The Structure and Metabolism of Carbohydrates

  • Klaus Urich


Compared with the variety of carbohydrates in plants, relatively few sugars or sugar derivatives are regularly found in animals either free or as components of more complex compounds. However, it is possible that sugars originating from plants in the diet are transiently retained in animals and distort the normal sugar spectrum. Approximately a dozen sugars and sugar derivatives are regularly found in animals: the pentoses d-ribose and 2-deoxy-d-ribose; the hexoses d-glucose, d-galactose, d-mannose, d-fructose and l-fucose; the uronic acids d-glucuronic acid and l-iduronic acid; and the hexosamines d-glucosamine and d-galactosamine. In addition, d-erythrose, d-ribulose, d-xylulose and d-sedoheptulose in the form of their phosphoric acid esters are intermediates of the pentose phosphate pathway.


Hyaluronic Acid Sialic Acid Alcohol Dehydrogenase Pentose Phosphate Pathway Aldose Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnisola C., Salvadore S. and Scardi V.: On the occurrence of cellulolytic activity in the digestive gland of some marine carnivorous molluscs. Comp. Biochem. Physiol. Pt. B 70: 521–525 (1981)Google Scholar
  2. 2.
    Allen A.: Mucus-A protective secretion of complexity. Trends biochem. Sci. 8: 169–173 (1983)Google Scholar
  3. 3.
    Altman P. L. and Dittmer D. S. (eds.): Biological data book, 2. ed., Vol. Ill, pp. 1936–42. Fed. Amer. Soc. Exp. Biol., Bethesda 1974Google Scholar
  4. 4.
    Andersen S. O.: Sclerotization and tanning of the cuticle. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 3, pp. 59–75. Pergamon Press, Oxford 1985Google Scholar
  5. 5.
    Antonsson P., Heinegard D. and Oldberg A.: The keratan sulfate-enriched region of bovine cartilage proteoglycan consists of a consecutively repeated hex-apeptide motif. J. Biol. Chem. 264: 16170–73 (1989)PubMedGoogle Scholar
  6. 6.
    Aon M. A. and Curtino J. A.: Protein-bound glycogen is linked to tyrosine residues. Biochem. J. 229: 269–272 (1985)PubMedGoogle Scholar
  7. 7.
    Arslan A., Standifer L. N. and Don H.: Carbohydrates in honey bee hemolymph. Comp. Biochem. Physiol. Pt B 84: 363–367 (1986)Google Scholar
  8. 8.
    Atkins E. D. T., Dlugosz J. and Foord S.: Electron diffraction and electron microscopy of crystalline a-chitin from the grasping spines of the marine worm Sagitta. Int. J. biol. Macromol. 1: 29 (1979)Google Scholar
  9. 9.
    Bai G. et al.: The primary structure of rat liver glycogen synthase deduced by cDNA cloning. Absence of phosphorylation sites la and lb. J. Biol. Chem. 265: 7843–48 (1990)PubMedGoogle Scholar
  10. 10.
    Bailey C. J., Geoffroy P. and Mills K. H. G.: An examination of the distribution of hen-and goose-type lysozymes in Anseriformes. Comp. Biochem. Physiol. Pt. B 55: 429–433 (1976)Google Scholar
  11. 11.
    Baker J. E.: Properties of amylases from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochem. 13: 421–428 (1983)Google Scholar
  12. 12.
    Baker M. E.: A common ancestor for human placental 176-hydroxysteroid dehydrogenase, Streptomyces coelicolor act III protein, and Drosophila melanogas-ter alcohol dehydrogenase. Faseb J. 4: 222–226 (1990)PubMedGoogle Scholar
  13. 13.
    Bakken H.: Cold hardiness in the alpine beetles Patro-bus septentrionis and Cathus melanocephalus. J. Insect Physiol. 31: 447–453 (1985)Google Scholar
  14. 14.
    Balias R. A., Garavelli J. S. and White III H. B.: Estimation of the rate of glycerol-3-phosphate dehydrogenase evolution in higher vertebrates. Evolution 38: 658–664 (1984)Google Scholar
  15. 15.
    Bangs J. D. et al.: Biosynthesis of a variant surface glycoprotein of Trypanosoma brucei. Processing of the glycolipid anchor and N-linked oligosaccharides. J. Biol. Chem. 263: 17697–705 (1988)PubMedGoogle Scholar
  16. 16.
    Barboza P. S. and Hume I. D.: Hindgut fermentation in the wombats: two marsupial grazers. J. comp. Physiol. B 162: 561–566 (1992)PubMedGoogle Scholar
  17. 17.
    Barretto O. C. O. et al.: Erythrocyte sorbitol dehydrogenase of selected nonmammalian species. Comp. Biochem. Physiol. Pt. B 82: 317–319 (1985)Google Scholar
  18. 18.
    Batterham P. et al.: Origin and expression of an alcohol dehydrogenase gene duplication in the genus Drosophila. Evolution 38: 644–657 (1984)Google Scholar
  19. 19.
    Bay on C. and Mathelin J.: Carbohydrate fermentation and by-product absorption studied with labelled cellulose in Oryctes nasicornis larvae (Coleoptera: Scara-baeidae). J. Insect Physiol. 26: 833–840 (1980)Google Scholar
  20. 20.
    Bedford J. J.: The carbohydrate levels of insect hemo-lymph. Comp. Biochem. Physiol. Pt. A 57: 83–86 (1977)Google Scholar
  21. 21.
    Bedi G. S., Shah R. H. and Bahl O. P.: Studies onTur-batrix aceti (3-N-acetylglucosaminidase. 1. Purification and physicochemical characterization. Arch. Biochem. Biophys. 233: 237–250 (1984)PubMedGoogle Scholar
  22. 22.
    Beenakkers A. T., van der Horst D. J. and van Marre-wijk W. J. A.: Biochemical processes directed to flight muscle metabolism. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, pp. 451–486. Pergamon Press, Oxford 1985Google Scholar
  23. 23.
    Bereiter-Hahn J., Matolsky A. G. and Richards K. S. (eds.): Biology of the integument, 2 vol. set. Springer, Berlin 1986Google Scholar
  24. 24.
    Berg W. J. and Buth D. G.: Glucose dehydrogenase in teleosts: tissue distribution and proposed function. Comp. Biochem. Physiol. Pt. B 77: 285–288 (1984)Google Scholar
  25. 25.
    Berger E. G. et al.: Structure, biosynthesis and functions of glycoprotein glycans. Experientia 38: 1129–1162 (1982)PubMedGoogle Scholar
  26. 26.
    Bergman E. N.: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Phsiol. Rev. 70: 567–589 (1990)Google Scholar
  27. 27.
    Bewley G. C. et al.: Sequence, structure and evolution of the gene coding for sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Nucleic Acids Res. 17: 8553–67 (1989)PubMedGoogle Scholar
  28. 28.
    Birkbeck T. H. and McHenry J. G.: Chitinase in the mussel, Mytilus edulis (L.). Comp. Biochem. Physiol. Pt. B 77: 861–865 (1984)Google Scholar
  29. 29.
    Birney E. C., Jenness R. and Hume I. D.: Evolution of an enzyme system-Ascorbic acid biosynthesis in monotremes and marsupials. Evolution 34: 230–239 (1980)Google Scholar
  30. 30.
    Blackwell J. and Weih M. A.: Structure of chitin-protein complexes: Ovipositor of the ichneumon fly Megarhyssa. J. mol. Biol. 137: 49–60 (1980)PubMedGoogle Scholar
  31. 31.
    Blithe D. L., Clark H. E and Warren L.: Similarity in the bound carbohydrate groups of glycoproteins from the cells of several vertebrate classes. Biochim. biophys. Acta 719: 190–198 (1982)Google Scholar
  32. 32.
    Boden N., Sommer U. and Spindler K. D.: Demonstration and characterization of chitinases in the Drosophila Kc cell line. Insect Biochem. 15: 19–23 (1985)Google Scholar
  33. 33.
    Bonay P. and Hughes R. C.: Purification and characterization of a novel broad specificity (al-2, al-3 and al-6) mannosidase from rat liver. Eur. J. Biochem. 197: 229–238 (1991)PubMedGoogle Scholar
  34. 34.
    Bosch M. et al.: Characterization of dolichol diphosphate oligosaccharide, protein oligosaccharide transferase and glycoprotein-processing glucosidases occuring in trypanosomatid protozoa. J. Biol. Chem. 263: 17360–65 (1988)PubMedGoogle Scholar
  35. 35.
