Skip to main content

The Structural Variety and Metabolism of Proteins

  • Chapter
  • 410 Accesses

Abstract

Individual eukaryote cells contain in the order of 104 different proteins, and each animal species contains an even greater number due to differences between the tissues of an individual and between the individuals themselves; furthermore, the protein spectrum changes during the course of development. The number of different proteins to be found in extant organisms may be as high as 1012. The description of this variety, its origin and biological significance is the most extensive theme in comparative biochemistry. This chapter will concern itself with the possibilities for structural variation and the general metabolism of proteins; further chapters will deal with comparative studies of individual proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K. et al.: Molecular cloning of a cysteine protei-nase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J. biol. Chem. 262: 16793–97 (1987)

    PubMed  CAS  Google Scholar 

  2. Adam S. A. et al.: Identification of specific binding proteins for a nuclear location sequence. Nature 337: 276–279 (1989)

    Article  PubMed  CAS  Google Scholar 

  3. Aitken A.: Identification of protein consensus sequences. VHC Pubs. ( Horwood ), New York 1990

    Google Scholar 

  4. Alexander M. E. and Dresden M. H.: Collagenolytic enzymes from the starfish, Pyenopodia helianthoides. Comp. Biochem. Physiol. Pt. B 67: 505–509 (1980)

    Article  Google Scholar 

  5. Argos P. and Rao J. K. M.: Relationships between exons and the predicted structure of membrane-bound proteins. Biochim. biophys. Acta 827: 283–297 (1985)

    CAS  Google Scholar 

  6. Armstrong P. B. et al.: Structure of a2-macroglobulin from the arthropod Limus polyphemus. J. Biol. Chem. 266: 2526–30 (1991)

    PubMed  CAS  Google Scholar 

  7. Arribas. C., Sampedro J. and Izquierdo M.: The ubiquitin genes in Drosophila melanogaster: transcription and polymorphism. Biochim. biophys. Acta 868: 119–127 (1986)

    Google Scholar 

  8. Baba T. et al.:Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. J. Biol. Chem. 264: 11920–27 (1989)

    Google Scholar 

  9. Baici A. and Seemüller U.: Kinetics of the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis. Biochem. J. 218: 829–833 (1984)

    PubMed  CAS  Google Scholar 

  10. Bao J. J. et al.: Molecular evolution of serpins: Homologous structure of the human alantichymotrypsin and al-antitrypsin genes. Biochemistry 26: 7755–59 (1987). Correction: Biochemistry 27: 8508 (1988)

    CAS  Google Scholar 

  11. Barrett A. J. and McDonald J. K.: Mammalian pro-teases, Vol. I: Endopeptidases. Acad Press, New York 1980

    Google Scholar 

  12. Barrett A. J.: The cystatins: a new class of peptidase inhibitors. Trends biochem. Sci. 12: 193–196

    Google Scholar 

  13. Baudys M. and Kostka V.: Covalent structure of chicken pepsinogen. Eur. J. Biochem. 136: 89–99 (1983)

    Article  PubMed  CAS  Google Scholar 

  14. Bauw G. et al.: Protein-electroblotting and -microsequencing strategies in generating protein data bases from two-dimensional gels. Proc. Nat. Acad. Sci. USA 86: 7701–05 (1989)

    Article  PubMed  CAS  Google Scholar 

  15. Berger E. G. and Baumann H.: An evolutionary switch in tissue-specific gene expression. Abundant expression of al-antitrypsin in the kidney of a wild mouse species. J. biol. Chem. 260: 1160–65 (1985)

    PubMed  CAS  Google Scholar 

  16. Blankenship D. T. et al: Amino acid sequence of ghilanten: anticoagulant-antimetastatic principle of the South American leech, Haementeria ghilianii Biochem. biophys. Res. Commun. 166: 1384–89 (1990)

    CAS  Google Scholar 

  17. Bode W. et al.: The 2.0 A X-ray structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. Embo J. 7: 2593–99 (1988)

    PubMed  CAS  Google Scholar 

  18. Bond J. S. and Butler P. E.: Intracellular proteases. Annual Rev. Biochem. 56: 333–364 (1987)

    Article  CAS  Google Scholar 

  19. Bork P.: Recognition of functional regions in primary structures using a set of property patterns. FEBS Letters 257: 191–195 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. Borst P.: How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim. biophys. Acta 866: 179–203 (1986)

    CAS  Google Scholar 

  21. Bradshaw R. A.: Protein translocations and turnover in eukaryotic cells. Trends biochem. Sci. 14: 276–279 (1989)

    CAS  Google Scholar 

  22. Brenner S.: The molecular evolution of genes and proteins: a tale of two serines. Nature 334: 528–530 (1988)

    Article  PubMed  CAS  Google Scholar 

  23. Brown C. M. et al.: Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 18: 6339–45 (1990)

    Article  PubMed  CAS  Google Scholar 

  24. Candelas G. et al.: Translational pauses during a spider fibroin synthesis. Biochem. biophys. Res. Cotnmun. 116: 1033–38 (1983)

    CAS  Google Scholar 

  25. Carling D. and Hardie D. G.: The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. biophys. Acta 1012: 81–86 (1989)

    CAS  Google Scholar 

  26. Carrell R. and Travis J.: al-Antitrypsin and the serpins: variation and countervariation. Trends biochem. Sci. 10: 20–24 (1985)

    Google Scholar 

  27. Cavener D. E. and Ray S. C.: Eukaryotic start and stop translation sites. Nucleic Acids Res. 19: 3185–92 (1991)

    Article  PubMed  CAS  Google Scholar 

  28. Chang P. K. and Dignam J. D.: Pimary structure of alanyl-transfer RNA synthetase and the regulation of its messenger RNA levels in Bombyx mori. J. Biol. Chem. 265: 20898–906 (1990)

    PubMed  CAS  Google Scholar 

  29. Chao S. et al.: Molecular cloning and primary stucture of rat al-antitrypsin. Biochemistry 29: 323–329 (1990)

    Article  PubMed  CAS  Google Scholar 

  30. Chappell L. C. and Dresden M. H.: Purification of cysteine proteinases from adult Schistosoma man-soni. Arch. Biochem. Biophys. 256: 560–568 (1987)

    Article  PubMed  CAS  Google Scholar 

  31. Charbonneau H. et al.: Human placenta proteintyrosine-phosphatase• Amino acid sequence and relationship to a family of receptor-like proteins. Proc. Nat. Acad. Sci. USA 86: 5252–56 (1989)

    Article  PubMed  CAS  Google Scholar 

  32. Cheeseman M. T. and Gooding R. H.: Proteolytic enzymes from tsetse flies, Glossina morsitans and Glossina palpalis (Diptera: Glossinidae). Insect Biochem. 15: 677–680 (1985)

    Article  CAS  Google Scholar 

  33. Chothia C. and Finkelstein A. V.: The classification and origins of protein folding patterns. Annual Rev. Biochem. 59: 1007–1039 (1990)

    Article  CAS  Google Scholar 

  34. Clark V. M. and Curthoys P.: Cause of subunit heterogeneity in purified rat renal phosphate-dependent glutaminase. J. biol. Chem. 254: 4939–41 (1979)

    PubMed  CAS  Google Scholar 

  35. Cochrane B. J. and Richmond R. C.: Studies of esterase-6 in Drosophila melanogaster. 1. Genetics of a posttranslational modification. Biochem. Genetics 17: 167–183 (1979)

    Article  CAS  Google Scholar 

  36. Cohen P.: The structure and regulation of protein phosphatases. Annual Rev. Biochem. 58: 453–508 (1989)

    Article  CAS  Google Scholar 

  37. Cohen P. T. W. et al.: Protein serine threonine phosphatases–An expanding family. FEBS Letters 268: 355–359 (1990)

    Article  PubMed  CAS  Google Scholar 

  38. Colella R. et al.: Chicken white cystatin. Molecular cloning, nucleotide sequence, and tissue distribution. J. Biol. Chem. 264: 17164–69 (1989)

    PubMed  CAS  Google Scholar 

  39. Collier I. E. et al.: The structure of the human skin fibroblast collagenase gene. J. Biol. Chem. 263: 10711–13 (1988)

