Advertisement

Sterols and Steroids

  • Klaus Urich
Chapter

Abstract

Sterols and steroids, like the terpenes and carotinoids, are isoprene derivatives. The sterols are components of the membranes of all eukaryotic cells and they bind and condense the phospholipid bilayer. The outer cell membrane is particularly rich in sterols, with a molar ratio of sterols to phospholipids of 0.8–0.1, compared with the usual value of 0.1–0.3 for intracellular membranes. The parent substance of all sterols is cholesterol (Fig. 16.1). The sterols are classified with the steroid hormones and bile salts as steroids because they also have the gonan (formerly steran) four-ring system and have their biosynthetic origin in cholesterol. Steroids with hormonal functions are known from the vertebrates (sex hormones and corticosteroids) and arthropods (ecdysteroids). However, the same molecular species are also found in other metazoans, protozoans, plants, and even in primitive eukaryotes such as yeast and lower fungi; they are clearly phylogenetically very old. The critical event for the evolution of hormone systems based on steroids in the vertebrates and arthropods was not the occurrence of new steroids but the “invention” of steroid receptors [23]. The calciferols or D vitamins (Fig. 16.18) are usually discussed in the context of the steroids, although, strictly speaking, they do not belong together because the B ring of the gonan is in this case open; they arise by UV effects on sterols. Finally, several different animal groups possess pharmacologically active glycosides, saponins and alkaloids derived from cholesterol.

Keywords

Bile Acid Bile Salt Cholic Acid Soft Coral Chenodeoxycholic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali S. S., Stephenson E. and Elliott W. H.: Bile acids LXVII. The major bile acids of Varanus monitor. J. Lipid Res. 23: 947–954 (1982)PubMedGoogle Scholar
  2. 2.
    Anderson D. G.: Gorgosterol biosynthesis: Localization of squalen formation in the zooxanthellar component of various gorgonians. Comp. Biochem. Physiol. Pt. B 81: 423–428 (1985)CrossRefGoogle Scholar
  3. 3.
    Barbier M.: Introduction to chemical ecology. Longman, Harlow UK 1979Google Scholar
  4. 4.
    Basson M. E. et al.: Structural and functional conservation between yeast and human 3-hydroxy-3methylglutaryl coenzyme A reductase, the rate limiting enzyme of sterol biosynthesis. Mol. cell. Biol. 8: 3797–3808 (1988)Google Scholar
  5. 5.
    Bauermeister A. et al.: Distribution and some properties of bile salt-binding proteins in rainbow trout Salmo gairdneri. Comp. Biochem. Physiol. Pt. B 78: 195–198 (1984)CrossRefGoogle Scholar
  6. 6.
    Beato M.: Induction of transcription by steroid hormones (Review). Biochim. biophys. Acta 910: 95–102 (1987)Google Scholar
  7. 7.
    Billheimer J. T., Tavani D. M. and Ritter K. S.: Acyl coenzyme A:cholesteryl acyltransferase activity in fat body and intestinal microsomes of Heliothis zea. Comp. Biochem. Physiol. Pt. B 76: 127–132 (1983)CrossRefGoogle Scholar
  8. 8.
    Blanchier B., Boucaud-Camou E. and Silberzahn P.: Comparative study of the sterol composition of the digestive gland and the gonad of Sepia officinalis L. (Mollusca, Cephalopoda). Comp. Biochem. Physiol. Pt. B 83: 599–602 (1986)CrossRefGoogle Scholar
  9. 9.
    Boume A. R.: Occurrence of 20ß-hydroxysteroid oxidoreductase activity in the kidney and liver of the lizard Tiliqua rugosa. Comp. Biochem. Physiol. Pt. B 77: 221–222 (1984)Google Scholar
  10. 10.
    Bradbrook D. A. et al.: The occurrence of vertebrate type steroids in insects and comparison with ecdysteroid levels. Comp. Biochem. Physiol. Pt. B 95: 365–374 (1990)CrossRefGoogle Scholar
  11. 11.
    Brooks A. R., Sweeney G. and Old R. W.: Structural and functional expression of a cloned Xenopus thyroid hormone receptor. Nucleic Acids Res. 17: 9395–9405 (1989)PubMedCrossRefGoogle Scholar
  12. 12.