    Bounias M.: A comparison of haemolymph levels and inter-relations of trehalose, glucose and fructose in worker bees from different races and hybrids. Comp. Biochem. Physiol. Pt. B 69: 471–477 (1981)Google Scholar
  36. 36.
    Bounias M. and Morgan M. R. J.: Induction of honeybee haemolymph sucrase activity by higher levels of dietary sucrose. Comp. Biochem. Physiol. Pt. B 79: 75–80 (1984)Google Scholar
  37. 37.
    Breuer B. et al.: A novel large dermatan sulfate proteoglykan from human fibroblasts. J. Biol. Chem. 266: 13224–232 (1991)PubMedGoogle Scholar
  38. 38.
    Browner M. E et al.: Human muscle glycogen synthase cDNA sequence: A negatively charged protein with an asymmetric charge distribution. Proc. Nat. Acad. Sci. USA 86: 1443–47 (1989)PubMedGoogle Scholar
  39. 39.
    BundeT. A., Dearlove G. E. and Bishop S. H.: Amino-ethylphosphonic acid-containing glycoproteins: The acid mucopolysaccharide-like components in mucus from Metridium senile (L.). J. exp. Zool. 206: 215–221 (1978)Google Scholar
  40. 40.
    Byrne D. N. and Miller W. B.: Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J. Insect Physiol. 36: 433–439 (1990)Google Scholar
  41. 41.
    Campbell A. G. et al.: Papilin: a Drosophila proteoglycan-like sulfated glycoprotein from basement membranes. J. biol. Chem. 262: 17605–12 (1987)PubMedGoogle Scholar
  42. 42.
    Campbell D. G. and Cohen P.: The amino acid sequence of rabbit skeletal muscle glycogenin. Eur. J. Biochem. 185: 119–125 (1989)PubMedGoogle Scholar
  43. 43.
    Canal L. and Parodi A. J.: Glycosylation of proteins in the protozoan Euglena gracilis. Comp. Biochem. Physiol. Pt. B 81: 803–805 (1985)Google Scholar
  44. 44.
    Carroll M. and McCrorie P.: Glycoproteins of trypano-somes: their biosynthesis and biological significance (Mini-review). Comp. Biochem. Physiol. Pt. B 88: 7–12 (1987)Google Scholar
  45. 45.
    Cavener D. R. and Macintyre R. J.: Biphasic expression and function of glucose dehydrogenase in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 80: 6286–88 (1983)PubMedGoogle Scholar
  46. 46.
    Cederlund E. et al.: Amphibian alcohol dehydrogenase, the major frog liver enzyme. Relationships to other forms and assessment of an early gene duplication separating vertebrate class-I and class-Ill alcohol dehydrogenases. Biochemistry 30: 2811–16 (1991)PubMedGoogle Scholar
  47. 47.
    Chararas C. et al.: Purification of three cellulases from the xylophageous larvae of Ergastes faber (Coleoptera: Cerambycidae). Insect Biochem. 13: 213–218 (1983)Google Scholar
  48. 48.
    Chaturvedi P. and Sharma C. B.: Goat milk oligosaccharides: purification and characterization by HPLC and high-field proton-NMR spectroscopy. Biochim. biophys. Acta 967: 115–121 (1988)Google Scholar
  49. 49.
    Chee N. P., Geddes R. and Wills P. R.: Metabolic heterogeneity in rabbit brain glycogen. Biochim. biophys. Acta 756: 9–12 (1983)Google Scholar
  50. 50.
    Chen A. C.: Chitin metabolism. Arch. Insect Biochem. Physiol. 6: 267–277 (1987)Google Scholar
  51. 51.
    Chipoulet J. M. and Chararas C.: Purification and partial characterization of a laminarinase from the larvae of Rhagium inquisitor. Comp. Biochem. Physiol. Pt. B 77: 699–706 (1984)Google Scholar
  52. 52.
    Chung L. P., Keshav S. and Gordon S.: Cloning the human lysozyme cDNA. Proc. Nat. Acad. Sci. USA 85: 6227–31 (1988)PubMedGoogle Scholar
  53. 53.
    Churchill T. A. and Storey K. B.: Metabolic correlates to glycerol biosynthesis in freeze-avoiding insect, Epiblema scudderiana. J. comp. Physiol. B 159: 461–472 (1989)Google Scholar
  54. 54.
    Cohen E.: Chitin synthetase activity and inhibition in different insect microsomal preparations. Experientia 41: 470–472 (1985)Google Scholar
  55. 55.
    Cohenford M. A., Urbanowski J. C. and Dain J. A.: Purification and properties of two forms of a-L- fucosidase from Turbo cornutus. Comp. Biochem. Physiol. Pt. B 72: 695–703 (1982)Google Scholar
  56. 56.
    Coleman G. S.: Rumen ciliate protozoa. In: Lewan-dowsky M. and Hutner S. H. (eds.): Biochemistry and physiology of protozoa, 2. ed., Vol 2, pp. 381–408. Acad. Press, New York 1979Google Scholar
  57. 57.
    Collins P. M. and Munasinghe R. (eds.): Carbohydrates. Chapman and Hall, London 1987Google Scholar
  58. 58.
    Crisp E. A., Czolij R. and Messer M.: Absence of (3- galactosidase (lactase) activity from intestinal brush borders of suckling macropods: Implications for mechanism of lactose absorption. Comp. Biochem. Physiol. Pt. B 88: 923–927 (1987)Google Scholar
  59. 59.
    Crisp E. A., Messer M. and Vandeberg J. L.: Changes in milk carbohydrates during lactation in a didelphid marsupial, Monodelphis domestica. Physiol. Zool. 62: 1117–25 (1989)Google Scholar
  60. 60.
    Cross M. et al.: Mouse lysozyme M gene: Isolation, characterization, and expression studies. Proc. Nat. Acad. Sci. USA 85: 6232–36 (1988)PubMedGoogle Scholar
  61. 61.
    Crowley H. M., Woodward D. R. and Rose R. W.: Changes in milk composition during lactation in the potoroo, Potorus tridactylus (marsupialia: Potoroi-nae). Aust. J. biol. Sci. 41: 289–296 (1988)PubMedGoogle Scholar
  62. 62.
    Dabrowski K.: Gulonolactone oxidase is missing in teleost fish, the direct photometric assay. Biol. Chem. Hoppe-Seyler 371: 207–214 (1990)PubMedGoogle Scholar
  63. 63.
    D’Amore M. A. et al.: Complete sequence and organization of the murine (3-glucuronidase gene. Biochemistry 27: 7131–40 (1988)PubMedGoogle Scholar
  64. 64.
    Dautigny A. et al.: cDNA and amino acid sequences of rainbow trout (Onkorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. J. mol. Evol. 32: 187–198 (1991)Google Scholar
  65. 65.
    Dekan G., Gabel C. and Farquhar M. G.: Sulfate contributes to the negative charge of podocalyxin, the major sialoglycoprotein of the glomerular filtration slits. Proc. Nat. Acad. Sci. USA 88: 5398–5402 (1991)PubMedGoogle Scholar
  66. 66.
    Dietrich C. P.: Characteristic distribution of heparan sulfates and chondroitin sulfates in tissues and organs of the Ampullaridae Pomacea sp. Comp. Biochem. Physiol. Pt. B 76: 695–698 (1983)Google Scholar
  67. 67.
    Doege K. J.: Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J. biol. Chem. 262: 17757–67 (1987), Correction 263: 10040 (1988)Google Scholar
  68. 68.
    Doege K. J.: Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan aggrecan: Human-specific repeats, and additional alternatively spliced forms. J. Biol. Chem. 266: 894–902 (1991)PubMedGoogle Scholar
  69. 69.
    D’Surney S. J. and DeKloet S. R.: Biochemical characterization of lysozymes present in egg white of selected species of anatid birds. Comp. Biochem. Physiol. Pt. B 82: 555–558 (1985)Google Scholar
  70. 70.
    Dughia J. and Hardingham T. E.: The primary structure of human cartilage link protein. Nucleic Acids Res. 18: 1292 (1990)Google Scholar
  71. 71.
    Duman J. G. et al.: Freeze-tolerance adaptations, including haemolymph protein and lipoprotein nuclea-tors, in the larvae of the cranefly Tipula trivittata. J. Insect Physiol. 31: 1–8 (1985)Google Scholar
  72. 72.
    Dunn D. F. and Liberman M. H.: Chitin in sea anemone shells. Science 221: 157–159 (1983)PubMedGoogle Scholar
  73. 73.
    Dykhuizen D. E., Harrison K. M. and Richardson B. J.: Evolutionary implications of ascorbic acid production in the Australian lungfish. Experientia 36: 945–946 (1980)PubMedGoogle Scholar
  74. 74.