    PubMed  CAS  Google Scholar 

  40. Combest W. L. and Gilbert L. I.: Particulate associated cAMP-dependent protein kinase activity in the brain of the tobacco hornworm, Manduca sexta. Insect Biochem. 19: 663–672 (1989)

    Article  CAS  Google Scholar 

  41. Conlon J. M. and Thim L.: A peptide from the eel pancreas with structural similarity to human pancreatic secretory trypsin inhibitor. Eur. J. Biochem. 174: 149–153 (1988)

    Article  PubMed  CAS  Google Scholar 

  42. Craik C. S., Rutter W. J. and Fletterick R.: Splice junctions: association with variation in protein structure. Science 220: 1125–29 (1983)

    Article  PubMed  CAS  Google Scholar 

  43. Creighton T. E.: Protein folding. Biochem. J. 270: 1–16 (1990)

    PubMed  CAS  Google Scholar 

  44. Dahlman B et al.: The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Letters 251: 125–131 (1989)

    Article  Google Scholar 

  45. Dahms, N. M., Lobel P. and Kornfeld S: Mannose 6-phosphate receptors and lysosomal enzyme targeting (Minireview). J. Biol. Chem. 264: 12115–18 (1989)

    PubMed  CAS  Google Scholar 

  46. van Damme H. T. F. et al.: Elongation factor 1-beta of Artemia: Localization of functional sites and homology to elongation factor 1-delta. Biochim. biophys. Acta 1050: 241–247 (1990)

    Google Scholar 

  47. Dang C. V. and Dang C. V.: Multienzyme complex of aminoacyl-tRNA synthetases: an essence of being eukaryotic (Review). Biochem. J. 239: 249–255 (1986)

    PubMed  CAS  Google Scholar 

  48. Das S. et al.: A cylic nucleotide-independent protein kinase in Leishmania donovani. Biochem. J. 240: 641–649 (1986)

    PubMed  CAS  Google Scholar 

  49. Davis, A. H., Nanduri J. and Watson D. C.: Cloning and gene expression of Schistosoma mansoni protease. J. biol. Chem. 262: 12851–55 (1987)

    PubMed  CAS  Google Scholar 

  50. Davis C. A. et al.: A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic Acids Res. 13: 6605–19 (1985)

    Article  PubMed  CAS  Google Scholar 

  51. Dayhof M. O. (ed.): Atlas of protein sequence and structure, Vol. 5 and Suppl. 1–3. Nat. Biomed. Res. Foundation, Washington 1972–78

    Google Scholar 

  52. Delbridge M. L. and Kelly L. E.: Sequence analysis and chromosomal localization of a gene encoding a cystatin-like protein from Drosophila melanogaster. FEBS Letters 274: 141–145 (1990)

    Article  PubMed  CAS  Google Scholar 

  53. Dendinger J. E. and O’Connor K. L.: Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. Pt. B 95: 525–530 (1990)

    Article  Google Scholar 

  54. Deng L. R. et al.: Isolation and properties of two allelic chymotrypsin inhibitors from the hemolymph of the silkworm, Bombyx mori. Insect Biochem. 20: 531–536 (1990)

    Article  CAS  Google Scholar 

  55. Diarra-Mehrpour M. et al.: Human plasma inter-atrypsin inhibitor is encoded by four genes on three chromosomes. Eur. J. Biochem. 179: 147–154 (1989)

    Article  PubMed  CAS  Google Scholar 

  56. Djé M. K. et al.: Three genes under different developmental control encode elongation factor 1-a in Xenopus laevis. Nucleic Acids Res. 18: 3489–93 (1990)

    Article  PubMed  Google Scholar 

  57. Dombradi V. et al.: Cloning and chromosomal localization of Drosophila cDNA encoding the catalytic subunit of protein phosphatase la–High conservation between mammalian and insect sequences. Eur. J. Biochem. 183: 603–610 (1989)

    Article  PubMed  CAS  Google Scholar 

  58. Donovan M. A. and Laue T M.: A novel trypsin inhibitor from the hemolymph of the horseshoe crab Limulus polyphemus. J. Biol. Chem. 266: 2121–25 (1991)

    PubMed  CAS  Google Scholar 

  59. Driscoll J. and Goldberg A. L.: The proteasome (multicatalytic protease) is a component of the 1500kDa proteolytic complex which degrades ubiquitinconjugated proteins. J. Biol. Chem. 265: 4789–92 (1990)

    PubMed  CAS  Google Scholar 

  60. Dufton M. J.: Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur. J. Biochem. 153: 647–654 (1987)

    Article  Google Scholar 

  61. Dunbar B. S.: Two-dimensional electrophoresis and immunological techniques. Plenum, New York 1987

    Book  Google Scholar 

  62. Dunwiddie C. et al.: Antistasin, a leech-derived inhibitor of factor Xa. Kinetic analysis of enzyme inhibition and identification of the reactive site. J. Biol. Chem. 264: 16695–99 (1989)

    Google Scholar 

  63. Edelman A. M., Blumenthal D. K. and Krebs E. G.: Protein serine/threonine kinases. Annual Rev. Biochem. 56: 567–613 (1987)

    Article  CAS  Google Scholar 

  64. Ehlers M. R. W. et al.: Molecular cloning of human testicular angiotensin-converting enzyme: The testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Nat. Acad. Sci. USA 86: 7741–45 (1989)

    Article  PubMed  CAS  Google Scholar 

  65. Enghild J. J. et al.: Alpha-macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 29: 10070–80 (1990)

    Article  PubMed  CAS  Google Scholar 

  66. Estell D. A. and Laskowski M. jr.: Dermasterias imbricata Trypsin I: an enzyme which rapidly hydrolyzes the reactive site peptide bonds of protein trypsin inhibitors. Biochemistry 19: 124–131 (1980)

    Article  PubMed  CAS  Google Scholar 

  67. Falkenburg P. E. and Kloetzel P. M.: Identification and characterization of three different subpopulations of the Drosophila multicatalytic proteinase (proteasome). J. Biol. Chem. 264: 6660–66 (1989)

    PubMed  CAS  Google Scholar 

  68. Fasman G. D. (ed.): Prediction of protein structure and the principles of protein conformation. Plenum, New York 1989

    Google Scholar 

  69. Faust P. L., Kornfeld S. and Chirgwin J. M.: Cloning and sequence analysis of cDNA for human cathepsin D. Proc. Nat. Acad. Sci. USA 82: 4910–14 (1985)

    Article  PubMed  CAS  Google Scholar 

  70. Feldman S and Pizzo S. V.: Purification and characterization of frog a-macroglobulin: Receptor recognition of an amphibian glycoprotein. Biochemistry 24: 2569–75 (1985)

    Article  PubMed  CAS  Google Scholar 

  71. Fini M. E. et al.: A gene for rabbit synovial cell collagenase: member of a family of metalloproteinases that degrade the connective tissue matrix. Biochemistry 26: 6156–65 (1987)

    Article  PubMed  CAS  Google Scholar 

  72. Fischer E. H., Charbonneau H. and Tonks N. K.: Protein tyrosine phosphatases. A diverse family of intracellular and transmembrane enzymes. Science 253: 401–406 (1991)

    Article  PubMed  CAS  Google Scholar 

  73. Folco E. J. et al.: Multicatalytic proteinase in fish muscle. Arch. Biochem. Biophys. 267: 599–605 (1988)

    Article  PubMed  CAS  Google Scholar 

  74. Foster J. L., Higgins G. C. and Jackson E R.: Cloning, sequence, and expression of the Drosophila cAMP-dependent protein kinase catalytic subunit gene. J. biol. Chem. 263: 1676–81 (1988)

    PubMed  CAS  Google Scholar 

  75. Freedman R. B. and Hawkins H. C. (eds.): The enzymology of posttranslational modification of proteins. Acad. Press, New York 1985

    Google Scholar 

  76. Gabius H. J. et al.. Evolutionary aspects of accuracy of phenylalananyl-tRNA synthetase. Accuracy of fungal and animal mitochondrial enzymes and their relationship to their cytoplasmic counterparts and a prokarytic enzyme. Biochemistry 22: 5306–15 (1983)