    Bückmann D. et al.: Isolation and identification of major ecdysteroids from the pycnogonid Pycnogonum litorale (Ström) (Arthropoda, Pantopoda). J. comp. Physiol. B 156: 759–765 (1986)CrossRefGoogle Scholar
  13. 13.
    Burmester J. K. et al.: Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc. Nat. Acad. Sci. USA 85: 9499–9502 (1988)PubMedCrossRefGoogle Scholar
  14. 14.
    Burnell D. J., Simon J. W. A. and Gilgan M. W.: Occurrence of saponins giving rise to asterone and asterogenol in various species of starfish. Comp. Biochem. Physiol. Pt. B 85: 389–391 (1986)CrossRefGoogle Scholar
  15. 15.
    Cali J. J. and Russel D. W.: Characterization of human sterol 27-hydroxylase, a mitochondrial cytochrome P450 that catalyzes multiple oxidation reactions in bile acid biosynthesis. J. Biol. Chem. 266: 7774–78 (1991)PubMedGoogle Scholar
  16. 16.
    Callard G. V. and Mak P.: Exclusive nuclear location of estrogen receptors in Squalus testis. Proc. Nat. Acad. Sci. USA 82: 1336–40 (1985)PubMedCrossRefGoogle Scholar
  17. 17.
    Cao M. et al.: Purification of a 20-hydroxyecdysone binding protein from haemolymph of the locust Locusta migratoria. Insect Biochem. 13: 567–575 (1983)CrossRefGoogle Scholar
  18. 18.
    Catalan C. A. N. et al.: Minor and tryce sterols in marine invertebrates (39.). Steroids 40: 455–463 (1982)PubMedCrossRefGoogle Scholar
  19. 19.
    Catalan C. A. N. et al.: Biosythetic studies of marine lipids–3. Experimental demonstration of the course of side chain extension in marine sterols. Tetrahedron 41: 1073–84 (1985)CrossRefGoogle Scholar
  20. 20.
    Chen H. and Shapiro D. J.: Nucleotide sequence and estrogen induction of Xenopus laevis 3-hydroxy-3methylglutaryl-coenzyme A reductase. J. Biol. Chem. 265: 4622–29 (1990)PubMedGoogle Scholar
  21. 21.
    de Clerck D. et al.: Study of the metabolism of steroids in the larvae of the fleshfly Sarcophaga bullata. Comp. Biochem. Physiol. Pt. B 87: 821–826 (1987)CrossRefGoogle Scholar
  22. 22.
    Connat J. L., Diehl P. A. and Thompson M. J.: Possible inactivation of ingested ecdysteroids by conjugation with long-chain fatty acids in the female tick Ornithodorus moubata (Acarina: Argasidae). Arch. Insect Biochem. Physiol. 3: 235–252 (1986)Google Scholar
  23. 23.
    Crosby T. et al.: Identification of ecdyson 22-longchain fatty acyl esters in newly laid eggs of the cattle tick Boophilus microplus. Biochem. J. 240: 131–138 (1986)PubMedGoogle Scholar
  24. 24.
    Daloze D., Braekman J. C. and Pasteels J. M.: New polyoxygenated steroidal gluyosides from Chrysolina hyperici (Coleoptera: Chrysomelidae). Tetrahedron Letters 26: 2311–14 (1985)CrossRefGoogle Scholar
  25. 25.
    Danielsson H. and Sjovall J. (eds.): Sterols and bile acids. New comprehensive biochemistry Vol. 12. Elsevier, Amsterdam 1985Google Scholar
  26. 26.
    Dini A. et al.: Sterol composition of marine sponges Stryphnus ucronatus and Reniera sarai. Comp. Biochem. Physiol. Pt. B 81: 111–114 (1985)CrossRefGoogle Scholar
  27. 27.
    Downer R. G. H. and Laufer H. (eds.): Endocrinology of insects. Alan R. Liss, New York 1983Google Scholar
  28. 28.
    Evans R. M.: The steroid and thyroid hormone receptor superfamily. Science 240: 889–895 (1988)PubMedCrossRefGoogle Scholar
  29. 29.