    Edenberg H. J.: Cloning and sequencing of cDNA encoding the complete mouse liver alcohol dehydrogenase. Proc. Nat. Acad. Sci. USA 82: 2262–66 (1985)PubMedGoogle Scholar
  75. 75.
    Eklund H.: Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry 24: 8005–12 (1985)PubMedGoogle Scholar
  76. 76.
    Eklund H.: Comparison of three classes of human liver alcohol dehydrogenase: Emphasis on different substrate binding pockets. Eur. J. Biochem. 193: 303–310 (1990)PubMedGoogle Scholar
  77. 77.
    Endo T.: Structures of the sugar chains of a major glycoprotein present in the egg jelly coat of a starfish, Asterias amurensis. Arch. Biochem. Biophys. 252: 105–112 (1987)PubMedGoogle Scholar
  78. 78.
    England B. P., Heberlein U. and Tjian R.: Purified Drosophila transcription factor, Adh distal factor-1 (Adf-1), binds to sites in several Drosophila promoters and activates transcription. J. Biol. Chem. 265: 5086–94 (1990)PubMedGoogle Scholar
  79. 79.
    Fievre S.: Primary structure of a trisialylated oligosaccharide from human milk. Biochem. biophys. Res. Commun. 177: 720–725 (1991)Google Scholar
  80. 80.
    Fisher K. J. and Aronson N. N.: Isolation and sequence analysis of a cDNA encoding rat liver a-L- fucosidase. Biochem. J. 264: 695–701 (1989)PubMedGoogle Scholar
  81. 81.
    Florkin M. and Stotz E. H.: Comprehensive biochemistry, Vol. 6. Elsevier, Amsterdam 1965Google Scholar
  82. 82.
    Fong W. P. and Keung W. M.: Substrate specificity of human class I alcohol dehydrogenase homo-and hete-rodimers containing the (32 (oriental) subunit. Biochemistry 26: 5726–32 (1987)PubMedGoogle Scholar
  83. 83.
    Friedman S.: Carbohydrate metabolism. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, pp. 43–76. Pergamon Press, Oxford 1985Google Scholar
  84. 84.
    FuerstT. R., Knipple D. C. and Macintyre R. J.: Purification and characterization of |3-galactosidase-l from Drosophila melanogaster. Insect Biochem. 17: 1163–71 (1987)Google Scholar
  85. 85.
    Fukamizo T. and Kramer K. J.: Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem. 15: 141–145 (1985)Google Scholar
  86. 86.
    Funke B. and Spindler K. D.: Characterization of chitinase from the brine shrimp Artemia. Comp. Biochem. Physiol. Pt. B 94: 691–695 (1989)Google Scholar
  87. 87.
    Galand G.: First purification and characterization of a sucrase-isomaltase from goose kidney microvillous membrane. Biochim. biophys. Acta 1033: 35–40 (1990)Google Scholar
  88. 88.
    Galjart N. J.: Mouse “protective protein”: cDNA cloning, sequence comparison, and expression. J. Biol. Chem. 265: 4678–84 (1990)PubMedGoogle Scholar
  89. 89.
    Gallagher J. T. and Walker A.: Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem. J. 230: 665–674 (1985)PubMedGoogle Scholar
  90. 90.
    Garcin F.: Acetaldehyde oxidation in Drosophila melanogaster and Drosophila simulans: evidence for the presence of an NAD-dependent dehydrogenase. Comp. Biochem. Physiol. Pt. B 75: 205–210 (1983)Google Scholar
  91. 91.
    Gavilanes J. G.: Pigeon egg white lysozyme. Purification, structural and enzymic characterization. Int. J. Peptide Protein Res. 20: 238–245 (1982)Google Scholar
  92. 92.
    Gavilanes J. G., Menendez-Arias L. and Rodriguez R.: Comparative study on the secondary structure of lysozymes from different sources. Comp. Biochem. Physiol. Pt. B 77: 83–88 (1984)Google Scholar
  93. 93.
    George J. N., Nurden A. T. and Phillips D. R. (eds.): Platelet membrane glycoproteins. Plenum, New York 1985Google Scholar
  94. 94.
    Godovav-Zimmermann J., Conti A. and Napolitano I.: The primary structure of donkey (Equus asinus) lyso-zyme contains the Ca(II)-binding site of a-lactalbumin. Biol. Chem. Hoppe-Seyler 369: 1109–15 (1988)Google Scholar
  95. 95.
    Godovav-Zimmermann J., Conti A. and Napolitano I.: The complete primary structure of a-lactalbumin isolated from pig (Sus scrofa) milk. Biol. Chem. Hoppe-Seyler 371: 649–653 (1990)Google Scholar
  96. 96.
    Goldsmith P. K. and Stetten M. R.: Hexokinases and sugar dehydrogenases of Limulus polyphemus. Comp. Biochem. Physiol. Pt. B 77: 41–50 (1984)Google Scholar
  97. 97.
    Gomes P. B. and Dietrich C. P.: Distribution of heparin and other sulfated glycosamino-glycans in vertebrates. Comp. Biochem. Physiol. Pt. B 73: 857–863 (1982)Google Scholar
  98. 98.
    Goudsmit E. M.: Biosynthesis of galactogen: Identification of a (3-(l-6)-D-galactosyltransferase in Helix pomatia albumen glands. Biochim. biophys. Acta 992: 289–297 (1989)Google Scholar
  99. 99.
    Graham A. et al.: Structure of the human aldose reductase gene. J. Biol. Chem. 266: 6872–77 (1991)PubMedGoogle Scholar
  100. 100.
    Grisley M. S. and Boyle P. R.: Chitinase, a new enzyme in octopus saliva. Comp. Biochem. Physiol. Pt. B 95: 311–316 (1990)Google Scholar
  101. 101.
    Groenberg G. et al.: Isolation and structural analysis of three new disialylated oligosaccharides from human milk. Arch. Biochem. Biophys. 278: 297–311 (1990)Google Scholar
  102. 102.
    Grover P. B. jr., Ross D. R. and Shukle R. H.: Identification and partial characterization of digestive car-bohydrases in larvae of the hessian fly, Mayeticola destuctor (Say) (Diptera: Cediomyidae). Arch. Insect Biochem. Physiol. 8: 59–72 (1988)Google Scholar
  103. 103.
    Guan K. and Weiner H.: Sequence of the precursor of bovine liver mitochondrial aldehyde dehydrogenase as determined from its cDNA, its gene, and its functionality. Arch. Biochem. Biophys. 277: 351–360 (1990)PubMedGoogle Scholar
  104. 104.
    Gum J. R. et al.: Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J. Biol. Chem. 264: 6480–87 (1989)PubMedGoogle Scholar
  105. 105.
    Gupta R. and Jentoft N.: Subunit structure of porcine submaxillary mucin. Biochemistry 28: 6114–21 (1989)PubMedGoogle Scholar
  106. 106.
    Hannigan L. L., Donahue M. J. and Masaracchia R. A.: Comparative purification and characterization of invertebrate muscle glycogen synthase from the porcine parasite Ascaris suum. J. biol. Chem. 260: 16099–105 (1985)PubMedGoogle Scholar
  107. 107.
    Hayakawa Y. et al.: Purification and characterization of trehalase from the American cockroach, Peripla-neta americana. J. Biol. Chem. 264: 16165–69 (1989)PubMedGoogle Scholar
  108. 108.
    Heinstra P. W. H. et al.: The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC and aldehyde dehydrogenase (EC in Drosophila melanogaster larvae. Biochem. J. 259: 791–797 (1989)PubMedGoogle Scholar
  109. 109.
    Heminga M. A., Whittle M. A. and Gabbott P. A.: Glycogen synthase in the mantle tissue of the freshwater snail Lymnaea stagnalis: interconversion of kinetic forms and evidence for activity regulation by a concerted push-pull mechanism. Comp. Biochem. Physiol. Pt. B 82: 535–543 (1985)Google Scholar
  110. 110.
    Hickey D. A. and Benkel B.: Regulation of amylase activity in Drosophila melanogaster: effects of dietary carbohydrate. Biochem. Genetics 20: 1117–29 (1982)Google Scholar
  111. 111.
    Hickey D. A. et al.: Enzyme-coding genes as molecular clocks: The molecular evolution of animal alpha-amylases. J. mol. Evol. 26: 252–256 (1987)PubMedGoogle Scholar
  112. 112.
    Hickey D. A. et al.: Concerted evolution of duplicated protein-coding genes in Drosophila. Proc. Nat. Acad. Sci. USA 88: 1611–15 (1991)PubMedGoogle Scholar
  113. 113.