    CAS  Google Scholar 

  77. Garden S. J. et al.: A novel rat carboxypeptidase, CPA2: characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family. J. Biol. Chem. 263: 17828–36 (1988)

    Google Scholar 

  78. Gebhard W. et al.: Two out of the three kinds of subunits of inter-a-trypsin inhibitor are structurally related. Eur. J. Biochem. 181: 571–576 (1989)

    Article  PubMed  CAS  Google Scholar 

  79. Ghersa P. et al.: Initiation of translation at a UAG stop codon in the aldolase gene of Plasmodium falciparum. Embo J. 9: 1645–49 (1990)

    PubMed  CAS  Google Scholar 

  80. Gildberg A.: Aspartic proteinases in fishes and aquatic invertebrates. Comp. Biochem. Physiol. Pt. B 91: 425–35 (1988)

    Article  CAS  Google Scholar 

  81. Gockel S. F. and Lebherz H. G.: „Conformational” isoenzymes in ascarid enolase. J. biol. Chem. 256: 3877–83 (1981)

    PubMed  CAS  Google Scholar 

  82. Godar D. E. et al.: Structural organization of the multienzyme complex of mammalian aminoacyltRNA synthetases. Biochemistry 27: 6921–28 (1988)

    Article  PubMed  CAS  Google Scholar 

  83. Goldberg M. E.: The second translation of the genetic message: protein folding and assembly. Trends biochem. Sci. 10: 388–391 (1985)

    CAS  Google Scholar 

  84. Gordon E. D. et al.: Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. J. biol. Chem. 262: 16585–89 (1987)

    PubMed  CAS  Google Scholar 

  85. Gordon J. I. et al.: Protein N-myristoylation (Minireview). J. Biol. Chem. 266: 8647–50 (1991)

    PubMed  CAS  Google Scholar 

  86. Gould S. J. et al.: Peroxisomal protein import is conserved between yeast, plants, insects and mammals. Embo J. 9: 85–90 (1990)

    PubMed  CAS  Google Scholar 

  87. Grant G. A., Sacchettini J. C. and Welgus H. G.: A collagenolytic serine protease with trypsin-like specificity from the fiddler crab Uca pugilator. Biochemistry 22: 354–358 (1983)

    Article  PubMed  CAS  Google Scholar 

  88. Grinblat Y., Brown N. H. and Kafatos F. C.: Isolation and characterization of the Drosophila translational elongation factor 2 gene. Nucleic Acids Res. 17: 7303–14 (1989)

    Article  PubMed  CAS  Google Scholar 

  89. Gross R. E. et al.: Cloning, characterization, and expression of the gene for the catalytic subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. Identification of highly conserved and unique isoforms generated by alternative splicing. J. Biol. Chem. 265: 6896–6907 (1990)

    PubMed  CAS  Google Scholar 

  90. Grossman A.: Information transfer in biological systems. Targeting of proteins to specific organelles or to the extracellular environment (secretion). Comp. Biochem. Physiol. Pt. B 91: 389–424 (1988)

    Article  CAS  Google Scholar 

  91. Guerard F. and le Gal Y.: Characterization of a chymosin-like pepsin from the dogfish Scyliorhinus canicula. Comp. Biochem. Physiol. Pt. B 88: 823–827 (1987)

    Article  CAS  Google Scholar 

  92. Gundersen R. E. and Nelson D. L.: A novel Ca-dependent protein kinase from Paramecium tetraurelia. J. biol. Chem. 262: 4602–09 (1987)

    PubMed  CAS  Google Scholar 

  93. Haass C. et al.: The Drosophila PROS-28.1 gene is a member of the proteasome gene family. Gene 90: 235–241 (1990)

    Article  PubMed  CAS  Google Scholar 

  94. Hamed M. B. B. and Attias J.: Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria melonella (L.). Insect Biochem. 17: 653–658 (1987)

    Article  Google Scholar 

  95. Hameed, K. S. and Haard N. E: Isolation and characterization of cathepsin D from Atlantic short finned squid Illex illecerebrosus. Comp. Biochem. Physiol. Pt. B 82: 241–246 (1985)

    Article  Google Scholar 

  96. Hanks S. K., Quinn A M. and Hunter T.: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains Science 241: 42–52 (1988)

    CAS  Google Scholar 

  97. Hansen L. J., Huang W. I. and Jagus R.: Inhibitor of translational initiation in sea urchin eggs prevents mRNAutilization. J. biol. Chem. 262: 6114–20 (1987)

    PubMed  CAS  Google Scholar 

  98. Hardie D. G. and Coggins J. R. (eds.): Multidomain proteins. Structure and funktion. Elsevier, Amsterdam 1986

    Google Scholar 

  99. Hartl F. U. and Neupert W.: Protein sorting to mitochondria: Evolutionary conservations of folding and assembly. Science 247: 930–938 (1990)

    Article  PubMed  CAS  Google Scholar 

  100. Hasty K. A. et al.: Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J. Biol. Chem. 265: 11421–24 (1990)

    PubMed  CAS  Google Scholar 

  101. Hayono T. et al.: Primary structure of human pepsinogen C gene. J. biol. Chem. 263: 1382–85 (1988)

    Google Scholar 

  102. von Heijne G.: Signal sequences. The limits of variation. J. mol. Biol. 184: 99–105 (1985)

    Article  Google Scholar 

  103. Helaakoski T. et al.: Molecular cloning of the a-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing. Proc. Nat. Acad. Sci. USA 86: 4392–96 (1989)

    Article  PubMed  CAS  Google Scholar 

  104. van Hemert E. J. et al.: The primary structure of elongation factor EF-la from the brine shrimp Arte-mia. Embo J. 3: 1109–13 (1984)

    PubMed  Google Scholar 

  105. Hershey J. W. B.: Protein phosphorylation controls translation rates. J. Biol. Chem. 264: 20823–26 (1989)

    PubMed  CAS  Google Scholar 

  106. Hill R. E. and Hastie N. D.: Accelerated evolution in the reactive center regions of serine protease inhibitors. Nature 326: 96–99 (1987)

    Article  PubMed  CAS  Google Scholar 

  107. Hille A. et al.: Occurrence of tyrosine sulfate in proteins. A balance sheet. 1. Secretory and lysosomal proteins. Eur. J. Biochem. 188: 577–586 (1990)

    Article  PubMed  CAS  Google Scholar 

  108. Holm I. et al.: Evolution of aspartyl proteases by gene duplication: the mouse renin gene is organized in two homologous clusters of four exons. Embo J. 3: 557–562 (1984)

    PubMed  CAS  Google Scholar 

  109. Holmes W. E. et al.: Primary structure of human a2antiplasmin, a serine protease inhibitor (serpin). J. biol. Chem. 262: 1659–64 (1987)

    PubMed  CAS  Google Scholar 

  110. Holmquist R.: Evaluation of compositional nonrandomness in proteins. J. mol. Evol. 11: 349–360 (1978)

    Article  PubMed  CAS  Google Scholar 

  111. Horii A. et al.: On the cDNAs for two types of rat pancreatic secretory trypsin inhibitor. Biochem. biophys. Res. Commun. 162: 151–159 (1989)

    CAS  Google Scholar 

  112. Houseman J. G. and Downe A. E. R.: Cathepsin D-like activity in the posterior midgut of hemipteran insects. Comp. Biochem. Physiol. Pt. B 75: 509–512 (1983)

    Article  Google Scholar 

  113. Houseman J. G., Campbell F. C. and Morrison P. E.: A preliminary characterization of digestive proteases in the posterior midgut of the stable fly Stomoxys calcitrans (L.) (Diptera: Muscidae). Insect Biochem. 17: 213–218 (1987)

    Article  CAS  Google Scholar 

  114. Hu E. and Rubin C. S.: Casein kinase II from Caenorhabditis elegans. Properties and developmental regulation of the enzyme; cloning and sequence analyses of cDNA and the gene for the catalytic subunit. J. Biol. Chem. 265: 5072–80 (1990)