    Fairs N. J. et al.: Detection of unconjugated and conjugated steroids in the ovary, eggs, and haemolymph of the decapod crustacean Nephrops norvegicus. Gen. comp. Endocrinol. 74: 199–208 (1989)Google Scholar
  30. 30.
    Feldlaufer M. F. et al.: Biosynthesis of makisterone A and 20-hydroxyecdysone from labeled sterols by the honey bee, Apis mellifera. Arch. Insect Biochem. Physiol. 3: 415–421 (1986)Google Scholar
  31. 31.
    Feldlaufer M. F. et al.: The neutral sterols of Megalotomus quinquespinosus (Say) (Hemiptera: Alydidae) and identification of makisterone A as the major free ecdysteroid. Arch. Insect Biochem. Physiol. 3: 423–430 (1986)Google Scholar
  32. 32.
    Feldlaufer M. F. et al.: Fate of maternally-acquired ecdysteroids in unfertilized eggs of Manduca sexta. Insect Biochem. 18: 219–221 (1988)CrossRefGoogle Scholar
  33. 33.
    Findlay J. A. and Patil A. D.: A novel sterol peroxide from the sea anemone Metridium senile. Steroids 44: 261–265 (1985)CrossRefGoogle Scholar
  34. 34.
    Forest M. G. and Pugeat M. (eds.): Binding proteins of steroid hormones. Jon Libbey Eurotext, Montrouge 1986Google Scholar
  35. 35.
    Fournier B. and Radallah H.: Ecdysteroids in Carausius eggs during embryonic development. Arch. Insect Biochem. Physiol. 7: 211–224 (1988)Google Scholar
  36. 36.
    Garneau F. X. et al.: The distribution of asterosaponins in various body components of the starfish Leptasterias polaris. Comp. Biochem. Physiol. Pt. B 92: 411–416 (1989)CrossRefGoogle Scholar
  37. 37.
    Goad L. J.: Sterol biosynthesis and metabolism in marine vertebrates. Pure appl. Chem. 53: 837–852 (1981)Google Scholar
  38. 38.
    Goad L. J. et al.: Composition of free, esterified and sulphated sterols from the sea cucumber Psolus fabricii. Comp. Biochem. Physiol. Pt. B 84: 189–196 (1986)CrossRefGoogle Scholar
  39. 39.
    Gorbman A. (ed.): Comparative endocrinology. Wiley & Sons, New York 1983Google Scholar
  40. 40.
    Grieneisen M. L. et al.: A putative role to ecdysteroids. Metabolism of cholesterol invitro by mildly disrupted prothoracic glands of Manduca sexta. Insect Biochem. 21: 41–51 (1991)CrossRefGoogle Scholar
  41. 41.
    Griffin P. R. et al.: The amino acid sequence of the sex steroid-binding protein of rabbit serum. J. Biol. Chem. 264: 19066–75 (1989)PubMedGoogle Scholar
  42. 42.
    Guerriero A. and Pietra F.: Isolation in large amounts 61. of the rare plant ecdysteroid ajugasterone C from the Mediterranean zoanthid Gerardia savaglia. Comp. Biochem. Physiol. Pt. B 80: 277–278 (1985)CrossRefGoogle Scholar
  43. 43.
    Habermehl G.: Toxic animals and their weapons (In German). 4th ed. Springer, Berlin 1987Google Scholar
  44. 44.
    Hammond G. L. et al.: Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors. Proc. Nat. Acad. Sci. USA 84: 51: 53–57 (1987)Google Scholar
  45. 45.
    Hammond G. L. et al.: The cDNA-deduced primary structure of human sex hormone-binding globulin and 65. location of its steroid-binding domain. FEBS Letters 215: 100–104 (1987)PubMedCrossRefGoogle Scholar
  46. 46.
    Haslewood G. A. D.: The biological importance of bile salts. North-Holland, Amsterdam 1978Google Scholar
  47. 47.
    Hellou J., King A. and Ni I. H.: Bile acids from the harp seals, Phoca groenlandica. Comp. Biochem. Physiol. Pt. A 89: 211–214 (1988)CrossRefGoogle Scholar
  48. 48.