    Hindenburg A., Spitzragel J. and Aynheim N.: Isozymes of lysozyme in leukocytes and egg white: Evidence for the species-specific control of egg-white lysozyme synthesis. Proc. Nat. Acad. Sci. USA 71: 1653–57 (1974)PubMedGoogle Scholar
  114. 114.
    Hoefsloot L. H.: Primary structure and processing of lysosomal a-glucosidase; homology with the intestinal sucrase-isomaltase complex. Embo J. 7: 1697–1704 (1988)PubMedGoogle Scholar
  115. 115.
    Hoeoek M. et al.: Cell-surface glycosaminoglycans. Annual Rev. Biochem. 53: 847–869 (1984)Google Scholar
  116. 116.
    Hoffmann D. and van Regenmortel M. H. V.: Detection of distant antigenic relationships between insect and bird lysozymes by ELISA. J. mol. Evol. 21: 14–18 (1984)PubMedGoogle Scholar
  117. 117.
    Hoist O. et al.: Structural studies on the galactan from the albumin gland of Achatina fulica. Z. Natur-forsch. Sect. C 39: 1063–65 (1984)Google Scholar
  118. 118.
    Horner A. A.: Rat heparins. A study of the relative sizes and antithrombin-binding characteristics of heparin proteoglycans, chains and depolymerization products from rat adipose tissue, heart, lungs, peritoneal cavity and skin. Biochem. J. 240: 171–179 (1986)PubMedGoogle Scholar
  119. 119.
    Horst M. N.: Isolation of a crustacean N-acetyl-D- glucosamine-1-phosphate transferase and its activation by phospholipids. J. comp. Physiol. B 159: 777–788 (1990)PubMedGoogle Scholar
  120. 120.
    Hovingh P. and Peter A.: An unusual heparan sulfate isolated from lobsters (Homarus americanus). J. biol. Chem. 257: 9840–44 (1982)PubMedGoogle Scholar
  121. 121.
    Hsieh P. and Robbins P. W.: Regulation of asparagi-ne-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J. biol. Chem. 259: 2375–82 (1984)PubMedGoogle Scholar
  122. 122.
    Hsu L. C. and Chang W. C.: Cloning and characterization of a new functional human aldehyde dehydrogenase gene. J. Biol. Chem. 266: 12257–65 (1991)PubMedGoogle Scholar
  123. 123.
    Hunt S.: Polysaccharide-protein complexes in invertebrates. Acad. Press, New York 1970Google Scholar
  124. 124.
    Inoue H. et al.: Difference between N-acetyl-galactosamine 4-sulfate-6–0-sulfotransferases from human serum and squid cartilage in specificity toward the terminal and interior portion of chondroitin sulfate. J. biol. Chem. 261: 4470–75 (1986)PubMedGoogle Scholar
  125. 125.
    Ireland R. C. et al.: Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene. J. biol. Chem. 261: 11779–85 (1986)PubMedGoogle Scholar
  126. 126.
    Irwin D. M. and Wilson A. C.: Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J. Biol. Chem. 265: 4944–52 (1990)PubMedGoogle Scholar
  127. 127.
    Ito M. and Yamagata T.: The linkage of teleost skin keratan sulfate to protein. Biochim. biophys. Acta 801: 381–387 (1984)Google Scholar
  128. 128.
    Iwasaki M., Inoue S. and Inoue Y.: Identification and determination of absolute and anomeric configurations of the 6-deoxyaltrose residue found in polysia-loglycoprotein of Salvelinus leucomaenis pluvius eggs-The first demonstration of a 6-deoxyhexose other than fucose in glycoprotein. Eur. J. Biochem. 168: 185–192 (1987)PubMedGoogle Scholar
  129. 129.
    Iwasaki M., Inoue S. and Troy F. A.: A new sialic acid analogue, 9-O-acetyl-deaminated neuraminic acid, and a-2,8-linked O-acetylated poly(N-glycolyl-neuraminyl) chains in a novel polysialoglycoprotein from salmon eggs. J. Biol. Chem. 265: 2596–2602 (1990)PubMedGoogle Scholar
  130. 130.
    Jahagirdar A. R, Downer R. G. H. and Viswanatha T.: Purification and characterization of trehalose-hydrolyzing enzymes from thoracic musculature of the American cockroach, Periplaneta americana. Insect Biochem. 20: 511–516 (1990)Google Scholar
  131. 131.
    James T. C. et al.: Xenopus egg jelly coat proteins-2. Characterization of messenger RNAs of the oviduct and cloning of complementary DNAs to poly(A)- containing RNA. Comp. Biochem. Physiol. Pt. B 80: 89–97 (1985)Google Scholar
  132. 132.
    Jeffery J. et al.: Molecular diversity of glucose-6- phosphate dehydrogenase. Rat enzyme structure identifies NH2-terminal segment, shows initiation from sites nonequivalent in different organisms, and established otherwise extensive sequence conservation. Proc. Nat. Acad. Sci. USA 85: 7840–43 (1988)PubMedGoogle Scholar
  133. 133.
    Jentoff N.: Why are proteins O-glycosylated? Trends biochem. Sci. 15: 291–294 (1990)Google Scholar
  134. 134.
    Jeronimo S. M. B., Dietrich C. P. and Nader H. B.: Structure of sulfated glycoaminoglycans synthesied during the ontogeny of the mollusc Pomacea sp. Comp. Biochem. Physiol. Pt. B 93: 899–903 (1989)Google Scholar
  135. 135.
    Jôrnvall H. et al.: Mammalian alcohol dehydrogenase of separate classes: Intermediates between different enzymes and intraclass enzymes. Proc. Nat. Acad. Sci. USA 84: 2580–84 (1987)PubMedGoogle Scholar
  136. 136.
    Jollès et al.: Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J. mol. Evol. 30: 370–382 (1990)PubMedGoogle Scholar
  137. 137.
    Joziasse D. H. et al.: Identification of a UDP.B- galactoside (31–3-galactosyltransferase in the albumen gland of the snail Lymnaea stagnalis. FEB S Letters 221: 139–144 (1987)Google Scholar
  138. 138.
    Juan E., Papaceit M. and Quintana A.: Nucleotide sequence of the Adh gene of Drosophila lebanonen-sis. Nucleic Acids Res. 18: 6420 (1990)PubMedGoogle Scholar
  139. 139.
    Julià P, Parés X. and Joernvall H.: Rat liver alcohol dehydrogenase of class-Ill: Primary structure, functional consequences and relationships to other alcohol dehydrogenases. Eur. J. Biochem. 172: 73–83 (1988)PubMedGoogle Scholar
  140. 140.
    Kaiser R. et al.: Avian alcohol dehydrogenase. Characterization of the quail enzyme, functional interpretations, and relationships to the different classes of mammalian alcohol dehydrogenases. Biochemistry 29: 8365–71 (1990)PubMedGoogle Scholar
  141. 141.
    Kalm L. et al.: Structural characterization of the a-glycerol-3-phosphate dehydrogenase-encoding gene of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 86: 5020–24 (1989)Google Scholar
  142. 142.
    Kanamori A. et al.: Deaminated neuraminic acid-rich glycoprotein of rainbow trout egg vitelline envelope. Occurrence of a novel alpha-2,8-linked oligo(deamin-ated neuraminic acid) structure in O-linked glycan chains. J. Biol. Chem. 265: 21811–19 (1990)PubMedGoogle Scholar
  143. 143.
    Kapoun A. M. et al.: Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae. Genetics 124: 881–888 (1990)PubMedGoogle Scholar
  144. 144.
    Karamanos N. K. et al.: Chondroitin proteoglycans from squid skin. Isolation, characterization and immunological studies. Eur. J. Biochem. 192: 33–38 (1990)PubMedGoogle Scholar
  145. 145.
    Kariya Y. et al.: Occurrence of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus. J. Biol. Chem. 265: 5081–85 (1990)Google Scholar
  146. 146.
    Karlsson C., Joernvall H. and Hoog J. O.: Sorbitol dehydrogenase-cDNA coding for the rat enzyme. Variations within the alcohol dehydrogenase family independent of quaternary structure and metal content. Eur. J. Biochem. 198: 761–765 (1991)PubMedGoogle Scholar
  147. 147.
    Keung W. M. and Yip P. K.: Rabbit liver alcohol dehydrogenase. Isolation and characterization of class I isozymes. Biochem. biophys. Res. Commun. 158: 445–453 (1989)Google Scholar
  148. 148.