    PubMed  CAS  Google Scholar 

  115. Hunter T.: A thousand and one protein kinases. Cell 135. 50: 823–829 (1987)

    Article  Google Scholar 

  116. Isackson P. J., Ullrich A. and Bradshaw R. A.: Mouse 7 S nerve growth factor: Complete sequence of a cDNA coding for the a-subunit precursor and its 136. relationship to serine proteases. Biochemistry 23: 5997–6002 (1984)

    Article  PubMed  CAS  Google Scholar 

  117. Ishihara T. et al.: Primary structure and transcrip- 137. tional regulation of rat pepsinogen C gene. J. Biol. Chem. 264: 10193–99 (1989)

    PubMed  CAS  Google Scholar 

  118. Ito A. et al.: The complete primary structure of calcineurin A, a calmodulin binding protein homologous with protein phosphatases 1 and 2A. Biochem. bio- 138. phys. Res. Commun. 163: 1492–97 (1989)

    CAS  Google Scholar 

  119. Jaenicke R.: Protein folding. Local structures, domains, subunits and assemblies. Biochemistry 30: 139. 3147–61 (1991)

    Article  PubMed  CAS  Google Scholar 

  120. James M. N. G., Delbaere L. T. J. and Brayer G. D.: Amino acid sequence alignment of bacterial and 140. mammalian pancreatic serine proteases based on topological equivalences. Can. J. Biochem. 56: 396–402 (1978) 141.

    Google Scholar 

  121. James M. N. G., Sielecki A. R.: Molecular structure of an aspartic proteinase zymogen, at 1.8 A resolution. Nature 319: 33–38 (1986)

    Article  PubMed  CAS  Google Scholar 

  122. Jany K. D. and Haug H.: Amino acid sequence of the 142. chymotryptic protease II from the larvae of the hornet, Vespa crabo. FEBS Letters 158: 98–102 (1983)

    Article  CAS  Google Scholar 

  123. Jennings M. L.: Topography of membrane proteins. 143. Annual Rev. Biochem. 58: 999–1027 (1989)

    Article  CAS  Google Scholar 

  124. Jentsch, S., Seufert W. and Hauser H. P.: Genetic 144. analysis of the ubiquitin system (Review). Biochim. biophys. Acta 1089: 127–139 (1991)

    CAS  Google Scholar 

  125. Jeppson J. O. and Laurell C. B.: The amino acid substitutions of human al-antitrypsin M3, X and Z. 145. FEBS Letters 231: 327–330 (1988)

    Article  Google Scholar 

  126. Joernvall H., Hooeg J.-O. and Gustaysson A.-M.: Methods in protein sequence analysis. Birkhaeuser, Basel 1991 146.

    Google Scholar 

  127. Jonnalagadda S. et al.: Multiple (a-NH-ubiquitin) protein endoproteases in cells. J. Biol. Chem. 264: 10637–42 (1989) 147.

    Google Scholar 

  128. Jordao B. P. and Terra W. R.: Distribution, properties, and functions of midgut carboxypeptidases and 148. dipeptidases from Musca domestica larvae. Arch. Insect Biochem. Physiol. 11: 231–244 (1989)

    CAS  Google Scholar 

  129. Kageyama T. and Takahashi K.: The complete amino acid sequence of monkey pepsinogen A. J. biol. 149. Chem. 261: 4395–4405 (1986)

    CAS  Google Scholar 

  130. Kageyama T. and Takahashi K.: The complete amino acid sequence of monkey progastricsin. J. biol. 150. Chem. 261: 4406–19 (1986)

    CAS  Google Scholar 

  131. Kalderon D. and Rubin G. M.: cGMP-dependent protein kinase genes in Drosophila. J. Biol. Chem. 151. 264: 10738–48 (1989)

    Google Scholar 

  132. Kang P. J. et al.: Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348: 137–143 (1990) 152.

    Google Scholar 

  133. Kanost M. R.: Isolation and characterization of four serine proteinase inhibitors (serpins) from hemolymph of Manduca sexta. Insect Biochem. 20: 141–147 (1990)

    Article  CAS  Google Scholar 

  134. Kato I. and Tominaga N: Trypsin-subtilisin inhibitor 153. from Red Sea turtle eggwhite consists of two tandem domains - one Kunitz - one of a new family. Fed. Proc. Abstract of 67th Annual Meeting Nr. 3168 (1983)

    Google Scholar 

  135. Kato I. et al.: Chicken ovomucoid: Determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains Biochemistry 26: 193–201 (1987)

    CAS  Google Scholar 

  136. Katunuma N., Umezawa H. and Holzer H. (eds.): Proteinase inhibitors. Medical and biological aspects. Springer, Berlin 1983

    Google Scholar 

  137. Kavanagh E. J. and Tillinghast E. K.: The alkaline proteases of Argiope–II. Fractionation of protease activity and isolation of a silk fibroin digesting protease. Comp. Biochem. Physiol. Pt. B 74: 365–372 (1983)

    Article  Google Scholar 

  138. Kawamura M., Wadano A. and Miura K.: Purification and characterization of insect cathepsin D. Insect Biochem. 17: 77–83 (1987)

    Article  CAS  Google Scholar 

  139. Kenny A. J. and Ingram J.: Is there a tripeptidyl peptidase in the renal brushborder membrane ? Biochem. J. 255: 373–376 (1988)

    PubMed  CAS  Google Scholar 

  140. Kikkawa U., Kishimoto A. and Nishizuka Y.: The protein kinase C family: Heterogeneity and its implications. Annual Rev. Biochem. 58: 31–44 (1989)

    Article  CAS  Google Scholar 

  141. Kikuchi Y. and Tamiya N.: Chemical taxonomy of the hinge-ligament proteins of bivalves according to their amino acid compositions. Biochem. J. 242: 505–510 (1987)

    PubMed  CAS  Google Scholar 

  142. Kim P. S. and Baldwin R. L.: Intermediates in the folding reactions of small proteins. Annual Rev. Biochem. 59: 631–660 (1990)

    Article  CAS  Google Scholar 

  143. Kirchhoff L. V. et al.: Ubiquitin genes in trypanosomatidae. J. Biol. Chem. 263: 12698–704 (1988)

    PubMed  CAS  Google Scholar 

  144. Klier H. J., Vonfigura K. and Pohlmann R: Isolation and analysis of the human 46-kDa mannose 6-phosphate receptor gene. Eur. J. Biochem. 197: 23–28 (1991)

    Article  PubMed  CAS  Google Scholar 

  145. Klimova O. A. et al.: The isolation and properties of collagenolytic proteases from crab hepatopancreas. Biochem. biophys. Res. Commun. 166: 1411–20 (1990)

    CAS  Google Scholar 

  146. Koster A. et al.: Molecular cloning of the mouse 46kDa mannose 6-phosphate receptor (MPR-46). Biol. Chem. Hoppe-Seyler 372: 297–300 (1991)

    Article  PubMed  CAS  Google Scholar 

  147. Kreil G.: Transfer of proteins across membranes. Annual Rev. Biochem. 50: 317–348 (1981)

    Article  CAS  Google Scholar 

  148. Kruh G. D. et al.: The complete coding sequence of arg defines thr. Abelson subfamily of cytoplasmic tyrosine kinases. Proc. Nat. Acad. Sci. USA 87: 5802–06 (1990)

    Article  PubMed  CAS  Google Scholar 

  149. Lane C. D. et al.: The sequestration, processing and retention of honey-bee promelittin made in amphibian oocytes. Eur. J. Biochem. 113: 273–281 (1981)

    Article  PubMed  CAS  Google Scholar 

  150. Laskowski M. et al: Amino acid sequences of ovomucoid third domain from 25 additional species of birds. J. Protein Chem. 9: 715–726 (1990)

    Article  PubMed  CAS  Google Scholar 

  151. Laycock M. V. et al.: Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus). Biochem. J. 263: 439–444 (1989)

    PubMed  CAS  Google Scholar 

  152. Lazure C. et al.: The complete amino acid sequence of rat submaxillary gland tonin does contain the aspartic acid at the active site: confirmation by protein sequence analyses. Biochem. Cell Biol. 65: 321–337 (1987)