    Henrich V. C. et al.: A steroid/thyroid hormone receptor superfamily member in Drosophila melanogaster that shares extensive sequence similarity with a mammalian homologue. Nucleic Acids Res. 18: 4143–48 (1990)PubMedCrossRefGoogle Scholar
  49. 49.
    Hoffmann J. A.: Ten years of ecdysone workshop. Insect Biochem. 16: 1–9 (1986)CrossRefGoogle Scholar
  50. 50.
    Hoffmann K. H., Thiry E. and Lafont R.: 14Deoxyecdysteroids in an insect (Gryllus bimaculatus). Z. Naturforsch. Sect. C 45: 703–708 (1990)Google Scholar
  51. 51.
    Itoh T., Sica D. and Djerassi C.: Minor and trace sterols in marine invertebrates, part 35. Isolation and structure elucidation of 74 sterols from the sponge Axinella cannabina. J. chem. Soc. Perkin Trans. II. 1983: 147–153Google Scholar
  52. 52.
    Jarzebski A. et al.: Sterol composition of Mesidothea entomon L. (Isopoda, Crustacea). Comp. Biochem. Physiol. Pt. B 81: 733–735 (1985)CrossRefGoogle Scholar
  53. 53.
    Jarzebski A., Polak L. and Habermehl G.: Free and esterified sterols of Macoma balthica (L.). Comp. Biochem. Physiol. Pt. B 86: 561–563 (1987)CrossRefGoogle Scholar
  54. 54.
    Jeltsch J. M. et al.: Characterization of multiple mRNAs originating from the chicken progesterone receptor gene. Evidence for a specific transcript encoding form A. J. Biol. Chem. 265: 3967–74 (1990)PubMedGoogle Scholar
  55. 55.
    Jirsa M. et al.: Classical bile acids in animals, ßphocaecholic acid in ducks. Comp. Biochem. Physiol. Pt. B 92: 357–360 (1989)CrossRefGoogle Scholar
  56. 56.
    Johnson W. J. and Cain G. D.: Biosynthesis of polyisoprenoid lipids in the rat tapeworm Hymenolepis diminuta. Comp. Biochem. Physiol. Pt. B 82: 487–495 (1985)CrossRefGoogle Scholar
  57. 57.
    Joseph D. R., Hall S. H. and French E. S.: Rats androgen-binding protein: evidence for identical subunits and amino acid sequence homology with human sex hormone-binding globulin. Proc. Nat. Acad. Sci. USA 84: 339–343 (1987)PubMedCrossRefGoogle Scholar
  58. 58.
    Kabbouh M. et al.: Further characterization of the 2deoxyecdysone C-2 hydroxylase from Locusta migratoria. Insect Biochem. 17: 1155–61 (1987)CrossRefGoogle Scholar
  59. 59.
    Kabbouh M. and Rees H. H.: Characterization of the ATP-2-deoxyecdysone 22-phosphotransferase (2deoxyecdysone 22-kinase) in the follicle cells of Schistocerca gregaria. Insect Biochem. 21: 57–64 (1991)CrossRefGoogle Scholar
  60. 60.
    Kalinovskaya N. I. et al.: Steroid metabolites of the far eastern holothurian Stichopus japonicus Selenka. Comp. Biochem. Physiol. Pt. B 76: 167–171 (1983)CrossRefGoogle Scholar
  61. 61.
    Karlaganis G. et al.: A bile alcohol sulfate as a major component in the bile of the small skate (Raja erinacea). J. Lipid Res. 30: 317–322 (1989)PubMedGoogle Scholar
  62. 62.
    Kihira K. et al.: Bile salts of the coelacanth, Latimeria chalumnae. J. Lipid Res. 25: 1330–36 (1985)Google Scholar
  63. 63.
    Kiriishi S. et al.: Prothoracic gland synthesis of 3dehydroecdysone and its hemolymph 3-beta-reductase mediated conversion to ecdysone in representative insects. Experientia 46: 716–721 (1990)PubMedCrossRefGoogle Scholar
  64. 64.
    Kljajic Z., Dogovic N. and Gasic M. J.: Sterols in Adriatic sea ascidians. Comp. Biochem. Physiol. Pt. B 75: 519–521 (1983)CrossRefGoogle Scholar
  65. 65.
    Koolman J.: Ecdysteroids (Review). Zool. Sci. 7: 563–580 (1990)Google Scholar
  66. 66.