    Kidder G. M.: Glucose-6-phosphate dehydrogenase isozymes in fish-A comparative study. J. exp. Zool. 226: 385–390 (1983)PubMedGoogle Scholar
  149. 149.
    Kirkman B. R. and Whelan W. J.: Glucosamine is a normal component of liver glycogen. FEBS Letters 194: 6–11 (1986)PubMedGoogle Scholar
  150. 150.
    Kitagawa H. et al.: Novel oligosaccharides with the sialyl-Lea structure in human milk. Biochemistry 30: 2869–76 (1991)PubMedGoogle Scholar
  151. 151.
    Klug M. et al.: Presence and localization of chitinase in Hydra and Podocoryne. J. exp. Zool. 229: 69–72 (1984)Google Scholar
  152. 152.
    Knels U. and Bretting H.: Comparative structural analysis of snail galactans by a radioimmunoassay to elucidate species-specific determinants. J. comp. Physiol. B 159: 629–639 (1989)Google Scholar
  153. 153.
    Knels U. and Bretting H.: Structural studies on the galactan from the snail Helix pomatia. Comp. Biochem. Physiol. Pt. B 96: 147–155 (1990)Google Scholar
  154. 154.
    Koga D. et al.: Immunological relationships between p-N-acetylglucosaminidases from the tobacco horn-worm, Manduca sexta L. Insect Biochem. 13: 407–410 (1983)Google Scholar
  155. 155.
    Koga D. et al.: Appearance of chitinolytic enzymes in integument of Bombyx mori during larval-pupal transformation. Evidence for zymogenic forms. Insect Biochem. 19: 123–128 (1989)Google Scholar
  156. 156.
    Kornfeld R. and Kornfeld S.: Assembly of asparagine-linked oligosaccharides. Annual Rev. Biochem. 54: 631–664 (1985)Google Scholar
  157. 157.
    KoshizakaT. et al.: Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-y-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. J. biol. Chem. 263: 1619–21 (1988)PubMedGoogle Scholar
  158. 158.
    Kramer K. J. and Koga D.: Insect chitin. Physical state, synthesis, degradation and metabolic regulation (Minireview). Insect Biochem. 16: 851–877 (1986)Google Scholar
  159. 159.
    Kramer K.J. and Aoki H.: Chitinolytic enzymes from the pupae of the red flour beetle, Tribolium casta-neum. Comp. Biochem. Physiol. Pt. B 86: 613–621 (1987)Google Scholar
  160. 160.
    Krasney P. A., Carr C. and Cavener D. R.: Evolution of the glucose dehydrogenase gene in Drosophila. Mol. Biol. Evol. 7: 155–177 (1990)PubMedGoogle Scholar
  161. 161.
    Krishnamoorthy R. V. and Begum B. J.: Muscle specific structural differences in piscine muscle glycogens. Experientia 34: 832–833 (1978)Google Scholar
  162. 162.
    Krishnan G. and Ramamurthi R.: On the polysaccharide-protein complexes of the tunic of Polyclinum madrasensis Sebastian. Indian J. exp. Biol. 14: 113–116 (1976)Google Scholar
  163. 163.
    Kristensen J. G.: Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied. Mar. Biol. 14: 130–142 (1972)Google Scholar
  164. 164.
    Kukal O., Serianni A. S. and Duman J. G.: Glycerol metabolism in a freeze-tolerant arctic insect: an in vivo 13C-NMR study. J. comp. Physiol. B 158: 175–183 (1988)PubMedGoogle Scholar
  165. 165.
    Laird J. E. et al.: Structure and expression of the guinea-pig a-lactalbumin gene. Biochem. J. 254: 85–94 (1988)PubMedGoogle Scholar
  166. 166.
    Landau B. R. and Wood H. G.: The pentose cycle in animal tissues: evidence for the classical and against the „L-type“ pathway. Trends biochem. Sci. 8: 292–296 (1983)Google Scholar
  167. 167.
    Langley S. D. et al.: A genetic variant of (3- glucuronidase in Drosophila melanogaster. J. biol. Chem. 258: 7416–24 (1983)PubMedGoogle Scholar
  168. 168.
    Laurie C. C. et al.: Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans. Proc. Nat. Acad. Sci. USA 87: 9674–78 (1990)PubMedGoogle Scholar
  169. 169.
    Lennarz W. J. (ed.): Biochemistry of glycoproteins and proteoglycans. Plenum, New York 1980Google Scholar
  170. 170.
    Livingstone D. R. and de Zwaan A.: Carbohydrate metabolism of gastropods. In: Wilbur K. M. (ed.): The Mollusca, Vol. 1, pp. 177–272. Acad. Press, New York 1983Google Scholar
  171. 171.
    Lo H. S. and Chang C. J.: Purification and properties of NADP-linked alcohol dehydrogenase from Entamoeba histolytica. J. Parasitol. 68: 372–377 (1982)PubMedGoogle Scholar
  172. 172.
    Lynn K. R.: Chitinases and chitobiases from the American lobster (Homarus americanus). Comp. Biochem. Physiol. Pt. B 96: 761–766 (1990)Google Scholar
  173. 173.
    Malik Z., Jones C. J. P. and Connock M. J.: Assay and subcellular localization of hydrogen peroxide-generating mannitol oxidase in the terrestrial slug Arion ater. J. exp. Zool. 242: 9–15 (1987)Google Scholar
  174. 174.
    Mantei N. et al.: Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. Embo J. 7: 2701–13 (1988)Google Scholar
  175. 175.
    Martin L. O. G. et al.: Purification and properties of 6-phosphogluconate dehydrogenase from Mytilus gal-loprovincialis digestive gland. Comp. Biochem. Physiol. Pt. B 79: 599–606 (1984)Google Scholar
  176. 176.
    Martin M. M.: Cellulose digestion in insects. Comp. Biochem. Physiol. Pt. A 75: 313–324 (1983)Google Scholar
  177. 177.
    Matsuo Y., Yokoyama R. and Yokoyama S.: The genes for human alcohol dehydrogenase (31 and |32 differ by only one nucleotide. Eur. J. Biochem. 183: 317–320 (1989)PubMedGoogle Scholar
  178. 178.
    Matsuoka N. et al.: Evidence for the homology of hexose 6-phosphate dehydrogenase and glucose 6- phosphate dehydrogenase: Comparison of the amino acid compositions. Comp. Biochem. Physiol. Pt. B 76: 811–816 (1983)Google Scholar
  179. 179.
    McHenery J. G., Allen J. A. and BirkbeckT. H.: Distribution of lysozyme-like activity in 30 bivalve species. Comp. Biochem. Physiol. Pt. B 85: 581–584 (1986)Google Scholar
  180. 180.
    Medina-Puerta M. and Garrido-Perriera A.: Purification and properties of the enzyme 6-phosphogluconate dehydrogenase from Dicentrarchus labrax L. liver. Comp. Biochem. Physiol. Pt. B 83: 215–220 (1986)Google Scholar
  181. 181.
    Meikle P., Richards G. N. and Yellowlees D.: Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J. biol. Chem. 262: 16941–47 (1987)PubMedGoogle Scholar
  182. 182.
    Mendelzon D. H. and Parodi A. J.: N-linked high mannose-type oligosaccharides in the Protozoa Cri-thidia fasciculata and Crithidia harmosa contain galactofuranose residues. J. biol. Chem. 261: 2129–33 (1986)PubMedGoogle Scholar
  183. 183.
    Merchant J. C. and Libke J. A.: Milk composition in the northern brown bandicoot, Isoodon macrourus (Peramelidae, Marsupialia). Aust. J. biol. Sci. 41: 495–505 (1988)PubMedGoogle Scholar
  184. 184.
    Messer M. et al.: Carbohydrates in the milk of the platypus. Aust. J. biol. Sci. 36: 129–137 (1983)PubMedGoogle Scholar
  185. 185.
    Messer M., Crisp E. A. and Newgrain K.: Studies on the carbohydrate content of milk of the crabeater seal (Lobodon carcinophagus). Comp. Biochem. Physiol. Pt. B 90: 367–370 (1988)Google Scholar
  186. 186.
    Messer M. and Nicholas K. R.: Biosynthesis of marsupial milk oligosaccharides: Characterization and developmental changes of two galactosyltransferases in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim. biophys. Acta 1077: 79–85 (1991)Google Scholar
  187. 187.
    Michelacci Y. M. and Horton D. S. P. Q.: Proteoglycans from the cartilage of young hammerhead shark, Sphyrna lewini. Comp. Biochem. Physiol. Pt. B 92: 651–658 (1989)Google Scholar
  188. 188.