    Article  PubMed  CAS  Google Scholar 

  153. Lecroisey A. et al.: Complete amino acid sequence of the collagenase from the insect Hypoderma lineatum. J. biol. Chem. 262: 7546–51 (1987)

    PubMed  CAS  Google Scholar 

  154. Lee H., Simon J. A. and Lis J. T.: Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol. cell. Biol. 8: 4727–35 (1988)

    CAS  Google Scholar 

  155. Lee L. W. et al.: Relationships among the subunits of the high molecular weight proteinase, macropain (proteasome). Biochim. biophys. Acta 1037: 178–185 (1990)

    CAS  Google Scholar 

  156. Lehuerou I. et al.: Isolation and nucleotide sequence of a cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity with the trypsin family. Eur. J. Biochem. 193: 767–773 (1990)

    Article  CAS  Google Scholar 

  157. Lepage T. and Gache C.: Purification and characterization of the sea urchin embryo hatching enzyme. J. Biol. Chem. 264: 4787–93 (1989)

    PubMed  CAS  Google Scholar 

  158. Light A. and Janska H.: Enterokinase (enteropeptidase): comparative aspects. Trends biochem. Sci. 14: 110–112 (1989)

    CAS  Google Scholar 

  159. Lin Y. M.: Characterization and peptidase specificity of lugworm (Arenicola cristata) protease C. C.mp. Biochem. Physiol. Pt. B 95: 745–753 (1990)

    Article  CAS  Google Scholar 

  160. Litchfield D. W. et al.: Subunit structure of casein kinase II from bovine testis. Demonstration that the a and a’ subunits are distinct polypeptides. J. Biol. Chem. 265: 7638–44 (1990)

    PubMed  CAS  Google Scholar 

  161. Lu X. et al.: Cloning, structure, and expression of the gene for a novel regulatory subunit of cDNAdependent protein kinase in Caenorhabditis elegans. J. Biol. Chem. 265: 3293–3303 (1990)

    PubMed  CAS  Google Scholar 

  162. Luaces A. L. and Barrett A. J.: Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. Biochem. J. 250: 903–909 (1988)

    PubMed  CAS  Google Scholar 

  163. Ma Z. M., Grubbs J. H. and Sly W. S.: Cloning, sequencing, and functional characterization of the murine 46-kDa mannose 6-phosphate receptor. J. Biol. Chem. 266: 10589–95 (1991)

    PubMed  CAS  Google Scholar 

  164. Macdonald R. J., Stary S. J. and Swift G. H.: Two similar but nonallelic pancreatic trypsinogens. Nucleotide sequence of the cloned cDNAs. J. biol. Chem 257: 9724–32 (1982)

    PubMed  CAS  Google Scholar 

  165. Mahlke K. et al.: Sorting pathways for mitochondrial inner membrane proteins. Eur. J. Biochem. 192: 551–555 (1990)

    Article  PubMed  CAS  Google Scholar 

  166. Mallya S. K. et al.: Characterization of 58-kilodalton human neutrophil collagenase. Comparison with human fibroblast collagenase. Biochemistry 29: 10628–34 (1990)

    Article  PubMed  CAS  Google Scholar 

  167. Marecum J. A.: A trypsin inhibitor from the coelomic fluid of the sea star Asterias forbesi. Biol. Bull. 172: 357–361 (1987)

    Article  Google Scholar 

  168. van Marrewijk W. A. and Ravesetin H J L: Amino acid metabolism of Astacus leptodactylus Esch.–I. Composition of the free and protein-bound amino acids in different organs of the crayfish. Comp. Biochem. Physiol. Pt. B 47: 531–542 (1974)

    Article  Google Scholar 

  169. Martinage A. et al.: Primary structure of histone H2B from gonads of the starfish Asterias rubens. Identification of an N-dimethylproline residue at the aminoterminal. Eur. J. Biochem. 147: 351–359 (1985)

    Article  PubMed  CAS  Google Scholar 

  170. Martzen M. R. et al.: Primary structure of the major pepsin inhibitor from the intestinal parasitic nematode Ascaris suum. Biochemistry 29: 7366–72 (1990)

    Article  PubMed  CAS  Google Scholar 

  171. Marumo K. and Waite H.: Prolyl 4-hydroxylase in the foot of the marine mussel Mytilus edulis L.: Purification and characterization. J. exp. Zool. 244: 365–374 (1987)

    Article  PubMed  CAS  Google Scholar 

  172. Mateu M. G., Vicente O. and Sierra J. M.: Protein synthesis in Drosophila melanogaster embryos–Purification and characterization of polypeptide chain-initiation factor 2. Eur. J. Biochem. 162: 221–229 (1987)

    Article  PubMed  CAS  Google Scholar 

  173. Matthews J. A., Brown J. W. S. and Hall T. C.: Phaseolin mRNA is translated to yield glycosylated polypeptides in Xenopus oocytes. Nature 294: 175–176 (1981)

    Article  PubMed  CAS  Google Scholar 

  174. Mayer R. J. and Doherty E: Intracellular protein catabolism: state of the art. FEBS Letters 198: 181–193 (1986)

    Article  PubMed  CAS  Google Scholar 

  175. McCammon J. A. and Harvey S. C. (eds.): Dynamics of proteins and nucleic acids. Cambridge Univ. Press, Cambridge 1987

    Google Scholar 

  176. McDonald J. K. and Barrett A. J.: Mammalian pro-teases, Vol. 2: Exopeptidases. Acad. Press, London 1986

    Google Scholar 

  177. Mclllhinney R. A. J.: The facts of life: The importance and function of protein acylation. Trends biochem. Sci. 15: 387–391 (1990)

    Google Scholar 

  178. Mehta H. B. et al.: Structural studies on the eukaryotic chain initiation factor 2 from rabbit reticulocytes and brine shrimp Artemia embryos. Phosphorylation by the hemecontrolled repressor and casein kinase II. J. biol. Chem. 261: 6705–11 (1986)

    PubMed  CAS  Google Scholar 

  179. Meloun B., Chechova D. and Jonakova V.: Homologies in the structures of bull seminal plasma acrosin inhibitors and comparison with other homologous proteinase inhibitors of the Kazal type. HoppeSeyler’s Z. physiol. Chem. 364: 1665–70 (1983)

    CAS  Google Scholar 

  180. Miglietta L. A. P. and Nelson D. L.: A novel cGMPdependent protein kinase from Paramecium. J. Biol. Chem. 263: 16096–105 (1988)

    PubMed  CAS  Google Scholar 

  181. Moestrup S. K. and Gliemann J.: Purification of the rat hepatic a2-macroglobulin receptor as an approximately 440-kDa single chain protein. J. Biol. Chem. 264: 15574–77 (1989)

    PubMed  CAS  Google Scholar 

  182. Moss D. W.: Isoenzymes. Chapman Hall, London 1982

    Book  Google Scholar 

  183. Muramatsu T. and Morita T.: Anionic trypsin-like enzymes from the crab Eriocheir japonicus De Haan active in more acidic media. Comp. Biochem. Physiol. Pt. B 70: 527–533 (1981)

    Article  Google Scholar 

  184. Murdock L. L. et al.: Cysteine digestive proteinases in Coleoptera. Comp. Biochem. Physiol. Pt. B 87: 783–787 (1987)

    Article  Google Scholar 

  185. Mykles D. L.: Purification and characterization of a multicatalytic proteinase from crustacean muscle: Comparison of latent and heat-activated forms. Arch. Biochem. Biophys. 274: 216–228 (1989)

    Article  PubMed  CAS  Google Scholar 

  186. Nanbu M., Kobayashi K. and Horiuchi S.: Purification and characterization of cathepsin D-like protei-nase from the tadpole tail of bullfrog, Rana catesbeiana. Comp. Biochem. Physiol. Pt. B 89: 569–575 (1988)

    Article  CAS  Google Scholar 

  187. Nelson R. B. and Siman R.: Clipsin, a chymotrypsinlike protease in rat brain which is irreversibly inhibited by al-antichymotrypsin. J. Biol. Chem. 265: 3836–43 (1990)

    PubMed  CAS  Google Scholar 

  188. Nene V. et al.: A single exon codes for the enzyme domain of a protozoan cysteine protease. J. Biol. Chem. 265: 18047–50 (1990)

