Li W. H.: Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95: 237–258 (1980)PubMedGoogle Scholar
  242. 242.
    Li W. H. and Gojobori T.: Rapid evolution of goat and sheep globin genes following gene duplication. Mol. Biol. Evol. 1: 94–108 (1983)PubMedGoogle Scholar
  243. 243.
    Li W. H., Wu C. I. and Luo C. C.: A new method for estimating synonymous and non-synonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2: 150–174 (1985)PubMedGoogle Scholar
  244. 244.
    Li W. H.: Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J. mol. Evol. 24: 337–345 (1987)PubMedCrossRefGoogle Scholar
  245. 245.
    Li W. H. et al.: Molecular phylogeny of Rodentia, Lagomorpha, Artiodactyla, and Carnivora and molecular clocks. Proc. Nat. Acad. Sci. USA 87: 6703–07 (1990)PubMedCrossRefGoogle Scholar
  246. 246.
    Li W. H. and Graur D.: Fundamentals of molecular evolution. Sinauer Assoc., Sunderland 1991Google Scholar
  247. 247.
    Liebhaber S. A. et al.: Hemoglobin I mutation encoded at both a-globin loci on the same chromosome: concerted evolution in the human genome. Science 226: 1449–51 (1984)PubMedCrossRefGoogle Scholar
  248. 248.
    Lipman D. J., Altschul S. E and Kececioglu J. D.: A tool for multiple sequence alignment. Proc. Nat. Acad. Sci. USA 86: 4412–15 (1989)PubMedCrossRefGoogle Scholar
  249. 249.
    Liskay R. M., Letsou A. and Stachelek J. L.: Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115: 161–167 (1987)PubMedGoogle Scholar
  250. 250.
    Loukas M., Delidakis C. and Kafatos F. C.: Genomic blot hybridization as a tool of phylogenetic analysis: Evolutionary divergence in the genus Drosophila. J. mol. Evol. 24: 174–188 (1986)PubMedCrossRefGoogle Scholar
  251. 251.
    Lowenstein J. M., Sarich V. M. and Richardson B. J.: Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature 291: 409–411 (1981)PubMedCrossRefGoogle Scholar
  252. 252.
    Lowenstein J. M. and Ryder O A • Immunological systematics of the extinct quagga (Equidae). Experientia 41: 1192–93 (1985)PubMedCrossRefGoogle Scholar
  253. 253.
    Lucotte G. and Kaminski M.: Molecular heterosis at the conalbumin locus in the ring-necked pheasant (Phasianus colchicus). Theor. appl. Genetics 48: 251–253 (1976)Google Scholar
  254. 254.
    Lynch M. and Hill W. G.: Phenotypic evolution by neutral mutation. Evolution 40: 915–935 (1986)CrossRefGoogle Scholar
  255. 255.
    Lanch M.: The similarity index and DNA fingerprinting. Mol. Biol. Evol. 7: 478–484 (1990)Google Scholar
  256. 256.
    Maclntyre R. J. (ed.): Molecular evolutionary genetics. Plenum, New York 1985CrossRefGoogle Scholar
  257. 257.
    Maeda N., Bliska J. B. and Smithies O.: Recombination and balanced chromosome polymorphism suggested by DNA sequences 5’ to the human 8-globin gene complex. Proc. Nat. Acad Sci USA 80: 5012–16 (1983)PubMedCrossRefGoogle Scholar
  258. 258.
    Manella C. A., Frank J. and Delihas N.: Interrelatedness of 5 S RNA sequences investigated by correspondence analysis. J. mol. Evol. 24: 228–235 (1987)CrossRefGoogle Scholar
  259. 259.
    Martin C. H. and Meyerowitz E. M.: Characterization of the boundaries between adjacent rapidly and slowly evolving genomic regions in Drosophila. Proc. Nat. Acad. Sci. USA 83: 8654–58 (1986)PubMedCrossRefGoogle Scholar
  260. 260.
    Martin P. F. et al.: UGA nonsense mutation in the alcohol dehydrogenase gene of Drosophila melanogaster. J. mol. Biol. 184: 221–229 (1985)PubMedCrossRefGoogle Scholar
  261. 261.
    Martinez-Cruzado J. C.: Evolution of the autosomal chorion cluster in Drosophila. IV. The Hawaiian Drosophila: Rapid protein evolution and constancy in the rate of DNA divergence. J. mol. Evol. 31: 402–423 (1990)PubMedCrossRefGoogle Scholar
  262. 262.
    Martins E., Mestriner M. A. and Contel E. P. B.: Alcohol dehydrogenase polymorphism in Apis mellifera. Biochem. Genetics 15: 357–366 (1977)CrossRefGoogle Scholar
  263. 263.
    Maruyama T. and Fuerst P. A.: Population bottlenecks and nonequilibrium models in population genetics. III. Genic homozygosity in populations which experience periodic bottlenecks. Genetics 111: 691–703 (1985)PubMedGoogle Scholar
  264. 264.
    Matsuoka N., Chiba Y. and Saitoh K.: Allozymic similarity in two species of the genus Brenthis (Lepidoptera: Nymphalidae). Comp. Biochem. Physiol. Pt. B 74: 385–387 (1983)CrossRefGoogle Scholar
  265. 265.
    Matsuoka N. and Suzuki H.: Electrophoretic study on the taxonomic relationship of the two morphologically very similar sea-urchins, Echinostrephus aciculatus and E. molaris. Comp. Biochem. Physiol. Pt. B 88: 637–641 (1987)CrossRefGoogle Scholar
  266. 266.
    Maxson L. R • Immunological detection of convergent evolution in the frog Anotheca spinosa. Syst. Zool. 26: 72–76 (1977)CrossRefGoogle Scholar
  267. 267.
    Maxson R. D. and Maxson L. R.: Micro-complement fixation: A quantitative estimator of protein evolution. Mol. Biol. Evol. 3: 375–388 (1986)PubMedGoogle Scholar
  268. 268.
    McCarthy A. D., Goldring J. P. D. and Hardie D. G.: Evidence that the multifunctional polypeptides of vertebrate and fungal fatty acid synthases have arisen by independent gene fusion events. FEBS Letters 162: 300–304 (1983)PubMedCrossRefGoogle Scholar
  269. 269.
    McGinnis W., Shermoen A. W. and Beckendorf S. K.: A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34: 75–84 (1983)PubMedCrossRefGoogle Scholar
  270. 270.
    McLean M., Okubo C. K. and Tracey M. L.: mtDNA heterogeneity in Panulirus argus. Experientia 39: 536–538 (1983)PubMedCrossRefGoogle Scholar
  271. 271.
    McLeod M. J., Wynes D. L. and Guttman S. I.: Lack of biochemical evidence for hybridization between two species of darters. Comp. Biochem. Physiol. Pt. B 67: 323–325 (1980)CrossRefGoogle Scholar
  272. 272.
    Meyer A. and Wilson A. C.: Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. mol. Evol. 31: 359–364 (1990)PubMedCrossRefGoogle Scholar
  273. 273.
    Meyer A. et al.: Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550–553 (1990)PubMedCrossRefGoogle Scholar
  274. 274.
    Meyer T. E., Cusanovich M. A. and Kamen M. D.: Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Nat. Acad. Sci. USA 83: 217–220 (1986)PubMedCrossRefGoogle Scholar
  275. 275.
    Michelson A. M. and Orkin S. A.: Boundaries of gene conversion within the duplicated human aglobin genes. Concerted evolution by segmental recombination. J. biol. Chem. 258: 15245–54 (1983)PubMedGoogle Scholar
  276. 276.
    Michelson A. M. et al.: Structure of human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. Proc. Nat. Acad. Sci. USA 82: 6965–69 (1985)PubMedCrossRefGoogle Scholar
  277. 277.
    Minghetti P. P., Law S. W. and Dugaiczyk A.: The rate of molecular evolution of a-fetoprotein approaches that of pseudogenes. Mol. Biol. Evol. 2: 347–358 (1985)PubMedGoogle Scholar
  278. 278.
    Miyazaki J I, Sekiguchi K. and Hirabayashi T.: Application of an improved method of two-dimensional electrophoresis to the systematic study of horseshoe crabs. Biol. Bull. 172: 212–224 (1987)CrossRefGoogle Scholar
  279. 279.
    Mohrenweiser, H. W. and Neel J. V.: Frequency of thermostability variants–Estimation of total rare variant frequency in human populations. Proc. Nat. Acad. Sci. USA 78: 5729–33 (1981)PubMedCrossRefGoogle Scholar
  280. 280.
    Monnat R. J. and Loeb L. A.: Nucleotide sequence preservation of human mitochondrial DNA. Proc. Nat. Acad. Sci. USA 82: 2895–99 (1985)PubMedCrossRefGoogle Scholar
  281. 281.
    Mort M. A. and Wolf H. G.: Enzyme variability in large-lake Daphnia populations. Heredity 55: 27–36 (1985)CrossRefGoogle Scholar
  282. 282.
    Mueller L. D., Barr L. G. and Ayala F J.: Natural selection vs. random drift: evidence from temporal variation in allele frequencies in nature. Genetics 111: 517–554 (1985)PubMedGoogle Scholar
  283. 283.
    Mukai T., Harada K. and Yoshimaru H.: Spontaneous mutations modifying the activity of alcohol dehydrogenase (ADH) in Drosophila melanogaster. Genetics 106: 73–84 (1984)PubMedGoogle Scholar
  284. 284.
    Narang S.: Genetic variability in natural populations, evidence in support of the selectionist view. Experientia 36: 50–51 (1980)PubMedCrossRefGoogle Scholar
  285. 285.
    Narise S.: Purification and biochemical properties of allelic forms of cytoplasmic glycerol-3-phosphate dehydrogenase from Drosophila viridis. Biochim. biophys. Acta 615: 289–298 (1980)Google Scholar
  286. 286.
    Needleman S B. and Wunsch C. D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. mol. Biol. 48: 443–453 (1970)PubMedCrossRefGoogle Scholar
  287. 287.
    Neel J. V. and Rothman E.: Is there a difference among human populations in the rate with which mutation produces electrophoretic variants ? Proc. Nat. Acad. Sci. USA 78: 3108–12 (1981)PubMedCrossRefGoogle Scholar
  288. 288.
    Neel J. V. et al.: The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc. Nat. Acad. Sci. USA 83: 389–393 (1986)PubMedCrossRefGoogle Scholar
  289. 289.
    Nei M.: Standard error of immunological dating of evolutionary time. J. mol. Evol. 9: 203–211 (1977)PubMedCrossRefGoogle Scholar
  290. 290.
    Nei M. and Tajima F.: DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163 (1981)PubMedGoogle Scholar
  291. 291.
    Nei M. and Tajima F.: Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105: 207–217 (1983)PubMedGoogle Scholar
  292. 292.
    Nei M., Tajima F. and Tateno Y.: Accuracy of estimated phylogenetic trees from molecular data. II. Frequency data. J. mol. Evol. 19: 153–170 (1983)PubMedCrossRefGoogle Scholar
  293. 293.
    Nei M. and Koehn R. K. (eds.): Evolution of genes and proteins. Sinauer Assoc., Sunderland 1983Google Scholar
  294. 294.
    Nei M. and Graur D.: Extent of protein polymorphism and the neutral mutation theory. In: Evolutionary Biology Vol. 17, pp. 73–118. Plenum, New York 1984CrossRefGoogle Scholar
  295. 295.
    Nei M., Stephens J. C. and Saitou, N.: Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol. Biol. Evol. 2: 66–85 (1985)PubMedGoogle Scholar
  296. 296.
    Nei M. and Gojobori T.: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418–426 (1986)PubMedGoogle Scholar
  297. 297.
    Nei M.: Molecular evolutionary genetics. Columbia Univ. Press, New York 1987Google Scholar
  298. 298.
    Nei M. and Miller J. C.: A simple method for estimating average number of nucleotide substitutions within and between populations from restruction data. Genetics 125: 873–879 (1990)PubMedGoogle Scholar
  299. 299.
    Nevo E., Shimony T. and Libni M.: Thermal selection of allozyme polymorphisms in barnacles. Nature 267: 699–701 (1977)PubMedCrossRefGoogle Scholar
  300. 300.
    Nevo E.: Genetic diversity in nature: Patterns and theory. In: Evolutionary biology Vol. 23, pp. 217–246. Plenum, New York 1988CrossRefGoogle Scholar
  301. 301.
    Newman C. M., Cohen J. E. and Kipnis C.: Neo-Darwinian evolution implies punctuated equilibria. Nature 315: 400–401 (1985)CrossRefGoogle Scholar
  302. 302.
    O’Brien S. J. et al.: A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317: 140–144 (1985)PubMedCrossRefGoogle Scholar
  303. 303.
    Ohnishi K I • Constant rate of evolution in the antigenicity of glucose 6-phosphate dehydrogenase revealed by the enzyme inhibition method. Comp. Biochem. Physiol. Pt. B 80: 217–222 (1985)CrossRefGoogle Scholar
  304. 304.
    Ohno S.: Evolution by gene duplication. Springer, Berlin 1970Google Scholar
  305. 305.
    Ohta T. and Aoki K. (eds.): Population genetics and molecular evolution. Springer, Tokyo 1985Google Scholar
  306. 306.
    Ohta T.: Simulating evolution by gene duplication. Genetics 115: 207–213 (1987)PubMedGoogle Scholar
  307. 307.
    Ohta T.: Role of gene duplication in evolution. Genome 31: 304–310 (1989)PubMedCrossRefGoogle Scholar
  308. 308.
    Olmo E. et al.: Repetitive DNA and polyploidy in selachians. Comp. Biochem. Physiol. Pt. B 73: 739–745 (1982)CrossRefGoogle Scholar
  309. 309.
    Orkin S. H. and Karazian jr. H. H.: The mutation and polymorphism of the human ß-globin gene and its surrounding DNA. Annual Rev. Genetics 18: 131–171 (1984)CrossRefGoogle Scholar
  310. 310.
    Paabo S., Higuchi R. G. and Wilson A. C.: Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J. Biol. Chem. 264: 9709–12 (1989)PubMedGoogle Scholar
  311. 311.
    Pace N. R., Olsen G. J. and Woese C. R.: Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45: 325–326 (1986)PubMedCrossRefGoogle Scholar
  312. 312.
    Palmer J. D. and Herbon L. A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. mol. Evol. 28: 87–97 (1989)CrossRefGoogle Scholar
  313. 313.
    Palumbi S. R.: Rates of molecular evolution and the fraction of nucleotide positions free to vary. J. mol. Evol. 29: 180–187 (1989)PubMedCrossRefGoogle Scholar
  314. 314.
    Pamilo P. and Nei M.: Relationships between gene trees and species trees. Mol. Biol. Evol. 5: 568–583 (1988)PubMedGoogle Scholar
  315. 315.
    Panepucci L., Schwantes M. L. and Schwantes A. R.: Biochemical and physiological properties of the lactate dehydrogenase allozymes of the Brazilian teleost, Leporinus friderici, Anostomidae. Comp. Biochem. Physiol. Pt. B 87: 199–206 (1986)CrossRefGoogle Scholar
  316. 316.
    Parker H. R., Philipp D. P. and Whitt G. S.: Gene regulatory divergence among species estimated by altered developmental patterns in interspecific hybrids. Mol. Biol. Evol. 2: 217–250 (1985)PubMedGoogle Scholar
  317. 317.
    Pasyukova E. G. et al.: Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312 (1986)PubMedGoogle Scholar
  318. 318.
    Patterson C. (ed.): Molecules and morphology in evolution: conflict or compromise? Cambridge Univ. Press, New York 1987Google Scholar
  319. 319.
    Patterson C.: Homology in classical and molecular biology. Mol. Biol. Evol. 5: 603–625 (1988)PubMedGoogle Scholar
  320. 320.
    Patthy L.: Detecting homology of distantly related proteins with consensus sequences. J. mol. Biol. 198: 567–577 (1987)PubMedCrossRefGoogle Scholar
  321. 321.
    Patthy L.: Detecting distant homologies of mosaic proteins. J. mol. Biol. 202: 689–696 (1988)PubMedCrossRefGoogle Scholar
  322. 322.
    Patton J. C. and Avise J. C.: An empirical evaluation of qualitative hennigian analyses of protein electrophoretic data. J. mol. Evol. 19: 244–254 (1983)PubMedCrossRefGoogle Scholar
  323. 323.
    Pearson W. R. and Lipman D. J.: Improved tools for biological sequence comparison. Proc. Nat. Acad. Sci. USA 85: 2444–48 (1988)PubMedCrossRefGoogle Scholar
  324. 324.
    Pen J. et al.: Differences in specificity and catalytic efficiency between allozymes of esterase-4 from Drosophila mojavensis. Mol. Biol. Evol. 3: 366–373 (1986)PubMedGoogle Scholar
  325. 325.
    Penny D., Foulds L. R. and Hendy M. D.: Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297: 197–200 (1982)PubMedCrossRefGoogle Scholar
  326. 326.