    Milanovic M., Andjelkovic M. and Stamenkovic- Bojic G.: Adaptive significance of amylase polymorphism in Drosophila. IV. A comparative study of biochemical properties of the alpha-amylase in Drosophila melanogaster, D. hydei, D. subobscura and D. busckii. Comp. Biochem. Physiol. Pt. B 93: 629–634 (1989)Google Scholar
  189. 189.
    Miller R. et al.: Nucleoside hydrolases from Trypanosoma cruzi. J. biol. Chem. 259: 5073–77 (1984)PubMedGoogle Scholar
  190. 190.
    Mourao P. A. S.: Epimerization of D-glucose to L- galactose during the biosynthesis of a sulfated L- galactan in the ascidian tunic. Biochemistry 30: 3458–64 (1991)PubMedGoogle Scholar
  191. 191.
    Moxon L. N. et al.: Purification and molecular properties of alcohol dehydrogenase from Drosophila melanogaster: Evidence from NMR and kinetic studies for function as an aldehyde dehydrogenase. Comp. Biochem. Physiol. Pt. B 80: 525–535 (1985)Google Scholar
  192. 192.
    Muzzarelli R. A. A.: Chitin. Pergamon Press, Oxford 1977Google Scholar
  193. 193.
    Myers F. L. and Northcote D. H.: A survey of enzymes from the gastrointestinal tract of Helix pomatia. J. exp. Biol. 35: 639–648 (1958)Google Scholar
  194. 194.
    Neame P. J., Choi H. U. and Rosenberg L. C.: The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J. Biol. Chem. 264: 8653–61 (1989)PubMedGoogle Scholar
  195. 195.
    Nicholas K. et al.: Isolation, partial sequence and asynchronous appearance during lactation of lyso-zyme and a-lactalbumin in the milk of a marsupial, the common ringtail possum (Pseudocheirus peregrinus). Comp. Biochem. Physiol. Pt. B 94: 775–778 (1989)Google Scholar
  196. 196.
    Nishide T. et al.: Primary structure of human salivary a-amylase gene. Gene 41: 299–304 (1986)PubMedGoogle Scholar
  197. 197.
    Nitta K. and Sugai S.: The evolution of lysozyme and a-lactalbumin. Eur. J. Biochem. 182: 111–118 (1989)PubMedGoogle Scholar
  198. 198.
    Nôhle U. et al.: Structural parameters and natural occurrence of 2-deoxy-2,3-didehydro-N-glycoloyl-neuraminic acid. Eur. J. Biochem. 152: 459–463 (1985)PubMedGoogle Scholar
  199. 199.
    Norén O. et al.: Pig intestinal microvillar maltase-glucoamylase. Structure and membrane insertion. J. biol. Chem. 261: 12306–09 (1986)PubMedGoogle Scholar
  200. 200.
    Nyame K., Cummings R. D. and Damian R. T.: Schistosoma mansoni synthesizes glycoproteins containing terminal O-linked N-acetylglucosamine residues. J. biol. Chem. 262: 7990–95 (1987)PubMedGoogle Scholar
  201. 201.
    Occhiodoro T. et al.: Human a-L-fucosidase: Complete coding sequence from cDNA clones. Biochem. biophys. Res. Commun. 164: 439–445 (1989)Google Scholar
  202. 202.
    Ogiso M. et al.: Further purification and characterization of trehalase from the American cockroach, Periplaneta americana. J. comp. Physiol. B 155: 553–560 (1985)Google Scholar
  203. 203.
    Orlacchio A. et al.: Isozymes separation by chroma-tofocusing and kinetic properties of (3-hexos-aminidase from Spirographs spallanzanii, Allolobo-phora caliginosa and Hirudo medicinalis. Comp. Biochem. Physiol. Pt. B 80: 923–926 (1985)Google Scholar
  204. 204.
    Parés X et al.: Class-IVmammalian alcohol dehydrogenase. Structural data of the rat stomach enzyme reveal a new class well separated from those already characterized. FEBS Letters 277: 115–118 (1990)PubMedGoogle Scholar
  205. 205.
    Park D. H. and Plapp B. V.: Isoenzymes of horse liver alcohol dehydrogenase active on ethanol and steroids: cDNA cloning, expression, and comparison of active sites. J. Biol. Chem. 266: 13296–302 (1991)PubMedGoogle Scholar
  206. 206.
    Pasero L. et al.: Complete amino acid sequence and location of the five disufide bridges in porcine pancreatic a-amylase. Biochim. biophys. Acta 869: 147–157 (1986)Google Scholar
  207. 207.
    Paulson J. C. and Colley K. J.: Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264: 17615–18 (1989)PubMedGoogle Scholar
  208. 208.
    Pavào M. S. G. et al.: Structural heterogeneity among unique sulfated L-galactans from different species of ascidians. J. Biol. Chem. 264: 9972–79 (1989)PubMedGoogle Scholar
  209. 209.
    Peddemors V. M., de Muelenaere H. J. H. and Dev-chand K.: Comparative milk composition of the bot-tlenosed dolphin (Tursiops truncatus), humpback dolphin (Sousa plumbea) and common dolphin (Delphinus delphis) from southern African waters. Comp. Biochem. Physiol. Pt. A 94: 639–641 (1989)Google Scholar
  210. 210.
    Pejler G. et al.: Structure and antithrombin-binding properties of heparin isolated from the clams Anoma-locardia brasiliana and Tivela mactroides. J. biol. Chem. 262: 11413–21 (1987)PubMedGoogle Scholar
  211. 211.
    Perkins S. J. et al.: Immunoglobulin fold and tandem repeat structure in proteoglycan N-terminal domains and link protein. J. mol. Biol. 206: 737–753 (1989)PubMedGoogle Scholar
  212. 212.
    Pernas R. V., Martinez I. R. and Rama M. F.: Purification and properties of Zn-dependent a-man-nosidase from lysosomes of Mytilus edulis L. hepato-pancreas. Comp. Biochem. Physiol. Pt. B 70: 125–131 (1981)Google Scholar
  213. 213.
    Peters C. W. B. et al.: The human lysozyme gene: Sequence organization and chromosomal localization. Eur. J. Biochem. 182: 507–516 (1989)PubMedGoogle Scholar
  214. 214.
    Poole A. R.: Proteoglycans in health and disease: Structures and functions. Biochem. J. 236: 1–14 (1986)PubMedGoogle Scholar
  215. 215.
    Prager E. M., Wilson A. C. and Arnheim N.: Widespread distribution of lysozyme g in egg white of birds. J. biol. Chem. 249: 7295–97 (1974)PubMedGoogle Scholar
  216. 216.
    Prager E. M. and Wilson A. C.: Ancient origin of lac-talbumin from lysozyme: Analysis of DNA and amino acid sequences. J. mol. Evol. 27: 326–335 (1988)PubMedGoogle Scholar
  217. 217.
    Pratviel-Sosa F. et al.: Studies on glycosidases and glucanases in Taumetopoea pityocampa larvae-II. Purification and some properties of a broad specificity (3-D-glucosidase. Comp. Biochem. Physiol. Pt. B 86: 173–178 (1987)Google Scholar
  218. 218.
    Prieto P. A. and Smith D. F.: A new sialyloligosaccha-ride from human milk: isolation and characterization using anti-oligosaccharide antibodies. Arch. Biochem. Biophys. 229: 650–656 (1984)PubMedGoogle Scholar
  219. 219.
    Probst J. C., Gertzen E. M. and Hoffmann W.: An integumentary mucin (FIM-B.l) from Xenopus laevis homologous with von Willebrand factor. Biochemistry 29: 6240–44 (1990)PubMedGoogle Scholar
  220. 220.
    Ramabrahmam P. and Subrahmanyam D.: Mitochondrial glycerol kinase of Culex pipiens. Insect Biochem. 13: 523–528 (1983)Google Scholar
  221. 221.
    Rat L., Veuille M. and Lepesant J. A.: Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J. mol. Evol. 33: 194–203 (1991)PubMedGoogle Scholar
  222. 222.
    Reinecke J. P.: Nutrition: artificial diets. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 4, pp. 394–419. Pergamon Press, Oxford 1985Google Scholar
  223. 223.
    Renwrantz L. et al.: A quantitative determination of the hemolymph carbohydrates of Helix pomatia. J. comp. Physiol. B 105: 185–188 (1976)Google Scholar
  224. 224.
    Ribeiro J. M. C. and Pereira M. E. A.: Midgut glycosidases of Rhodnius prolixus. Insect Biochem. 14: 103–108 (1984)Google Scholar
  225. 225.