    PubMed  CAS  Google Scholar 

  189. Neurath H.: Evolution of proteolytic enzymes. Science 224: 350–357 (1984)

    Article  PubMed  CAS  Google Scholar 

  190. Neves A., Guerreiro P. and Rodrigues-Pousada C.: Striking changes in polyubiquitin genes of Tetrahymena pyriformis. Nucleic Acids Res. 18: 656 (1990)

    Article  PubMed  CAS  Google Scholar 

  191. Nigg E. A., Baeuerle P. A. and Luhrmann R.: Nuclear import-export. In search of signals and mechanisms (Meeting Review). Cell 66: 15–22 (1991)

    Google Scholar 

  192. Nuske J. H.: Protein methylase II in five taxa from three phyla. Comp. Biochem. Physiol. Pt. B 86: 37–47 (1987)

    Article  CAS  Google Scholar 

  193. O’Donoghue G. V. and Johnson D. B.: A soluble aminopeptidase of Holothuria forskali intestinal mucosa: purification and active centre studies. Comp. Biochem. Physiol. Pt. B 85: 397–405 (1986)

    Article  Google Scholar 

  194. Ogata S., Misumi Y. and Ikehara Y.: Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane anchoring domain. J. Biol. Chem. 264: 3596–3601 (1989)

    PubMed  CAS  Google Scholar 

  195. Ogita Z. I. and Markert C. L.: Isozymes. Wiley-Liss, New York 1990

    Google Scholar 

  196. Okada S and Aikawa T.: Cathepsin D-like acid proteinase in the mantle of the marine mussel, Mytilus edulis. Comp. Biochem. Physiol. Pt. B 84: 333–341 (1986)

    Article  Google Scholar 

  197. Okada Y. and Yokota Y.: Purification and properties of cathepsin B from sea urchin eggs. Comp. Biochem. Physiol. Pt. B 96: 381–386 (1990)

    Article  Google Scholar 

  198. Okotore R. O. and Uhlenbruck G.: Proteinase-inhibitors in albumin glands of Achatina fulica. Z. Naturforsch. Sect. C 37: 142–144 (1982)

    Google Scholar 

  199. Olsen J. et al.: Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Letters 238: 307–314 (1988)

    CAS  Google Scholar 

  200. Ono H. and Tuboi S.: Purification and identification of a cytosolic factor required for import of precursors of mitochondrial proteins into mitochondria. Arch. Biochem. Biophys. 280: 299–304 (1990)

    Article  PubMed  CAS  Google Scholar 

  201. Orgad S. et al.: The structure of protein phosphatase2A is as highly conserved as that of protein phosphatase-1. FEBS Letters 275: 44–48 (1990)

    Article  PubMed  CAS  Google Scholar 

  202. Orlowski M.: The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29: 10289–97 (1990)

    Article  PubMed  CAS  Google Scholar 

  203. Osnes K. K. and Mohr V.: On the purification and characterization of exopeptidases from Antarctic krill, Euphausia superba. Comp. Biochem. Physiol. Pt. B 83: 445–458 (1986)

    Article  Google Scholar 

  204. Ou W. J. et al.: Purification and characterization of a processing protease from rat liver mitochondria. Embo J. 8: 2605–12 (1989)

    PubMed  CAS  Google Scholar 

  205. Oxender D. L. (ed.): Protein structure, folding, and design. Alan R. Liss, New York 1987

    Google Scholar 

  206. Park M. H.: The essential role of hypusine in eukaryotic translation initiation factor (eIF-4D). Purification of eIF-4D and its precursors and comparison of their activities. J. Biol. Chem. 264: 18531–35 (1989)

    PubMed  CAS  Google Scholar 

  207. Pearson J. D. et al: Amino acid sequence and characterization of a protein inhibitor of protein kinase C. J. Biol. Chem. 265: 4583–91 (1990)

    PubMed  CAS  Google Scholar 

  208. Peaucellier G.: Purification and characterization of proteases from the polychaete annelid Sabellaria alveolata (L.). Eur. J. Biochem. 136: 435–445 (1983)

    Article  PubMed  CAS  Google Scholar 

  209. Pellegrini A. and von Fellenberg R.: Pre-a2-elastase inhibitor of the horse: a hybrid molecule between alproteinase inhibitor and a2-ßl-glycoprotein. Biochim. biophys. Acta 830: 20–24 (1985)

    CAS  Google Scholar 

  210. Pfanner N. and Neupert W.: The mitochondrial protein import apparatus. Annual Rev. Biochem. 59: 331–353 (1990)

    Article  CAS  Google Scholar 

  211. Pinter M. and Friedrich P.: The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem. J. 253: 467–473 (1988)

    PubMed  CAS  Google Scholar 

  212. Pontremoli S. and Melloni L.: Extralysosomal protein degradation. Annual Rev. Biochem. 55: 455–481 (1986)

    Article  CAS  Google Scholar 

  213. Potempa J., Shieh B. H. and Travis J.: Alpha-2antiplasmin: A serpin with two separate but overlapping reactive sites. Science 241: 699–700 (1988)

    Article  PubMed  CAS  Google Scholar 

  214. Pratt R. E., Ouelette A. J. and Dzau V. J.: Biosynthesis of renin: multiplicity of active and intermediate forms. Proc. Nat. Acad. Sci. USA 80: 6809–13 (1983)

    Article  PubMed  CAS  Google Scholar 

  215. Prehn S. et al.: Structure and biosynthesis of the signal-sequence receptor. Eur. J. Biochem. 188: 439–455 (1990)

    Article  PubMed  CAS  Google Scholar 

  216. Pungercar J. et al.: Complete primary structure of lamb preprochymosin deduced from cDNA. Nucleic Acids Res. 18: 4602 (1990)

    Article  PubMed  CAS  Google Scholar 

  217. Qiu T., Combest W. L. and Gilbert L. I.: Characterization of a calcium and diacylglycerol-activated and phospholipid-dependent protein kinase in the pupal brain of the tobacco hornworm, Manduca sexta. Insect Biochem. 20: 405–420 (1990)

    Article  CAS  Google Scholar 

  218. Ragg H. and Preibisch G.: Structure and expression of the gene coding for the human serpin hLS2. J. Biol. Chem. 263: 12129–34 (1988)

    PubMed  CAS  Google Scholar 

  219. Ramesh N., Sugumaran M. and Mole J. E.: Purification and characterization of two trypsin inhibitors from the hemolymph of Manduca sexta larvae. J. Biol. Chem. 263: 11523–27 (1988)

    PubMed  CAS  Google Scholar 

  220. Rawlings N. D. and Barrett A. J.: Evolution of proteins of the cystatin superfamily. J. mol. Evol. 30: 60–71 (1990)

    Article  PubMed  CAS  Google Scholar 

  221. Rechsteiner M. C.: Ubiquitin. Plenum, New York 1988

    Google Scholar 

  222. Regan L., Dignam J. D. and Schimmel P.: A bacterial and silkworm aminoacyl-tRNA synthetase have a common epitope which maps to the catalytic domain of each. J. biol. Chem. 261: 5241–44 (1986)

    PubMed  CAS  Google Scholar 

  223. Reisinger P. W. M. et al.: The amino-acid sequences of the double-headed proteinase inhibitors from cat, lion and dog submandibular glands. Biol. Chem. Hoppe-Seyler 368: 717–726 (1987)

    Article  PubMed  CAS  Google Scholar 

  224. Ritonja A. et al: Amino acid sequence of a cystatin from venom of the African puff adder (Bitis arie-tans). Biochemical J. 246: 799–802 (1987)

    CAS  Google Scholar 

  225. Ritonja A. et al.: Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Letters 255: 211–214 (1989)

    Article  PubMed  CAS  Google Scholar 

  226. Ritonja T. et al: Amino acid sequences of the human kidney cathepsins H and L. FEBS Letters 228: 341–345 (1988)

    Article  PubMed  CAS  Google Scholar 

  227. Rocamora N. and Agell N.: Methylation of chick UbI and UbII polyubiquitin genes and their differential expression during spermatogenesis. Biochem. J. 267: 821–829 (1990)