    Krust A. et al.: The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. Embo J. 5: 891–897 (1986)PubMedGoogle Scholar
  67. 67.
    Ksebati M. B. and Schmitz E. J.: 24-Methyl-5acholestane-3ß,5,6ß,22R,24-pentol 6-acetate: new polyhydroxylated sterol from the soft coral Asterospicularia randalli. Steroids 43: 639–649 (1984)PubMedCrossRefGoogle Scholar
  68. 68.
    Lachaise E. and Lafont R.: Ecdysteroid metabolism in a crab: Carcinus maenas L. Steroids 43: 243–259 (1984)PubMedCrossRefGoogle Scholar
  69. 69.
    Lee H. M., Parish E. J. and Bone L. W: Occurrence of mammalian sex steroids in the free-living nematode, Turbatrix aceti. Comp. Biochem. Physiol. Pt. A 97: 115–117 (1990)CrossRefGoogle Scholar
  70. 70.
    Lehtovaara I and Koskinen T.: Demonstration of vitamin D3 metabolism in Mytilus edulis. Experientia 42: 147–148 (1986)CrossRefGoogle Scholar
  71. 71.
    de Loof A., Briers T. and Huybrechts R.: Presence and function of ecdysteroids in adult insects. Comp. Biochem. Physiol. Pt. B 79: 505–509 (1984)CrossRefGoogle Scholar
  72. 72.
    Lopez de Haro M. S. and Nieto A.: Nucleotide and derived amino acid sequences of a cDNA coding for the pre-uteroglobin from the lung of the hare (Lepus capensis). Biochem. J. 235: 895–898 (1986)PubMedGoogle Scholar
  73. 73.
    Mak P and Callard G. V.: A novel steroid-binding protein in the testis of the dogfish Squalus acanthias. Gen comp. Endocrinol. 68: 104–112 (1987)Google Scholar
  74. 74.
    Makin H. L. J. (ed.): Biochemistry of steroid hormones. Blackwell, Oxford 1984Google Scholar
  75. 75.
    Manconi R. et al.: Steroids in porifera. Sterols from freshwater sponges Ephydatia fluviatilis (L.) and Spongilla lacustris (L.). Comp. Biochem. Physiol. Pt. B 91: 237–245 (1988)CrossRefGoogle Scholar
  76. 76.
    Martinez E., Givel E and Wahli W: A common ancestor DNA motif for invertebrate and vertebrate hormone response elements. Embo J. 10: 263–268 (1991)PubMedGoogle Scholar
  77. 77.
    McDonnell D. P. et al.: Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235: 1214–17 (1987)PubMedCrossRefGoogle Scholar
  78. 78.
    Meinwald J. et al.: Defensive steroids from a carrion beetle (Silpha americana). Experientia 41: 516–519 (1985)PubMedCrossRefGoogle Scholar
  79. 79.
    Mercer J. G., Munn A. E. and Rees H. H.: Caenorhabditis elegans: occurrence and metabolism of ecdysteroids in adults and dauer larvae. Comp. Biochem. Physiol. Pt. B 90: 261–267 (1988)CrossRefGoogle Scholar
  80. 80.
    Milkova T. S., Popov S. S. and Andreev S. N.: Sterols from black sea Actinaria species. Comp. Biochem. Physiol. Pt. B 87: 267–269 (1987)CrossRefGoogle Scholar
  81. 81.
    Minale L. et al.: Starfish saponins–XVI. Composition of the steroidal glycoside sulphates from the starfish Luidia maculata. Comp. Biochem. Physiol. Pt. B 80: 113–118 (1985)CrossRefGoogle Scholar
  82. 82.
    Nolte A. et al.: Ecdysteroids in the dorsal bodies of pulmonates (Gastropoda): synthesis and release of ecdysone. Comp. Biochem. Physiol. Pt. A 84: 777–782 (1986)CrossRefGoogle Scholar
  83. 83.
    Norman A. W. (ed.): Vitamin D. de Gruyter, Berlin 1985Google Scholar
  84. 84.
    Novak E. et al.: Pregnenolone and estradiol identification in the brine shrimp, Artemia sp., by means of gas chromatographical-mass spectrometrical analysis. Comp. Biochem. Physiol. Pt. B 95: 565–569 (1990)CrossRefGoogle Scholar
  85. 85.
    O’Hanlon G. M., Howarth O. W. and Rees H. H.: Identification of ecdysone 24-O-ß-D-glucopyranoside as a new metabolite of ecdysone in the nematode Parascaris equorum. Biochem. J. 248: 305–307 (1987)PubMedGoogle Scholar
  86. 86.
    Ohnishi E. et al.: Isolation and identification of major ecdysteroid conjugates from the ovaries of Bombyx mori. Insect Biochem. 19: 95–101 (1989)CrossRefGoogle Scholar
  87. 87.
    van Oycke S., van Braekman J. C. and Daloze D.: Cardenolide biosynthesis in chrysomelid beetles. Experientia 43: 460–462 (1986)CrossRefGoogle Scholar
  88. 88.
    Pakdel F. et al.: Full-length sequence and in vitro expression of rainbow trout estrogen receptor cDNA. Mol. cell. Endocrinol. 71: 195–204 (1990)Google Scholar
  89. 89.
    Pasteels J. M. et al.: Evolution of exocrine chemical defence in leaf beetles (Coleoptera, Chrysomelidae) (Review). Experientia 45: 295–300 (1989)CrossRefGoogle Scholar
  90. 90.
    Pastuszyn A. et al.: Primary squence and structural analysis of sterol carrier protein 2 from rat liver: homology with immunoglobulins. J. biol. Chem. 262: 13219–27 (1987)PubMedGoogle Scholar
  91. 91.
    Raederstorff D. and Rohmer M.: Sterol biosynthesis via cyclartenol and other biochemical features related to photosynthetic phyla in the amoebae Naegleria lovanensis and Naegleria gruben. Eur. J. Biochem. 164: 427–434 (1987)PubMedCrossRefGoogle Scholar
  92. 92.
    Raederstorff D. and Rohmer M.: Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis. Biochim. biophys. Acta 960: 190–199 (1988)Google Scholar
  93. 93.
    Ray K. et al.: The rat vitamin-D binding protein (Gcglobulin) gene: Structural analysis, functional and evolutionary considerations. J. Biol. Chem. 266: 6221–29 (1991)PubMedGoogle Scholar
  94. 94.
    Reinboth R. and Becker B.: In vitro studies on steroid metabolism by gonadal tissues from ambisexual teleosts. I. Conversion of C14-testosterone by males and females of the protogynous wrasse Coris julis. L. Gen. comp. Endocrinol. 55: 245–250 (1984)Google Scholar
  95. 95.
    Reis-Henriques et al.: Studies of endogenous steroids from the marine mollusc Mytilus edulis L. by gas chromatography and mass spectrometry. Comp. Biochem. Physiol. Pt. B 95: 303–309 (1990)Google Scholar
  96. 96.
    Rhoads D. E. and Kaneshiro E. S.: Fatty acids metabolism in Paramecium. Oleic acid metabolism and inhibition of polyunsaturated fatty acid synthesis by triparanol. Biochim. biophys. Acta 795: 20–29 (1984)Google Scholar
  97. 97.
    Riccio R. et al.: A novel group of highly hydroxylated steroids from the starfish Protoreaster nodosus. Tetrahedron 38: 3615–22 (1982)CrossRefGoogle Scholar
  98. 98.
    Riccio R. et al.: Unusual sulfated marine steroids from the ophiuroid Ophioderma longicaudum. Tetrahedron 41: 6041–46 (1985)CrossRefGoogle Scholar
  99. 99.
    Ritter K. S. et al.: Identification of delta-5.7–24methylene-and methylsterols in the brain and whole body of Atta cephalotes isthmicola. Comp. Biochem. Physiol. Pt. B 71: 345–349 (1982)CrossRefGoogle Scholar
  100. 100.
    Romero M. S. and Seldes A. M. Steroids from aquatic organisms–XI. Steroid composition of the prosobranch mollusc Patinigera magellanica. Comp. Biochem. Physiol. Pt. B 84: 125–129 (1986)CrossRefGoogle Scholar
  101. 101.
    Sakurai S. et al.: 7-Dehydrosterols in prothoracic glands of the silkworm, Bombyx mori. Experientia 42: 1034–36 (1986)Google Scholar
  102. 102.
    Santa-Coloma T. A., Muschietti J. P. and Carreau E. H.: Sex steroid binding protein from Bufo arenarum: Further characterization. Comp. Biochem. Physiol. Pt. A 85: 401–405 (1986)CrossRefGoogle Scholar
  103. 103.
    Schlinger B. A. and Arnold A. P.: Brain is the major site of estrogen synthesis in a songbird. Proc. Nat. Acad. Sci. USA 88: 4191–94 (1991)PubMedCrossRefGoogle Scholar
  104. 104.
    Schott D. R. et al.: Molecular cloning, sequence analyses, and expression of complementary DNA encoding murine progesterone receptor. Biochemistry 30: 7014–20 (1991)PubMedCrossRefGoogle Scholar
  105. 105.
    Seldes A. M. et al.: Steroids from aquatic organisms–XII. Sterols from the Antarctic sponge Homaxinella balfouriensis (Ridley and Dendy). Comp. Biochem. Physiol. Pt. B 83: 841–843 (1986)CrossRefGoogle Scholar
  106. 106.
    Sica D., Piccialli V. and Pronzato R.: delta-5,7-sterols from the sponges Ircinia pipetta and Dysidea avara. Identification of cholesta-5,7,24-trien-3ß-ol. Comp. Biochem. Physiol. Pt. B 88: 293–296 (1987)CrossRefGoogle Scholar
  107. 107.
    Smith T. and Bownes M.: Metabolism of 20hydroxyecdysone in adult Drosophila melanogaster. Insect Biochem. 15: 749–754 (1985)CrossRefGoogle Scholar
  108. 108.
    Sommé-Martin G., Colardeau J. and Lafont R.: Conversion of ecdysone and 20-hydroxyecdysone into 3dehydro-ecdysteroids is a major pathway in third instar Drosophila melanogaster larvae. Insect Biochem. 18: 729–734 (1988)CrossRefGoogle Scholar
  109. 109.
    Srivatsan J., Weirich M. and Agosin M.: Cytochrome P450-catalyzed formation of 20-hydroxyecdysone in larval housefly mitochondria. Biochem. biophys. Res. Commun. 166: 1372–77 (1990)Google Scholar
  110. 110.
    Stacey N. E. et al.: Direct evidence that 17a,20ßdihydroxy-4-pregnen-3-one functions as a goldfish primer pheromone. Preovulatory release is closely associated with male endocrine responses. Gen. comp. Endocrinol. 75: 62–70 (1989)Google Scholar
  111. 111.
    Stoilov I., Popov S. and Andreev S.: Sterols from the main black sea molluscs. Comp. Biochem. Physiol. Pt. B 79: 493–497 (1984)CrossRefGoogle Scholar
  112. 112.
    Svoboda J. A. and Thompson M. J.: Steroids. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, pp. 137–175. Pergamon Press, Oxford 1985Google Scholar
  113. 113.
    Svoboda J. A. et al.: New intermediates in the conversion of stigmasterol to cholesterol in the Mexican bean beetle. Lipids 21: 639–642 (1986)CrossRefGoogle Scholar
  114. 114.
    Swevers L., Lambert J. G. D. and Deloof A.: Synthesis and metabolism of vertebrate-type steroids by tissues of insects: A critical evaluation. Experientia 47: 687–698 (1991)PubMedCrossRefGoogle Scholar
  115. 115.
    Tachibana K., Sakaitanai M. and Nakanishi K.: Pavoninins: shark-repelling ichthyotoxins from the defensive secretion of the Pacific sole. Science 226: 703–705 (1984)PubMedCrossRefGoogle Scholar
  116. 116.
    Teshima S. and Patterson G. W.: Identification of 4amethylsterols in the oyster, Crassostrea virginica. Comp. Biochem. Physiol. Pt. B 69: 175–181 (1981)CrossRefGoogle Scholar
  117. 117.
    Teshima S. et al.: Sterols of the chiton (Liolophura japonica): a new C30-sterol, (24Z)-24-propylidencholest-7-enol, and other minor sterols. Comp. Biochem. Physiol. Pt. B 71: 373–378 (1982)CrossRefGoogle Scholar
  118. 118.
    Thompson M. J. et al.: Biosynthesis of a C21-steroid conjugate in an insect. The conversion of (C14)cholesterol to 5-(C14)pregnen-3ß,20ß-diol glucoside in the tobacco hornworm, Manduca sexta. J. biol. Chem. 260: 15410–12 (1985)PubMedGoogle Scholar
  119. 119.
    Thompson M. J. et al.: Profile of free and conjugated ecdysteroids and ecdysteroid acids during embryonic development of Manduca sexta (L.) following maternal incorporation of C14-cholesterol. Arch. Insect Biochem. Physiol. 7: 157–172 (1988)Google Scholar
  120. 120.
    Tsoupras G., Luu B. and Hoffmann J. A.: A cytokinin (isopentenyl-adenosyl-mononucleotide) linked to ecdysone in newly laid eggs of Locusta migratoria. Science 220: 507–509 (1983)PubMedCrossRefGoogle Scholar
  121. 121.
    Veares M. P., Goad L. J. and Apsimon J. W.: Thomasterol A sulphate, a constituent of the starfish Asterias rubens. Comp. Biochem. Physiol. Pt. B 90: 25–28 (1988)CrossRefGoogle Scholar
  122. 122.
    Vessey D. A. et al.: Purification and characterization of the enzymes of the bile acid conjugation from fish liver. Comp. Biochem. Physiol. Pt. B 95: 647–652 (1990)CrossRefGoogle Scholar
  123. 123.
    Vonk H. J. and Western J. R. H.: Comparative biochemistry and physiology of digestion. Acad. Press, New York 1984Google Scholar
  124. 124.
    Voogt P. A., Denbesten P. J. and Jansen M.: The delta-5-pathway in steroid metabolism in the sea star Asterias rubens L. Comp. Biochem. Physiol. Pt. B 97: 555–562 (1990)CrossRefGoogle Scholar
  125. 125.
    Wahli W. and Martinez E.: Superfamily of steroid nuclear receptors. Faseb J. 5: 2243–49 (1991)PubMedGoogle Scholar
  126. 126.
    Walsh K. A. et al.: Amino acid sequence of the sex steroid binding protein of human blood plasma. Biochemistry 25: 7584–90 (1986)PubMedCrossRefGoogle Scholar
  127. 127.
    Wang L. H. et al.: COUP transcription factor is a member of the steroid receptor superfamily. Nature 340: 163–166 (1989)PubMedCrossRefGoogle Scholar
  128. 128.
    Whiting P. and Dinan L.: Identification of the endogenous apolar ecdysteroid conjugates present in newly-laid eggs of the house cricket (Acheta domesticus) as 22-long-chain fatty acyl esters of ecdysone. Insect Biochem. 19: 759–765 (1989)CrossRefGoogle Scholar
  129. 129.
    Woodward H. D., Allen J. M. C. and Lennarz W. D.: 3-hydroxy-3-methylglutaryl-coenzyme A reductase of the sea urchin embryo. D.duced structure and regulatory properties. J. Biol. Chem. 263: 18411–18 (1988)Google Scholar
  130. 130.
    Yanda D. M. and Ghazarian J. G.: Vitamin D and 25hydroxyvitamin D in rainbow trout (Salmo gairdneri): Cytochrome P-450 and biotransformations of the vitamins Comp. Biochem. Physiol. Pt. B 69: 183–188 (1981)CrossRefGoogle Scholar
  131. 131.
    Zhu X. X., Oliver J. H. and Dotson E. M.: Epidermis as a source of ecdysone in an argasid tick. Proc. Nat. Acad. Sci. USA 88: 3744–47 (1991)PubMedCrossRefGoogle Scholar
  132. 132.
    Special Issue: Ecdysone: From biosynthesis to mode of action. J. Insect Physiol. 34: 549–745 (1988)Google Scholar
  133. 133.
    IUPAC-IUB Joint Commission on Biochemical Nomenclature: The nomenclature of steroids. Recommendations 1989. Eur. J. Biochem. 186: 429–458 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Urich
    • 1
  1. 1.Institut für ZoologieUniversität MainzMainzGermany

Personalised recommendations