    Riby J. and Galand G.: Rat intestinal brush border membrane trehalase: some Properties of the purified enzyme. Comp. Biochem. Physiol. Pt. B 82: 821–827 (1985)Google Scholar
  226. 226.
    Roche-Mayzaud O and Mayzaud P.: Purification of endo-and exolaminarinase and partial characterization of the exoacting form from the copepod Acartia clausi (Giesbrecht, 1889). Comp. Biochem. Physiol. Pt. B 88: 105–110 (1987)Google Scholar
  227. 227.
    Rodger J. C. and White I. G.: Glycogen not N- acetylglucosamine the prostatic carbohydrate of three Australian and American marsupials, and patterns of these sugars in Marsupialia. Comp. Biochem. Physiol. Pt. B 67: 109–113 (1980)Google Scholar
  228. 228.
    Rodriguez R. et al.: Structure of the pigeon lysozyme and its relationship with other type c lysozymes. Comp. Biochem. Physiol. Pt. B 88: 791–796 (1987)Google Scholar
  229. 229.
    Ropson I. J. and Powers D. A.: A novel dehydrogenase reaction mechanism for hexose-6-phosphate dehydrogenase isolated from the teleost Fundulus heteroclitus. J. Biol. Chem. 263: 11697–11703 (1988)PubMedGoogle Scholar
  230. 230.
    Rouland C. et al.: Synergistic activities of the enzymes involved in cellulose degradation, purified from Macrotermes mulleri and from its symbiontic fungus Termitomyces sp. Comp. Biochem. Physiol. Pt. B 91: 459–465 (1988)Google Scholar
  231. 231.
    Rowan R. G. and Dickinson W. J.: Two alternative transcripts coding for alcohol dehydrogenase accumulate with different species of picture-winged Dro-sophila. Genetics 114: 435–452 (1986)PubMedGoogle Scholar
  232. 232.
    Rowan R. G. and Dickinson W. J.: Nucleotide sequence of the genomic region encoding alcohol dehydrogenase in Drosophila affinidisjuncta. J. mol. Evol. 28: 43–54 (1989)Google Scholar
  233. 233.
    Rudakova V. Y., Shevchenko N. M. and Elyakova L. A.: Isolation and some properties of endo-B-1,6- glucanase from marine bivalve Chlamys abbidus. Comp. Biochem. Physiol. Pt. B 81: 677–682 (1985)Google Scholar
  234. 234.
    Santoro P. F. and Dain J. A.: A comparative study of P-N-acetylglucosaminidase from Mercenaria merce-naria, Mya arenaria and Spisula solidissima. Comp. Biochem. Physiol. Pt. B 69: 337–344 (1981)Google Scholar
  235. 235.
    Santos C. D. and Terra W. R.: Midgut a-glucosidase and P-fructosidase from Erinnyis ello larvae and imagoes. Physical and kinetic properties. Insect Biochem. 16: 819–824 (1986)Google Scholar
  236. 236.
    Sawhney R. S., HeringT. M. and Sandell L. J.: Biosynthesis of small proteoglycan-II (decorin) by chondrocytes and evidence for a procore protein. J. Biol. Chem. 266: 9231–40 (1991)Google Scholar
  237. 237.
    Schade S. Z. et al.: Sequence analysis of bovine lens aldose reductase. J. Biol. Chem. 265: 3628–35 (1990)PubMedGoogle Scholar
  238. 238.
    Schauer R. (ed.): Sialic acids. Springer, Wien 1982Google Scholar
  239. 239.
    Schauer R., Wember M. and Howard R. J.: Malaria parasites do not contain or synthesize sialic acids. Hoppe Seyler’s Z. physiol. Chem. 365: 185–194Google Scholar
  240. 240.
    Schibler U. et al.: The mouse a-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland and liver. J. mol. Biol. 155: 247–266 (1982)PubMedGoogle Scholar
  241. 241.
    Schindler M., Mirelman D. and Sharon N.: Substrate-induced evolution of the lysozymes. Bio-chim. biophys. Acta 482: 386–392 (1977)Google Scholar
  242. 242.
    Schneider P. M.: Purification and properties of three lysozymes from hemolymph of the cricket, Gryllus bimaculatus (De Geer). Insect Biochem. 15: 463–470Google Scholar
  243. 243.
    Seko A. et al.: Structural studies of fertilization-associated carbohydrate-rich glycoproteins (hyoso-phorins) isolated from the fertilized and unfertilized eggs of flounder, Paralichthys olivaceus. J. Biol. Chem. 264: 15922–29 (1989)PubMedGoogle Scholar
  244. 244.
    Settine R. L. and Prchal J.: Gas chromatographic/ mass spectrometric evidence for the identification of a heptitol and an octitol in human and Octodon degu eye lenses. Biochem. biophys. Res. Commun. 116: 988–993 (1983)Google Scholar
  245. 245.
    Sharma C. P. et al.: cDNA sequence of human class III alcohol dehydrogenase. Biochem. biophys. Res. Commun. 164: 631–637 (1989)Google Scholar
  246. 246.
    Simpson R. J. and Morgan F. J.: Complete amino acid sequence of embden goose (Anser anser) egg-white lysozyme. Biochim. biophys. Acta 744: 349–351 (1983)Google Scholar
  247. 247.
    Sing G. J. P. and Vardanis A.: Chitinases in the house fly, Musca domestica. Pattern of activity in the life cycle and preliminary characterization. Insect Biochem. 14: 215–218 (1984)Google Scholar
  248. 248.
    Smucker R. A. and Wright D. A.: Characteristics of Crassostrea virginica crystalline style chitin digestion. Comp. Biochem. Physiol. Pt. A 83: 489–493 (1986)Google Scholar
  249. 249.
    Smythe C., Villar-Palasi C. and Cohen P.: Structural and functional studies on rabbit liver glycogenin. Eur. J. Biochem. 183: 205–209 (1989)PubMedGoogle Scholar
  250. 250.
    Sorimachi H. et al.: Organization and primary sequence of multiple genes coding for the apopolysia-loglycoproteins of rainbow trout. J. mol. Biol. 211: 35–48 (1990)PubMedGoogle Scholar
  251. 251.
    Speck U.: Das Kohlenhydratspektrum in den Organen des Flußkrebses Orconectes limosus. Z. vergl. Physiol. 65: 51–69 (1969)Google Scholar
  252. 252.
    Spiess M. and Lodish H. F.: Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc. Nat. Acad. Sei. USA 82: 6465–69 (1985)Google Scholar
  253. 253.
    Stevenson J. R.: Dynamics of the integument. In: Bliss D. E. (ed.): The biology of Crustacea, Vol. 9, pp. 1–42. Acad. Press., New York 1985Google Scholar
  254. 254.
    Stewart I. M. et al.: Intestinal glycosidase activities in one adult and two suckling echidnas: absence of a neutral lactase (ß-D-galactosidase). Aust. J. biol. Sei. 36: 139–146 (1983)Google Scholar
  255. 255.
    Stoddart R. W: The biosynthesis of polysaccharides. Croom Helm, London 1984Google Scholar
  256. 256.
    Storey K. B.: Glycolysis and the regulation of crypo-protectant synthesis in liver of the freeze tolerant wood frog. J. comp. Physiol. B 157: 373–380 (1987)Google Scholar
  257. 257.
    Storey K. B. et al.: Glucose-6-phosphate dehydrogenase in cold hardy insects: Kinetic properties, freezing stabilization, and control of hexose monophosphate shunt activity. Insect Biochem. 21: 157–164 (1991)Google Scholar
  258. 258.
    Strumeyer D. H. et al.: Isozymes of a-amylase in porcine pancreas: population distribution. Comp. Biochem. Physiol. Pt. B 91: 351–357 (1988)Google Scholar
  259. 259.
    Sumida M. and Yamashita O.: Purification and some properties of soluble trehalase from midgut of phar-ate adult of the silkworm, Bombyx mori. Insect Biochem. 13: 257–265 (1983)Google Scholar
  260. 260.
    Sun S. C., Asling B. and Faye I.: Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J. Biol. Chem. 266: 6644–49 (1991)PubMedGoogle Scholar
  261. 261.
    Susskind B. M., Warren L. and Reeves R. E.: A pathway for the interconversion of hexose and pentose in the parasitic amoeba Entamoeba histolytica. Biochem. J. 204: 191–196 (1982)PubMedGoogle Scholar
  262. 262.
    Takano T. et al.: Polymorphism for the number of tandemly multiplicated glycerol-3-phosphate dehydrogenase genes in Drosophila melanogaster. Proc. Nat. Acad. Sei. USA 86: 5000–5004 (1989)Google Scholar
  263. 263.