    PubMed  CAS  Google Scholar 

  228. Roemisch K. et al.: Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative FTP-binding domains. Nature 340: 478–482 (1989)

    CAS  Google Scholar 

  229. Rogers J.: Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459 (1985)

    Article  PubMed  CAS  Google Scholar 

  230. Rogers S., Wells R. and Rechsteiner M.: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368 (1986)

    Article  PubMed  CAS  Google Scholar 

  231. Rottmann M. et al.: Specific phosphorylation of proteins in pore complex-laminae from the sponge Geodia cydonium by the homologous aggregation factor and phorbol ester. Role of protein kinase C in the phosphorylation of DNA topoisomerase II. Embo J. 6: 3639–44 (1987)

    Google Scholar 

  232. Rubarteli A. et al.: A novel secretory pathway for interleukin-lß, a protein lacking a signal sequence. Embo J. 9: 1503–10 (1990)

    Google Scholar 

  233. Sakal E., Applebaum S. W. and Birk Y.: Purification and characterization of trypsins from the digestive tract of Locusta migratoria. Int. J. Peptide Prot. Res. 34: 498–505 (1989)

    Article  CAS  Google Scholar 

  234. Sakanari J. A. et al.: Serine proteases from nematode and prozoan parasites. Isolation of sequence homo-logs using generic molecular probes. Proc. Nat. Acad. Sci. USA 86: 4863–67 (1989)

    Article  PubMed  CAS  Google Scholar 

  235. Sallenave J. M. and Bellot R.: Evidence of an a2macroglobulin-like molecule in plasma of Salamandra salamandra: structural and functional similarity with human a2-macroglobulin. FEBS Letters 219: 37–39 (1987)

    Article  PubMed  CAS  Google Scholar 

  236. Sanchez-Chiang L. et al.: Cathepsins D from sea urchin egg Tetrapygus niger–isolation by affinity chromatography and properties. Comp. Biochem. Physiol. 85B: 81–87 (1986)

    Google Scholar 

  237. Sasaki T. and Suzuki Y: Alkaline proteases in digestive juice of the silkworm, Bombyx mori. Biochim. biophys. Acta 703: 1–10 (1982)

    CAS  Google Scholar 

  238. Sasaki T.: Amino acid sequence of a novel Kunitztype chymotrypsin inhibitor from hemolymph of silkworm larvae, Bombyx mori. FEBS Letters 168: 227–230 (1984)

    Article  CAS  Google Scholar 

  239. Satir B. H. et al.: Species distribution of a phosphoprotein (parafusin) involved in exocytosis. Proc. Nat. Acad. Sci. USA 86: 930–932 (1989)

    Article  PubMed  CAS  Google Scholar 

  240. Saus J. et al.: The complete primary structure of human matrix metalloproteinase-3. Identification with stromelysin. J. Biol. Chem. 263: 6742–45 (1988)

    PubMed  CAS  Google Scholar 

  241. Sawada H. et al.: Trypsin-like enzyme from eggs of the ascidian (protochordate) Halocynthia roretzi. Purification, properties, and physiological role. J. biol. Chem. 260: 15694–98 (1985)

    PubMed  CAS  Google Scholar 

  242. Schaeffer E. et al.: Isolation and characterization of two new Drosophila protein kinase C genes, including one specificaly expressed in photoreceptor cells. Cell 57: 403–412 (1989)

    Article  PubMed  CAS  Google Scholar 

  243. Scharf M., Engels J. and Tripier D.: Primary structure of new „iso-hirudins”. FEBS Letters 255: 105–110 (1989)

    Article  PubMed  CAS  Google Scholar 

  244. Schulman H. and Lou L. L.: Multifunctional Ca/ calmodulin-dependent protein kinase: domain structure and regulation. Trends biochem. Sci. 14: 62–66 (1989)

    CAS  Google Scholar 

  245. Schulz G. E. and Schirmer R. H.: Principles of protein structure. Springer, Berlin 1984

    Google Scholar 

  246. Shamsuzzaman K. and Haard N. E: Purification and characterization of a chymosin-like protease from the gastric mucosa of harp seal (Pagophilus groenlandicus). Can. J. Biochem. Cell Biol. 62: 699–708 (1984)

    Article  PubMed  CAS  Google Scholar 

  247. Sharma B. R., Martin M. M. and Shafer J. A.: Alkaline proteases from the gut fluids of detritus-feeding larvae of the crane fly, Tipula abdominalis (Say) (Diptera, Tipulidae). Insect Biochem. 14: 37–44 (1984)

    Article  CAS  Google Scholar 

  248. Sharp P. M. and Li W.: Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J. mol. Evol. 25: 58–64 (1987)

    Article  PubMed  CAS  Google Scholar 

  249. Shen S. S. and Ricke L. A.: Protein kinase C from sea urchin eggs. Comp. Biochem. Physiol. Pt. B 92: 251–154 (1989)

    Article  CAS  Google Scholar 

  250. Shugerman R. P. et al.: A unique „mini” pepsinogen isolated from bullfrog esophageal glands. J. biol. Chem. 257: 795–798 (1982)

    PubMed  CAS  Google Scholar 

  251. Silver P. A.: How proteins enter the nucleus (Review). Cell 64: 489–497 (1991)

    Article  PubMed  CAS  Google Scholar 

  252. Soderling T. R.: Protein kinases. Regulation by auto-inhibitory domains. J. Biol. Chem. 265: 1823–26 (1990)

    PubMed  CAS  Google Scholar 

  253. Somero G. N. and Hand S. C.: Protein assembly and metabolic regulation: Physiological and evolutionary perspectives. Physiol. Zool. 63: 443–471 (1990)

    CAS  Google Scholar 

  254. Sommer J. et al.: cDNA sequence coding for a rat glia-derived nexin and its homology to members of the serpin superfamily. Biochemistry 26: 6407–10 (1987)

    Google Scholar 

  255. Sorimachi H. et al.: Molecular cloning of cDNAs for two subunits of rat multicatalytic proteinase. Existence of N-terminal conserved and C-terminal diverged sequences among subunits. Eur. J. Biochem. 193: 775–781 (1990)

    Article  PubMed  CAS  Google Scholar 

  256. Sottrup-Jensen L.: a-Macroglobulins• shape and mechanism of proteinase complex formation (Minireview). J. Biol. Chem. 264: 11539–42 (1989)

    Google Scholar 

  257. Sottrup-Jensen L. et al.: The a-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian amacroglobulins J. Biol. Chem. 264: 15781–89 (1989)

    PubMed  CAS  Google Scholar 

  258. Stadtman E. R.: Covalent modification reactions are marking steps in protein turnover. Biochemistry 29: 6323–31 (1990)

    Article  PubMed  CAS  Google Scholar 

  259. Starkey P. M. and Barrett A. J.: Evolution of a2macroglobulin. The structure of a protein homologous with human a2-macroglobulin from plaice (Platessa platessa L.) plasma. Biochem J. 205: 105–115 (1982)

    PubMed  CAS  Google Scholar 

  260. Stoecker W. et al.: Astacus proteinase, a zinc metalloenzyme. Biochemistry 27: 5026–32 (1988)

    Article  CAS  Google Scholar 

  261. Strandberg L., Lawrence D. and Ny T.: The organization of the human plasminogen-activator-inhibitor gene. Implications on the evolution of the serine-protease inhibitor family. Eur. J. Biochem. 176: 609–616 (1988)

    Article  PubMed  CAS  Google Scholar 

  262. Strauss A. W., Boime I. and Kreil G. (eds.): Protein compartmentalization. Springer, Berlin 1986

    Google Scholar 

  263. Suzuki T. and Natori S.: Changes in the amount of sarcostatin A, a new cysteine proteinase inhibitor, during the development of adult Sarcophaga peregrina. Insect Biochem. 16: 589–595 (1986)

    Article  CAS  Google Scholar 

  264. Swinkels B. W., Evers R. and Borst P.: The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. Embo J. 7: 1159–65 (1988)

    PubMed  CAS  Google Scholar 

  265. Sziegoleit A.: A novel proteinase from human pancreas. Biochem. J. 219: 735–742 (1984)

    PubMed  CAS  Google Scholar 

  266. Taggart R. T. et al.: Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high-frequency electrophoretic polymorphism. Proc. Nat. Acad. Sci. USA 82: 6240–44 (1985)

    Article  PubMed  CAS  Google Scholar 

  267. Taggart R. T. et al.: Human pepsinogen C (progastricsin). Isolation and cDNA sequence clones, localization to chromosome 6, and sequence homology 284. with pepsinogen A. J. Biol. Chem. 264: 375–379 (1989)

    PubMed  CAS  Google Scholar 

  268. Takada Y. et al.: Human peroxisomal L- 285. alanine:glyoxylate aminotransferase. Evolutionary loss of a mitochondrial targeting signal by point mutation of the initiation codon. Biochem. J. 268: 517–520 286. (1990)

    Google Scholar 

  269. Takahashi S. Y.: Characterization of the guanosine 287. 3’:5’-monophosphate-dependent protein kinase from silkworm eggs and analysis of the endogenous protein substrates. J. comp. Physiol. B 155: 693–701 (1985) 288.