    Penny D. and Hendy M. D.: Estimating the realiability of evolutionary trees. Mol. Biol. Evol. 3: 403–417 (1986)PubMedGoogle Scholar
  327. 327.
    Perryman S. M. et al.: Sequence of a cDNA for mouse thymidilate synthase reveals striking similarity with the prokaryotic enzyme. Mol. Biol. Evol. 3: 313–321 (1986)PubMedGoogle Scholar
  328. 328.
    Pettersson G.: Effect of evolution on the kinetic properties of enzymes. Eur. J. Biochem. 184: 561–566 (1989)PubMedCrossRefGoogle Scholar
  329. 329.
    Philipsen J. N. J. et al.: Characterization of a polymorphism in the 3’ part of the chicken vitellogenin. J. mol. Evol. 28: 185–190 (1989)PubMedCrossRefGoogle Scholar
  330. 330.
    Place A. R. and Powers D. A.: Kinetic characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J. biol. Chem. 259: 1309–18 (1984)PubMedGoogle Scholar
  331. 331.
    Powell J. R.: Protein variation in natural populations of animals. In: Evolutionary Biology Vol. 8, pp. 79–119. Plenum, New York 1975Google Scholar
  332. 332.
    Powell J. R. et al.: Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc. Nat. Acad. Sci. USA 83: 90–90–93 (1986)Google Scholar
  333. 333.
    Prager E. M. and Wilson A. C.: Congruence of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds. J. mol. Evol. 9: 45–57 (1976)PubMedCrossRefGoogle Scholar
  334. 334.
    Prager E. M., Welling G. W. and Wilson A. C.: Comparison of various immunological methods for distinguishing among mammalian pancreatic ribonucleases of known amino acid sequence. J. mol. Evol. 10: 293–307 (1978)PubMedCrossRefGoogle Scholar
  335. 335.
    Prager E. M. and Wilson A. C.: Construction of phylogenetic trees for proteins and nucleic acids: Empirical evaluation of alternative matrix methods. J. mol. Evol. 11: 129–142 (1978)PubMedCrossRefGoogle Scholar
  336. 336.
    Preparata R. M. et al.: Ciliate evolution: The ribosomal phylogenies of the tetrahyminae. J. mol. Evol. 28: 427–441 (1989)PubMedCrossRefGoogle Scholar
  337. 337.
    Pryor S. C. et al.: Biochemical genetics of the Culex pipiens complex–I. 6-Phosphogluconate dehydrogenase. Comp. Biochem. Physiol. Pt. B 65: 663–668 (1980)CrossRefGoogle Scholar
  338. 338.
    Pryor S. C. et al.: Biochemical genetics of the Culex pipiens complex–II. Hexokinase. Comp. Biochem. Physiol. Pt. B 67: 705–710 (1980)CrossRefGoogle Scholar
  339. 339.
    Rainey W. E. et al.: Sirenian molecular systematics–including the extinct Steller’s sea cow (Hydrodamalis gigas). Naturwissenschaften 71: 586–588 (1984)PubMedCrossRefGoogle Scholar
  340. 340.
    Ramshaw J., Coyne J. A. and Lewontin R. C.: The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 93: 1019–37 (1979)PubMedGoogle Scholar
  341. 341.
    Rand D. M. and Harrison R. G.: Molecular population genetics of mtDNA size variation in crickets. Genetics 121: 551–569 (1989)PubMedGoogle Scholar
  342. 342.
    Rao J. K. M.: New scoring matrix for amino acid residue exchanges based on residue characteristic physical parameters. Int. J. Peptide Protein Res. 29: 276–281 (1987)CrossRefGoogle Scholar
  343. 343.
    Reeve H. K. et al.: DNA „fingerprinting“ reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proc. Nat. Acad. Sci. USA 87: 2496–2500 (1990)PubMedCrossRefGoogle Scholar
  344. 344.
    Reisner A. H. and Westwood N. H.: Assessment of similarities of pairs and groups of proteins using transformed amino-acid residues data. J. mol. Evol. 18: 240–250 (1982)PubMedCrossRefGoogle Scholar
  345. 345.
    Richardson R. H., Smouse P. E. and Richardson M. E.: Patterns of molecular variation–II. Associations of electrophoretic mobility and larval substrate within species of the Drosophila mulleri complex. Genetics 85: 141–154 (1977)PubMedGoogle Scholar
  346. 346.
    Richmond M. C. and Zimmerman E. G.: Effect of temperature on activity of allozymic forms of supernatant malate dehydrogenase in the red shiner, Notropis lutrensis. Comp. Biochem. Physiol. Pt. B 61: 415–419 (1978)CrossRefGoogle Scholar
  347. 347.
    Ridley M.: Evolution and classification. The reformation of cladism. Longman, London 1986Google Scholar
  348. 348.
    Riley M. A.: Nucleotide sequence of the Xdh region in Drosophila pseudoobscura and an analysis of the evolution of synonymous codons. Mol. Biol. Evol. 6: 33–52 (1989)PubMedGoogle Scholar
  349. 349.
    Risler J. L. et al • Amino acid substitutions in structurally related proteins. A pattern recognition approach determination of a new and efficient scoring matrix. J. mol. Biol. 204: 1019–29 (1988)PubMedCrossRefGoogle Scholar
  350. 350.
    Romero-Herrera A. E. et al.: The use of amino acid sequence analysis in assessing evolution. Biochimie 61: 767–779 (1979)PubMedCrossRefGoogle Scholar
  351. 351.
    Ropson I. J., Brown D. C. and Powers D. A.: Biochemical genetics of Fundulus heteroclitus (L.). 6. Geographical variation in the gene frequencies of 15 loci. Evolution 44: 16–26 (1990)CrossRefGoogle Scholar
  352. 352.
    Rosenblum B. B., Neel J. V. and Hanash S. M.: Two-dimensional electrophoresis of plasma polypeptides reveals „high“ heterozygosity indices. Proc. Nat. Acad. Sci USA 80: 5002–06 (1983)PubMedCrossRefGoogle Scholar
  353. 353.
    Ruvinsky A. O. et al.: Factors organizing and maintaining polymorphism in a cylic parthenogenetic species: Daphnia pulex. Heredity 57: 15–22 (1986)CrossRefGoogle Scholar
  354. 354.
    Ruvolo M. et al.: Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proc. Nat. Acad. Sci. USA 88: 1570–74 (1991)PubMedCrossRefGoogle Scholar
  355. 355.
    Sabath M. D.: Enzyme variability in 12 sympatric drosophilid species (genera: Chymomyza, Leucophenga, Scaphomyza and Drosophila). Amer. Midland Naturalist 94: 144–153 (1975)CrossRefGoogle Scholar
  356. 356.
    Saccone C., Pesole G. and Preparata G.: DNA microenvironments and the molecular clock. J. mol. Evol. 29: 407–411 (1989)PubMedCrossRefGoogle Scholar
  357. 357.
    Saitou N. and Nei M.: The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425 (1987)PubMedGoogle Scholar
  358. 358.
    Saitou N. and Imanishi T.: Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbour-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. Biol. Evol. 6: 514–525 (1989)Google Scholar
  359. 359.
    Salmon M. et al.: Behavioral and biochemical evidence for species distinctiveness in the fiddler crabs, Uca speciosa and U. spinicarpa. Evolution 33: 182–191 (1979)CrossRefGoogle Scholar
  360. 360.
    SattaY., Ishiwa H. and Chigusa S. I.: Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol. Biol. Evol. 4: 638–650 (1987)Google Scholar
  361. 361.
    Savatier P. et al.: Nucleotide sequence of the betaglobin genes in gorilla and macaque: The origin of nucleotide polymorphism in human. J. mol. Evol. 24: 309–318 (1987)PubMedCrossRefGoogle Scholar
  362. 362.
    Sawyer S.: Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6: 526–538 (1989)PubMedGoogle Scholar
  363. 363.
    Schaefer S. W., Aquadro C. F. and Anderson W. W.: Restriction-map variation in the alcohol dehydrogenase region of Drosophila pseudoobscura. Mol. Biol. Evol. 4: 254–265 (1987)Google Scholar
  364. 364.
    Schaefer S. W. and Aquadro C. F.: Nucleotide sequence of the Adh gene region of Drosophila pseudoobscura: evolutionary change and evidence for an ancient gene duplication. Genetics 117: 61–73 (1987)Google Scholar
  365. 365.
    Schimenti J. C. and Duncan C. H.: Ruminant globin gene structures suggest an evolutionary role for Alu-repeats. Nucleic Acids Res. 12: 1641–55 (1984)PubMedCrossRefGoogle Scholar
  366. 366.
    Schueller C. et al.: The amino-acid sequence of pancreatic ribonuclease from the mole rat Spalax ehrenbergi, chromosomal species 2n=60. Biol. Chem. Hoppe-Seyler 370: 583–589 (1989)CrossRefGoogle Scholar
  367. 367.
    Schuking R. F. and Plasterk R. H. A.: TcA, the putative transposase of C. elegans Tcl transposon, has an N-terminal DNA binding domain. Nucleic Acids Res. 18: 895–900 (1990)CrossRefGoogle Scholar
  368. 368.
    Schulz G. E.: Protein-Differenzierung: Entwicklung neuartiger Proteine im Laufe der Evolution. Angew. Chemie 93: 143–151 (1981)CrossRefGoogle Scholar
  369. 369.
    Selander K., Clark A. G. and Whittam T. S. (eds.): Evolution at the molecular level. Sinauer Assoc., Sunderland 1991Google Scholar
  370. 370.
    Sene F M. and Carson H. L.: Genetic variation in Hawaian Drosophila. IV. Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawaii. Genetics 86: 187–198 (1977)PubMedGoogle Scholar
  371. 371.
    Shaklee J. B. and Tamaru C. S.: Biochemical and morphological evolution of Hawaiian bonefishes (Albula). Syst. Zool. 30: 125–146 (1981)CrossRefGoogle Scholar
  372. 372.
    Shapira S. K. and Finnerty V. G.: The use of genetic complementation in the study of eukaryotic macromolecular evolution: Rate of spontaneous gene duplication at two loci of Drosophila melanogaster. J. mol. Evol. 23: 159–167 (1986)PubMedCrossRefGoogle Scholar
  373. 373.
    Sharp P. M. and Li W. H.: On the rate of DNA sequence evolution in Drosophila. J. mol. Evol. 28: 398–402 (1989)PubMedCrossRefGoogle Scholar
  374. 374.
    Sheppard H. W. and Gutman G. A.: Allelic forms of rat kappa chain genes. Evidence for strong selection at the level of nucleotide sequence. Proc. Nat. Acad. Sci. USA 78: 7064–68 (1981)PubMedCrossRefGoogle Scholar
  375. 375.
    Sheppard W. S. and Heydon S. L.: High levels of genetic variability in 3 male-haploid species (Hymenoptera, Argidae, Tenthredinidae). Evolution 40: 1350–53 (1986)CrossRefGoogle Scholar
  376. 376.
    Shields D. C. et al.: „Silent“ sites in Drosophila genes are not neutral. Evidence of selection among synonymous codons. Mol. Biol. Evol. 5: 704–716 (1988)PubMedGoogle Scholar
  377. 377.
    Sillince J. A. A. and Sillince M.: Molecular databases for protein sequences and structure studies. An Introduction. Springer, Berlin 1991CrossRefGoogle Scholar
  378. 378.
    Simmons G. M. et al.: Molecular analysis of the alleles of alcohol dehydrogenase along a cline in Drosophila melanogaster. 1. Maine, North Carolina, and Florida. Evolution 43: 393–409 (1989)CrossRefGoogle Scholar
  379. 379.
    Singh R. S.: Population genetics and evolution of species related to Drosophila melanogaster. Annual Rev. Genet. 23: 425–453 (1989)CrossRefGoogle Scholar
  380. 380.
    Skibinski D. O. E, Ahmad M. and Beardmore J. A.: Genetic evidence for naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis. Evolution 32: 354–364 (1978)CrossRefGoogle Scholar
  381. 381.
    Skibinski D. O. E and Ward R. D.: Correlation between heterozygosity and evolutionary rate of proteins. Nature 298: 490–492 (1982)CrossRefGoogle Scholar
  382. 382.
    Slightom J. L., Blechl A. E. and Smithies O.: Human fetal Gy-and Ay-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638 (1980)PubMedCrossRefGoogle Scholar
  383. 383.
    Slightom J. L. et al.: Chimpanzee fetal Gy-and Ayglobin gene nucleotide sequences provide further evidence of gene conversions in hominoid evolution. Mol. Biol. Evol. 2: 370–389 (1985)PubMedGoogle Scholar
  384. 384.
    Smith M. J. et al.: Single copy DNA homology in sea stars. J. mol. Evol. 18: 92–101 (1982)PubMedCrossRefGoogle Scholar
  385. 385.
    Sneath P. H. A. and Sokal R. R.: Numerical taxonomy. Freeman, San Francisco 1973Google Scholar
  386. 386.
    de Soete G.: On the construction of „optimal“ phylogenetic trees. Z. Naturforsch. Sect. C 38: 156–158 (1983)Google Scholar
  387. 387.
    Sofer W. and Martin P. F.: Analysis of alcohol dehydrogenase gene expression in Drosophila. Annual Rev. Genet. 21: 203–225 (1987)CrossRefGoogle Scholar
  388. 388.
    Sogin M. L. et al.: Phylogenetic meaning of the kingdom concept: An unusual ribosome from Giardia lamblia. Schience 243: 75–77 (1989)CrossRefGoogle Scholar
  389. 389.
    Somero G. N. and Soulé M.: Genetic variation in marine fishes as a test of the niche-variation hypothesis. Nature 249: 670–672 (1974)PubMedCrossRefGoogle Scholar
  390. 390.
    Sourdis J. and Nei M.: Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 5: 298–311 (1988)PubMedGoogle Scholar
  391. 391.
    Spicer G. S.: Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis. J. mol. Evol. 27: 250–260 (1988)PubMedCrossRefGoogle Scholar
  392. 392.
    Spolsky C. and Uzzell T.: Evolutionary history of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA analyses. Mol. Biol. Evol. 3: 44–56 (1986)PubMedGoogle Scholar
  393. 393.
    Steiner W. W. M. et al.: Electrophoretic comparison of aphid species: detecting differences based on taxonomic status and host plant. Comp. Biochem. Physiol. Pt. B 81: 295–299 (1985)CrossRefGoogle Scholar
  394. 394.
    Stephens J. C.: Statistical methods of DNA sequence analysis. Detection of intragenic recombination or gene conversion. Mol. Biol. Evol. 2: 539–556 (1985)PubMedGoogle Scholar
  395. 395.
    Stephens J. C. and Nei M.: Phylogenetic analysis of polymorphic DNA sequences at the Adh locus in Drosophila melanogaster and its sibling species. J. mol. Evol. 22: 289–300 (1985)PubMedCrossRefGoogle Scholar
  396. 396.
    Stoddart J. A.: The accumulation of genetic variation in a parthenogenetic snail. Evolution 37: 546–554 (1983)CrossRefGoogle Scholar
  397. 397.
    Stoppa-Lyonett D. et al.: Clusters of intragenic Alu repeats predispose the human Cl inhibitor locus to deleterious rearrangements. Proc. Nat. Acad. Sci. USA 87: 1551–55 (1990)CrossRefGoogle Scholar
  398. 398.
    Subbiah S. and Harrison S. C.: Method for multiple sequence alignment with gaps. J. mol. Biol. 209: 539–548 (1989)PubMedCrossRefGoogle Scholar
  399. 399.
    Surrey S. et al.: Functional analysis of a ß-globin gene containing a TATA box mutation from a Kurdish jew with ß-thalassemia. J. biol. Chem. 260: 6507–10 (1985)PubMedGoogle Scholar
  400. 400.
    Syvanen M.: The evolutionary implications of mobile genetic elements. Annual Rev. Genet. 18: 271–293 (1984)CrossRefGoogle Scholar
  401. 401.
    Tabachnik W. J. and Powell J. R.: A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genetic Res. 34: 215–229 (1979)CrossRefGoogle Scholar
  402. 402.
    Tajima E. and Nei M.: Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1: 269–285 (1984)PubMedGoogle Scholar
  403. 403.
    Takahata N. and Nei M.: Gene genealogy and variance of interpopulational differences. Genetics 110: 325–344 (1985)PubMedGoogle Scholar
  404. 404.
    Takahata N.: On the overdispersed molecular clock. Genetics 116: 169–179 (1987)PubMedGoogle Scholar
  405. 405.
    Tateno Y.: A method for molecular phylogeny construction by direct use of nucleotide sequence data. J. mol. Evol. 30: 85–93 (1990)PubMedCrossRefGoogle Scholar
  406. 406.
    Taylor W. R.: A flexible method to align large numbers of biological sequences. J. mol. Evol. 28: 161–169 (1989)CrossRefGoogle Scholar
  407. 407.
    Taylor W. R. and Orengo C. A.: Protein structure alignment. J. mol. Biol. 208: 1–22 (1989)PubMedCrossRefGoogle Scholar
  408. 408.
    Tegelström H., Nilsson G. and Wyoni P. I.: Lack of species differences in isoelectric focused proteins in the Formica rufa group (Hymenoptera, Formicidae). Hereditas 98: 161–165 (1983)PubMedCrossRefGoogle Scholar
  409. 409.
    Tegelström H.: Genetic variability in mitochondrial DNA in a regional population of the great tit (Parus major). Biochem. Genetics 25: 95–110 (1987)CrossRefGoogle Scholar
  410. 410.
    Thomas W. K. and Beckenbach A. T.: Mitochondrial DNA restriction site variation in the Townsend’s vole, Microtus townsendii. Can. J. Zool. 64: 2750–56 (1986)CrossRefGoogle Scholar
  411. 411.
    Ticher A. and Graur D.: Nucleic acid composition, codon usage, and the rate of synonymous substitutions in protein-coding genes. J. mol. Evol. 28: 286–298 (1989)PubMedCrossRefGoogle Scholar
  412. 412.
    Toha J., Soto M. A. and Chinga H.: Algorithm for construction of phylogenetic trees. Z. Naturforsch. Sect. C 44: 312–316 (1989)Google Scholar
  413. 413.
    Tomiuk J. and Wöhrmann K.: Enzyme variability in populations of aphids. Theor. appl. Genetics 57: 125–127 (1980)Google Scholar
  414. 414.
    Tsoi S. C. M., Lee S. C. and Chao W. C.: Duplicate gene expression and diploidization in an Asian tetraploid catostomid, Myxocyprinus asiaticus (Cypriniformes, Catostomodae). Comp. Biochem. Physiol. Pt. B 93: 27–32 (1989)CrossRefGoogle Scholar
  415. 415.
    Turner B. J.: Genetic divergence of Death Valley pupfish species: biochemical versus morphological evidence. Evolution 28: 281–294 (1974)CrossRefGoogle Scholar
  416. 416.
    Turner B. J. et al.: Genetic variation in clonal vertebrates detected by simple-sequence DNA fingerprinting. Proc. Nat. Acad. Sci. USA 87: 5653–57 (1990)PubMedCrossRefGoogle Scholar
  417. 417.
    Ueda S. et al.: Nucleotide sequences of immunoglobulin-epsilon pseudogenes in man and apes and their phylogenetic relationships. J. mol. Biol. 205: 85–90 (1989)PubMedCrossRefGoogle Scholar
  418. 418.
    Uitterlinden A. G. et al.: Two-dimensional DNA fingerprinting of human individuals. Proc. Nat. Acad. Sci. USA 86: 2742–46 (1989)PubMedCrossRefGoogle Scholar
  419. 419.
    Ullrich A. et al.: Genetic variation in the human insulin gene. Science 209: 612–615 (1980)PubMedCrossRefGoogle Scholar
  420. 420.
    Usha R. and Murthy M. R. N.: Protein structural homology: a metric approach. Int. J. Peptide Protein Res. 28: 364–369 (1986)CrossRefGoogle Scholar
  421. 421.
    Vanherck M. et al.: The 18S ribosomal RNA sequence of the sea anemone Anemonia sulcata and its evolutionary position among other eukaryotes. FEBS Letters 269: 445–449 (1990)CrossRefGoogle Scholar
  422. 422.
    Vawter L. and Brown W. M.: Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234: 194–196 (1986)PubMedCrossRefGoogle Scholar
  423. 423.
    Vossbrinck C. R. et al.: Ribosomal RNA sequence suggests Microsporidia are extremely ancient eukaryotes. Nature 326: 411–414 (1987)PubMedCrossRefGoogle Scholar
  424. 424.
    Wagner H. J.: The minimum number of mutations in an evolutionary network. J. theor. Biol. 91: 621–636 (1981)PubMedCrossRefGoogle Scholar
  425. 425.
    Wake D. B., Maxson L. R. and Wurst G. Z.: Genetic differentiation, albumin evolution and their biogeographic implications in plethodontid salamanders in California and southern Europe. Evolution 32: 529–539 (1978)CrossRefGoogle Scholar
  426. 426.
    Walsh J. B.: Interaction of selection and biased gene conversion in a mutigene family. Proc. Nat. Acad. Sci. USA 82: 153–157 (1985)PubMedCrossRefGoogle Scholar
  427. 427.
    Ward R. D.: Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genetics 15: 123–135 (1977)CrossRefGoogle Scholar
  428. 428.
    Ward R. D., McAndrew B. J. and Wallis G. P.: Enzyme variation in the brook lamprey, Lampetra planen (Bloch), a member of the vertebrate group Agnatha. Genetica 55: 67–73 (1981)CrossRefGoogle Scholar
  429. 429.
    Watanabe T. et al.: Pig mitochondrial DNA: Polymorphism, restriction map orientation, and sequence data. Biochem Genetics 24: 385–396 (1986)CrossRefGoogle Scholar
  430. 430.
    Watterson G. A.: On the time for gene silencing at duplicate loci. Genetics 105: 745–766 (1983)PubMedGoogle Scholar
  431. 431.
    Westbroeck P. et al.: Fossil macromolecules from cephalopod shells: characterization, immunochemical response and diagenesis. Palaeobiology 5: 151–167 (1979)Google Scholar
  432. 432.
    Whitmore D. H.: Identification of sunfish species by muscle protein isoelectric focusing. Comp. Biochem. Physiol. Pt. B 84: 177–180 (1986)CrossRefGoogle Scholar
  433. 433.
    Whitney III J. B. et al.: Detection of neutral amino acid substitutions in proteins. Proc. Nat. Acad. Sci. USA 82: 7646–50 (1985)PubMedCrossRefGoogle Scholar
  434. 434.
    Whittam T. S. et al.: Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proc. Nat. Acad. Sci. USA 83: 9611–15 (1986)PubMedCrossRefGoogle Scholar
  435. 435.
    Wilbur W. J.: On the PAM matrix model of protein evolution. Mol. Biol. Evol. 2: 434–447 (1985)PubMedGoogle Scholar
  436. 436.
    Wilcox D. R. and Prakash S.: Variation in biochemical properties of allozymes of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 96: 927–938 (1980)PubMedGoogle Scholar
  437. 437.
    Williams J.: The evolution of transferrin. Trends biochem. Sci. 82: 394–397 (1982)Google Scholar
  438. 438.
    Williams S A and Goodman M.: A statistical test that supports a human/chimpanzee clade based on noncoding DNA sequence data. Mol. Biol. Evol. 6: 325–330 (1989)PubMedGoogle Scholar
  439. 439.
    Wills C.: Genetic variability. Clarendon Press, Oxford 1981Google Scholar
  440. 440.
    Wilson A. C., Carlson S. S. and White T. J.: Biochemical evolution. Annual Rev. Biochem. 46: 573–639 (1977)CrossRefGoogle Scholar
  441. 441.
    Winberg J. O., Thatcher D. R. and McKinley-McKee J. S.: Drosophila melanogaster alcohol dehydrogenase: An electrophoretic study of the Adh-S, Adh-F, and Adh-UF alloenzymes. Biochem. Genetics 21: 63–80 (1983)CrossRefGoogle Scholar
  442. 442.
    Winberg J. O. and McKinley-McKee J. S.: Drosophila melanogaster alcohol dehydrogenase. Biochemical properties of the NAD +-plus-acetone-induced isoenzyme conversion. Biochem. J. 251: 223–227 (1988)PubMedGoogle Scholar
  443. 443.
    Winter W. P. (ed.): Hemoglobin variants in human populations. CRC Press, Boca Raton USA 1986Google Scholar
  444. 444.
    Wolfe K. H., Sharp P. M. and Li W. H.: Mutation rates differ among regions of the mammalian genome. Nature 337: 283–285 (1989)PubMedCrossRefGoogle Scholar
  445. 445.
    Wooley K. J. and Athalye M.: A use for principal coordinate analysis in the comparison of protein sequences. Biochem. biophys. Res. Commun. 140: 808–813 (1986)Google Scholar
  446. 446.
    Wooten M. C. and Smith M. H.: Large mammals are genetically less variable. Evolution 39: 210–212 (1985)CrossRefGoogle Scholar
  447. 447.
    Wu C. I. and Li W. H.: Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Nat. Acad. Sci. USA 82: 1741–45 (1985)PubMedCrossRefGoogle Scholar
  448. 448.
    Wyatt R., Odrzykoski I. J. and Stoneburner A.: High levels of genetic variability in the haploid moss Plagi-omnium ciliare. Evolution 43: 1086–96 (1989)CrossRefGoogle Scholar
  449. 449.
    Wysocki L. J. and Gefter M. L.: Gene conversion and the generation of antibody diversity. Annual Rev. Biochem. 58: 509–531 (1989)CrossRefGoogle Scholar
  450. 450.
    Yafee D. et al.: Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res. 13: 3723–37 (1985)CrossRefGoogle Scholar
  451. 451.
    Yager L. N., Kaumeyer J. F. and Weinberg E. S.: Evolving sea urchin histone genes–Nucleotide polymorphisms in the H4 gene and spacers of Strongylocentrotus purpuratus. J. mol. Evol. 20: 215–226 (1984)PubMedCrossRefGoogle Scholar
  452. 452.
    Yonekawa H. et al.: Evolutionary relationships among five subspecies of Mus musculus based on restricting enzyme cleavage patterns of mitochondrial DNA. Genetics 98: 801–816 (1981)PubMedGoogle Scholar
  453. 453.
    Zakijan S. M. et al.: An estimation of the degree of the genetic divergence of sibling species Microtus arvalis and Microtus subarvalis (Rodentia) based on electrophoretic analysis. Biochem. Genetics 22: 1081–91 (1984)CrossRefGoogle Scholar
  454. 454.
    Zera A. J.: Extensive variation at the a-glycerophosphate dehydrogenase locus in species of waterstriders (Gerridae: Hemiptera). Biochem. Genetics 19: 797–812 (1981)CrossRefGoogle Scholar
  455. 455.
    Zharikh A. A., Solovyon V. V. and Kolchanov N. A.: Conformational changes in the globin family during evolution — I. Analysis of the evolutionary role of insertions and deletions. J. mol. Evol. 21: 42–53 (1984)CrossRefGoogle Scholar
  456. 456.
    Zimmerman E. G., Kilpatrick C. W. and Hart B. J.: The genetics of speciation in the rodent genus Peromyscus. Evolution 32: 565–579 (1978)CrossRefGoogle Scholar
  457. 457.
    Zimny-Arndt U. and Klose J.: Qualitative and quantitative variability in different classes of proteins: comparison of mouse and rat. J. mol. Evol. 24: 260–271 (1987)PubMedCrossRefGoogle Scholar
  458. 458.
    Zuckerkandl E.: Evolutionary processes and evolutionary noise at the molecular level — I. Functional density in proteins. J. mol. Evol. 7: 167–183 (1976)PubMedCrossRefGoogle Scholar
  459. 459.
    Zuckerkandl E.: Evolutionary processes and evolutionary noise at the molecular level — II. A selectionist model for random fixations in proteins. J. mol. Evol. 7: 269–311 (1976)PubMedCrossRefGoogle Scholar
  460. 460.
    Special Issue: Frequency-dependent selection. Phil. Trans. Roy. Soc. London B 319: 459ff (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Urich
    • 1
  1. 1.Institut für ZoologieUniversität MainzMainzGermany

Personalised recommendations