    Takeuchi K.: Purification and characterization of exo-?-l,3-glucanase from a hatching supernatant of Strongylocentrotus intermedius. Can. J. Biochem. Cell Biol. 61: 54–62 (1983)PubMedGoogle Scholar
  264. 264.
    Tan A. W. H. and Nuttall F. Q.: In vivo phosphorylation of liver glycogen synthase. J. biol. Chem. 260: 4751–57 (1985)PubMedGoogle Scholar
  265. 265.
    Tanaka S. and Seno N.: A novel sulfated glycosami-noglycan, lingulan sulfate, composed of galactose and N-acetylgalactosamine from Lingula unguis. Biochim. biophys. Acta 704: 549–551 (1982)Google Scholar
  266. 266.
    Taylor E. C.: Cellulose digestion in a leaf eating insect, the Mexican bean beetle, Epilachna varivestis. Insect Biochem. 15: 315–320 (1985)Google Scholar
  267. 267.
    Terra W. R., Ferreira C. and Bastos F.: Phylogenetic considerations of insect digestion. Disaccharidases and the spatial organization of digestion in the Tenebrio molitor larvae. Insect Biochem. 15: 443–449 (1985)Google Scholar
  268. 268.
    Tiedtke A.: Purification and properties of secreted N- actyl-B-D-hexosaminidase of Tetrahymena thermo-phila. Comp. Biochem. Physiol. Pt. B 75: 239–243 (1983)Google Scholar
  269. 269.
    Trainer D. G. andTillinghast E. K.: Amylolytic activity of the crystalline style of Mya arenaria (Bivalvia, Mollusca). Comp. Biochem. Physiol. Pt. A 72: 99–103 (1982)Google Scholar
  270. 270.
    Trezise A. E. O. et al.: Cloning and sequencing of cDNA encoding baboon liver alcohol dehydrogenase: Evidence for a common ancestral lineage with the human alcohol dehydrogenase (3 subunit and for class IADH gene duplications. Proc. Nat. Acad. Sci. USA 86: 5454–58 (1989)PubMedGoogle Scholar
  271. 271.
    Tsai C. S. et al.: Purification and comparative studies of alcohol dehydrogenases. Comp. Biochem. Physiol. Pt. B 87: 79–85 (1987)Google Scholar
  272. 272.
    Tsukada T. and Yoshino M.: (^-Glucuronidase from Ampullaria. Purification and kinetic properties. Comp. Biochem. Physiol. Pt. B 86: 565–569 (1987)Google Scholar
  273. 273.
    Turnbull J. E. and Gallagher J. T.: Sequence analysis of heparan sulphate indicates defined location of N- sulphated glucosamine and iduronate 2-sulphate residues proximal to the protein-linkage region. Biochem. J. 277: 297–303 (1991)PubMedGoogle Scholar
  274. 274.
    Ueno R. and Yuan C. S.: Purification and properties of neutral (3-N-acetylglucosaminidase from carp blood. Biochim. biophys. Acta 1074: 79–84 (1991)Google Scholar
  275. 275.
    Usanga E. A. and Luzzatto L.: Adaptation of Plasmodium falciparum to glucose-6-phosphate dehydrogenase-deficient host red cells by production of parasite-encoded enzyme. Nature 313: 793–795 (1985)PubMedGoogle Scholar
  276. 276.
    Vaandrager S. H. et al.: Fractionation and kinetic properties of trehalase from flight muscles and hae-molymph of the locust, Locusta migratoria. Insect Biochem. 19: 89–94 (1989)Google Scholar
  277. 277.
    Vanderzel A. et al.: The involvement of catalase in alcohol metabolism in Drosophila melanogaster larvae. Arch. Biochem. Biophys. 287: 121–127 (1991)Google Scholar
  278. 278.
    Veivers P. C., O’Brien R. W. and Slaytor M.: Selective defaunation of Mastotermes darwiniensis and its effect on cellulose and starch digestion. Insect Biochem. 13: 95–101 (1983)Google Scholar
  279. 279.
    Vieira R. P., Mulloy B. and Mourao P. A. S.: Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3–0- sulfo-6-D-glucuronyl residues. J. Biol. Chem. 266: 13530–36 (1991)PubMedGoogle Scholar
  280. 280.
    Villarroya A.: The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect „short chain“ alcohol dehydrogenase lacking zinc. Eur. J. Biochem. 180: 191–197 (1989)PubMedGoogle Scholar
  281. 281.
    Vilotte J. L. et al.: Sequence of the goat a-lact-albumin-encoding gene: Comparison with the bovine gene and evidence of related sequences in the goat genome. Gene 98: 271–276 (1991)PubMedGoogle Scholar
  282. 282.
    Vulliamy T. J. et al.: Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc. Nat. Acad. Sci. USA 85: 5171–75 (1988)PubMedGoogle Scholar
  283. 283.
    Vynios D. H. and Tsiganos C. P.: Squid proteoglycans: Isolation and characterization of three populations from cranial cartilage. Biochim. biophys. Acta 1033: 139–147 (1990)Google Scholar
  284. 284.
    Wakita M. and Hoshino S.: Physicochemical properties of a reserve polysaccharide from sheep rumen ciliates genus Entodinium. Comp. Biochem. Physiol. Pt. B 65: 571–574 (1980)Google Scholar
  285. 285.
    Wallace C. A. et al.: L-Gulonolactone oxidase is present in the invertebrate, Limulus polyphemus. Experientia 41: 485–486 (1985)Google Scholar
  286. 286.
    Weaver J. R., Andrews J. M. and Sullivan D. T.: Nucleotide sequence of the Adh-1 gene of Drosophila navojoa. Nucleic Acids Res. 17: 7524 (1989)PubMedGoogle Scholar
  287. 287.
    Weisman L. S., Krummel B. M. and Wilson A. C.: Evolutionary shift in the site of cleavage of prelyso-zyme. J. biol. Chem. 261: 2309–13 (1986)PubMedGoogle Scholar
  288. 288.
    White J. W.: Honey. Adv. Food Res. 24: 287–374 (1978)Google Scholar
  289. 289.
    Wiebauer K. et al.: A 78-kilobase region of mouse chromosome 3 contains salivary and pancreatic amylase genes and a pseudogene. Proc. Nat. Acad. Sci. USA 82: 5446–49 (1985)PubMedGoogle Scholar
  290. 290.
    Winberg J. O. et al.: Biochemical properties of alcohol dehydrogenase from Drosophila lebanonensis. Biochem. J. 235: 481–490 (1986)PubMedGoogle Scholar
  291. 291.
    Wolfenson C. and de Lederkremer R. M.: Purification and composition of glycoconjugates from Crithi-dia oncopelti. Comp. Biochem. Physiol. Pt. B 77: 555–560 (1984)Google Scholar
  292. 292.
    Xavier M. T. et al.: Chemical structures of a galacto-se-rich glycoprotein of Leishmania tarentolae. Comp. Biochem. Physiol. Pt. B 88: 101–104 (1987)Google Scholar
  293. 293.
    Yamasaki K.: Characterization and partial purification of a mannanlike polysaccharide in the eggs of Locusta migratoria. Insect Biochem. 3: 79–90 (1973)Google Scholar
  294. 294.
    Yet M. G. and Wold F.: The distribution of glycan structures in individual N-glycosylation sites in animal and plant glycoproteins. Arch. Biochem. Biophys. 278: 356–364 (1990)PubMedGoogle Scholar
  295. 295.
    Yokota K., Nishi Y. and Takesue Y.: Purification and characterization of amphiphilic trehalase from rabbit small intestine. Biochim. biophys. Acta 881: 405–414 (1986)Google Scholar
  296. 296.
    Zachary D. and Hoffmann D.: Lysozyme is stored in the granules of certain haemocyte types in Locusta. J. Insect Physiol. 30: 405–411 (1984)Google Scholar
  297. 297.
    Zera A. J., Koehn R. K. and Hall J. G.: Allozymes and biological adaptation. In: Kerkut G. A. and Gilbert L. I. (eds.): Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, pp. 633–674. Pergamon Press, Oxford 1985Google Scholar
  298. 298.
    Zhang W. et al.: Primary structure of rabbit skeletal muscle glycogen synthase deduced from cDNA clones. Faseb J. 3: 2532–36 (1989)PubMedGoogle Scholar
  299. 299.
    Zinkler D., Gotze M. and Fabian K.: Cellulose digestion in „primitive insects“ (Apterygota) and oribatid mites. Zool. Beitr. N. F. 30: 17–28 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Urich
    • 1
  1. 1.Institut für ZoologieUniversität MainzMainzGermany

Personalised recommendations