    Google Scholar 

  270. Takio K. et al.: Homology of amino acid sequences of rat liver Cathepsins B and H with that of papain. 289. Proc. Nat. Acad. Sci. USA 80: 3666–70 (1983)

    Article  PubMed  CAS  Google Scholar 

  271. Tan F et al.: Molecular cloning and sequencing of the cDNA for human membrane-bound carboxypeptidase M. Comparison with carboxypeptidases A, B, 290. H, and N. J. Biol. Chem. 264: 13165–70 (1989)

    CAS  Google Scholar 

  272. Tani T. et al.: Nucleotide sequence of the human pancreatic trypsinogen-III cDNA. Nucleic Acids Res. 18: 1631 (1990) 291.

    Google Scholar 

  273. Tanji M., Kageyama T. and Takahashi K.: Tuna pepsinogens and pepsins: Purification, characterization and amino-terminal sequences. Eur. J. Biochem. 177: 292. 251–259 (1988)

    Article  PubMed  CAS  Google Scholar 

  274. Taylor S. S., Buechler J. A. and Yonemoto W.: cAMP-dependent protein kinase: Framework for a 293. diverse family of regulatory enzymes. A.nual Rev. Biochem. 59: 971–1005 (1990) 294.

    Google Scholar 

  275. Thalhofer H. P. and Hofer H. W.: Purification and properties of cyclic-3’,5’-GMP-dependent kinase from the nematode Ascaris suum. Arch. Biochem. 295. Biophys. 273: 535–542 (1989)

    CAS  Google Scholar 

  276. Titani K. et al Amino acid sequence of crayfish (Astacus fluviatilis) trypsin I-f. Biochemistry 22: 1459–65 (1983)

    Google Scholar 

  277. Titani K. et al.: Amino acid sequence of crayfish 296. (Astacus fluviatilis) carboxypeptidase B. Biochemistry 23: 1245–50 (1984)

    Article  CAS  Google Scholar 

  278. Titani K. et al.: Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26: 222–226 (1987) 297.

    Google Scholar 

  279. Tsai I. H., Liu H. C. and Chuang K. L.: Properties of two chymotrypsins from the digestive gland of the prawn Penaeus monodon. FEBS Letters 203: 257–261 (1986) 298.

    Google Scholar 

  280. Tschesche H., Kolkenbrock H. and Bode W.: The covalent structure of the elastase inhibitor from Anemonia sulcata–A „non-classical” Kazal-type protein. 299. Biol. Chem. Hoppe-Seyler 368: 1297–1304 (1987)

    Article  PubMed  CAS  Google Scholar 

  281. Ulloa R. M. et al.: Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi. Biochem. J. 255: 319–326 (1988) 300.

    Google Scholar 

  282. Urch U. A. and Hedrick J. L.: Isolation and characterization of the hatching enzyme from the amphibian, Xenopus laevis. Arch. Biochem. Biophys. 206: 301. 424–431 (1981)

    Article  PubMed  CAS  Google Scholar 

  283. Vacquier V. D., Carver K. R. and Stout C. D.: Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope. Proc. Nat. Acad. Sci. USA 87: 5792–96 (1990)

    Article  PubMed  CAS  Google Scholar 

  284. Vendrell J., Cuchillo C. M. and Aviles S. X.: The tryptic activation pathway of monomeric procarboxypeptidase A. J. Biol. Chem. 265: 6949–53 (1990)

    PubMed  CAS  Google Scholar 

  285. Viswanathan S. and Dignam J D: Seryl-tRNA synthetase from Bombyx mori. Purification and properties. J. biol. Chem. 263: 535–541 (1988)

    PubMed  CAS  Google Scholar 

  286. Vogel R.: Natürliche Enzym-Inhibitoren. Thieme, Stuttgart 1984

    Google Scholar 

  287. van Waarde A.: What is the function of protein carboxyl methylation? (Review). Comp. Biochem. Physiol. 86B: 423–438 (1987)

    Article  Google Scholar 

  288. Wagner P. et al.: Active transport of proteins into the nucleus (Minireview). FEBS Letters 275: 1–5 (1990)

    Article  PubMed  CAS  Google Scholar 

  289. Walldorf U. and Hovemann B. T.: Apis mellifera cytoplasmic elongation factor 1-alpha (EF-1-alpha) is closely related to Drosophila melanogaster EF-1alpha. FEBS Letters 267: 245–249 (1990)

    Article  PubMed  CAS  Google Scholar 

  290. Warner A. H. and Shridhar V.: Purification and characterization of a cytosol protease from dormant cysts of the brine shrimp Artemia. J. biol. Chem 260: 7008–14 (1985)

    PubMed  CAS  Google Scholar 

  291. Waxman L. et al.: Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248: 593–596 (1990)

    Article  PubMed  CAS  Google Scholar 

  292. Wernet W., Flockerzi V. and Hofmann E: The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Letters 251: 191–196 (1989)

    Article  PubMed  CAS  Google Scholar 

  293. Wold F. and Moldave K. (eds.): Posttranslational modifications, 2 vol. set. Acad. Press, New York 1984

    Google Scholar 

  294. Wolfe E. H. et al.: Chicken skeletal muscle has three Ca-dependent proteinases. Biochim. biophys. Acta 998: 236–250 (1989)

    CAS  Google Scholar 

  295. Woodley C. L. et al.: Protein synthesis in brine shrimp embryos. Regulation of the formation of the ternary complex (Met-tRNA, eIF-2-GTP) by two purified protein factors and phosphorylation of Arte-mia eIF-2. Eur. J. Biochem. 117: 543–551 (1981)

    Article  PubMed  CAS  Google Scholar 

  296. Wun T. C. et al.: Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J. Biol. Chem. 263: 6001–04 (1988)

    PubMed  CAS  Google Scholar 

  297. Yamada Y., Matsui T. and Aketa K.: Purification and characterization of a chymotrypsin-like enzyme from sperm of the sea urchin, Hemicentrotus pulcherrimus. Eur. J. Biochem. 122: 57–62 (1982)

    Article  PubMed  CAS  Google Scholar 

  298. Yamakami K.: Purification and properties of a thiol protease from lung fluke adult Paragonimus ohirai. Comp. Biochem. Physiol. 83B: 501–506 (1986)

    CAS  Google Scholar 

  299. Ye R. D. et al.: Structure of the gene for human plasminogen activator inhibitor-2. The nearest mammalian homologue of chicken ovalbumin J Biol. Chem. 264: 5495–5502 (1989)

    PubMed  CAS  Google Scholar 

  300. Yoshinaka R. et al.: Enzymatic characterization of anionic trypsin of the catfish (Parasilurus asotus). Comp. Biochem. Physiol. Pt. B. 77: 1–6 (1984)

    Article  CAS  Google Scholar 

  301. Yoshinaka R et al.: Distribution of pancreatic elastase and metalloproteinase in vertebrates. Comp. Biochem. Physiol. Pt. B 83: 45–49 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urich, K. (1994). The Structural Variety and Metabolism of Proteins. In: Comparative Animal Biochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06303-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06303-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08181-1

  • Online ISBN: 978-3-662-06303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics