Skip to main content

Proteins of Muscle and the Cytoskeleton

  • Chapter
Comparative Animal Biochemistry
  • 409 Accesses

Abstract

The contractile elements of striated vertebrate skeletal muscle, the myofibrils, contain thin filaments, which are 6 nm in diameter and consist mainly of actin, and thicker myosin filaments with a diameter of 16 nm (Fig. 10.1). During muscle contraction, the filaments undergo a sliding movement relative to each other (sliding filament mechanism). This is brought about by the reversible formation of bridges between the myosin molecules and the actin filaments, which bind, change their conformation and then dissociate (bridge cycle). The required energy is supplied by the hydrolysis of ATP. The sliding distance (step size) per molecule of ATP hydrolysed is controversial; the most recent measurements give a value of 40 nm [102, 286]. As yet, the molecular processes of bridge formation and change in conformation have not been fully defined [79, 257, 267]. Because one ATP is hydrolysed per bridge cycle, the ATPase activity can be used as an in vitro indication of contraction. Isolated myosin has a very low ATPase activity, but this increases up to 1000-fold after combination with actin to give actomyosin. ATPase is inhibited in relaxed muscle; the relief of ATPase inhibition and the triggering of contraction in activated muscle involves an increase in the sarcoplasmic Ca2+ concentration from about 0.1 μmol/1 at rest to about 10 μmol/l on activation. The calcium-dependent regulation of contraction is brought about by tropomyosin and the troponin complex, which are an integral part of the thin filaments [238].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts H. J. M., Lubsen N. H. and Schoenmakers J. G. G.: Crystallin gene expression during rat lens development. Eur. J. Biochem. 183: 31–36 (1989)

    PubMed  CAS  Google Scholar 

  2. Abe H. et al.: Sequence of cDNAs encoding actin depolymerizing factor and cofilin of embryonic chicken skeletal muscle: Two functionally distinct actin-regulatory proteins exhibit high structural homology. Biochemistry 29: 7420–25 (1990)

    PubMed  CAS  Google Scholar 

  3. Alonso S. et al.: Comparison of three actin-coding sequences in the mouse: evolutionary relationships between actin genes of warm-blooded vertebrates. J. mol. Evol. 23: 11–22 (1986)

    PubMed  CAS  Google Scholar 

  4. Ampe C. et al.: The primary structure of the basic isoform of Acanthamoeba profilin. Eur. J. Biochem. 170: 597–601 (1988)

    PubMed  CAS  Google Scholar 

  5. Anderson P.: Molecular genetics of nematode muscle. Annual Rev. Genet. 23: 507–525 (1989)

    CAS  Google Scholar 

  6. Arimura C. et al.: Primary structure of chicken skeletal muscle and fibroblast a-actinins deduced from cDNA sequences. Eur. J. Biochem. 177: 649–655 (1988)

    PubMed  CAS  Google Scholar 

  7. Baba M. L. et al.: The early adaptive evolution of calmodulin. Mol. Biol. Evol. 1: 442–455 (1984)

    PubMed  CAS  Google Scholar 

  8. Babu Y. S. et al.: Three-dimensional structure of calmodulin. Nature 315: 37–40 (1985)

    PubMed  CAS  Google Scholar 

  9. Balcarek J. M. and Cowan N. J.: Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multi-gene family. Nucleic Acids Res. 13: 5527–43 (1985)

    PubMed  CAS  Google Scholar 

  10. Ball E. et al.: Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51: 221–228 (1987)

    PubMed  CAS  Google Scholar 

  11. Barahona I. et al.: Sequence of one a- and two 3tubulin genes of Tetrahymena pyriformis. Structural and functional relationships with other eukaryotic tubulin genes. J. mol. Biol. 202: 365–382 (1988)

    PubMed  CAS  Google Scholar 

  12. Bargou R. C. E. F. and Leube R. E.: The synaptophysin-encoding gene in rat and man is specifically transcribed in neuroendocrine cells. Gene 99: 197–204 (1991)

    PubMed  CAS  Google Scholar 

  13. Bartegi A. et al.: Isolation, characterization and immunocytochemical localization of caldesmon-like protein from molluscan striated muscle. Eur. J. Biochem. 185: 589–595 (1989)

    PubMed  CAS  Google Scholar 

  14. Barton G. J. et al: Amino acid sequence analysis of the anexin super-gene family of proteins. Eur. J. Biochem. 198: 749–760 (1991)

    PubMed  CAS  Google Scholar 

  15. Bazari W. L. et al.: Villin sequence and peptide map identify six homologous domains Proc. Nat. Acad. Sci. USA 85: 4986–90 (1988)

    CAS  Google Scholar 

  16. Beltrama D. M., Arce C. A. and Barra H. S.: Tubulin, but not microtubules, is the substrate for tubulin tyrosine ligase in mature avian erythrocytes. J. biol. Chem. 262: 15673–77 (1987)

    Google Scholar 

  17. Benian G M. et al.: Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 342: 45–50 (1989)

    PubMed  CAS  Google Scholar 

  18. Bennett A. F, Hayes N. V. L. and Baines A. J.: Site specificity in the interactions of synapsin-I with tubulin. Biochem. J. 276: 793–799 (1991)

    PubMed  CAS  Google Scholar 

  19. Bennett V.: The membrane skeleton of human erythrocytes. Annual Rev. Biochem. 54: 273–304 (1985)

    CAS  Google Scholar 

  20. Bereiter-Hahn J, Matolsky A. G. and Richards K. S. (eds.): Biology of the integument, 2 vol. set. Springer, Berlin 1986

    Google Scholar 

  21. di Bernardo M. G. et al.: Nucleotide sequence of a full length cDNA clone encoding for 3-tubulin of the sea urchin Paracentrotus lividus. Nucleic Acids Res. 17: 5851 (1989)

    PubMed  Google Scholar 

  22. Blumenberg M.: Evolution of homologous domains of cytoplasmic intermediate filament proteins and lamins Mol. Biol. Evol. 6: 53–65 (1989)

    CAS  Google Scholar 

  23. Bodnaryk R. P. and Morishima I.: Isolation and characterization of a calmodulin lacking trimethyllysine from the fat body of the silkworm, Bombyx mori. Insect Biochem. 14: 11–17 (1984)

    CAS  Google Scholar 

  24. Boron M. D. et al.: The sequence of chick a-actinin reveals homologies to spectrin and calmodulin. J. biol. Chem. 262: 17623–29 (1987)

    Google Scholar 

  25. Breitbart R. E., Andreadis A. and Nadal-Ginard B.: Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annual Rev. Biochem. 56: 467–495 (1987)

    CAS  Google Scholar 

  26. Brewer J. M., Wunderlich J. K. and Ragland W. L.: The amino acid sequence of avian thymic hormone, a parvalbumin. Biochimie 72: 653–660 (1990)

    PubMed  CAS  Google Scholar 

  27. Brzeska H., Lynch T. J. and Korn E. D.: Acanthamoeba myosin I heavy chain kinase is activated by phosphatidylserine-enhanced phosphorylation. J. Biol. Chem. 265: 3591–94 (1990)

    PubMed  CAS  Google Scholar 

  28. Burke D. J. and Ward S.: Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans. J. mol. Biol. 171: 1–29 (1983)

    PubMed  CAS  Google Scholar 

  29. Caldwell J. E. et al.: cDNAs encoding the 13 subunit of Cap Z, the actin-capping protein of the Z line of muscle. J. Biol. Chem. 264: 12648–52 (1989)

    PubMed  CAS  Google Scholar 

  30. Carlier M. E: Actin. Protein structure and filament dynamics. J. Biol. Chem. 266: 1–4 (1991)

    PubMed  CAS  Google Scholar 

  31. Carlin R. K., Scheele G. A. and Cohen W. D.: Similarities between the Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton and a-fodrin. Arch. Biochem. Biophys. 230: 13–20 (1984)

    PubMed  Google Scholar 

  32. Carroll S. L., Bergsma D. J. and Schwartz R. J.: Structure and complete nucleotide sequence of the chicken a-smooth muscle (aortic) actin gene. An actin gene which produces multiple messenger RNAs. J. biol. Chem. 261: 8965–76 (1986)

    PubMed  CAS  Google Scholar 

  33. Castellani L and Cohen C.: Rod phosphorylation favors folding in a catch muscle myosin. Proc. Nat. Acad. Sci. USA 84: 4058–62 (1987)

    PubMed  CAS  Google Scholar 

  34. Chang K. S., Rothblum K. N. and Schwartz R. J.: The complete sequence of the chicken a-cardiac actin gene: a highly conserved vertebrate gene. Nucleic Acids Res. 13: 1223–37 (1985)

    PubMed  CAS  Google Scholar 

  35. Cheng Q. et al.: Cloning, sequencing and expression of a full-length rabbit fast skeletal tropinin-C cDNA. FEBS Letters 228: 22–26 (1988)

    Google Scholar 

  36. Chilcote T. J. and Johnson K. A.: Phosphorylation of Tetrahymena 22 S dynein. J. Biol. Chem. 265: 17257–66 (1990)

    PubMed  CAS  Google Scholar 

  37. Chiou S. H. et al.: Sequence comparison of gammacrystallins from the reptilian and other vertebrate species. FEBS Letters 221: 134–138 (1987)

    PubMed  CAS  Google Scholar 

  38. Chiou S. H.: A novel crystallin from octopus lens. FEBS Letters 241: 261–264 (1988)

    PubMed  CAS  Google Scholar 

  39. Chiou S. H. et al.: Comparison of the gammacrystallins isolated from eye lenses of shark and carp. Unique secondary and tertiary structure of shark gamma-crystallins. FEBS Letters 275: 111–113 (1990)

    PubMed  CAS  Google Scholar 

  40. Chiou S. H. et al.: Ostrich crystallins Structural characterization of delta-crystallin with enzymic activity. Biochem. J. 273 (2): 295–300 (1991)

    PubMed  CAS  Google Scholar 

  41. Cleveland D. W. and Sullivan K. F.: Molecular biology and genetics of tubulin. Annual Rev. Biochem. 54: 331–365 (1985)

    CAS  Google Scholar 

  42. Cohen C. M. and Palek J.: Cellular and molecular biology of normal and abnormal erythroid membranes. Wiley-Liss, New York 1990

    Google Scholar 

  43. Collins J. H., Cox J. A. and Theibert J L: Amino acid sequence of a sarcoplasmic calcium-binding protein from the sandworm Nereis diversicolor. J. Biol. Chem. 263: 15378–85 (1988)

    PubMed  CAS  Google Scholar 

  44. Collins J. H. et al: Amino acid sequences and calcium-binding properties of two isoforms of barnacle troponin-C. Biochemistry 30: 702–707 (1991)

    PubMed  CAS  Google Scholar 

  45. Conzelmann K. K. and Helftenbein E.: Nucleotide sequence and expression of two 3-tubulin genes in Stylonychia lemnae. J. mol. Biol. 198: 643–653 (1987)

    PubMed  CAS  Google Scholar 

  46. Cooper J. A. et al.: Purification and characterization of actophorin, a new 15.000 dalton actin-binding protein from Acanthamoeba castellanii. J. biol. Chem. 261: 477–485 (1986)

    PubMed  CAS  Google Scholar 

  47. Cooper T. A. and Ordahl C. R: A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J. biol. Chem. 260: 11140–48 (1985)

    PubMed  CAS  Google Scholar 

  48. Cox K. H. et al.: Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J. mol. Biol. 188: 159–172 (1986)

    PubMed  CAS  Google Scholar 

  49. Crain W. R. jr. et al.: The sequence of a sea urchin muscle actin gene suggests a gene conversion with a cytoskeletal actin gene. J. mol. Evol. 25: 37–45 (1987)

    PubMed  CAS  Google Scholar 

  50. Cross G. S. et al.: Cytoskeletal actin gene families of Xenopus borealis and Xenopus laevis. J. mol. Evol. 27: 17–28 (1988)

    PubMed  CAS  Google Scholar 

  51. Cupples C. G. and Pearlman R. E.: Isolation and characterization of the actin gene from Tetrahymena thermophila. Proc. Nat. Acad. Sci. USA 83: 5160–64 (1986)

    PubMed  CAS  Google Scholar 

  52. Darwish H. M. et al.: Molecular cloning of the cDNA and chromosomal gene for vitamin D-dependent calcium-binding protein of rat intestine. Proc. Nat. Acad. Sci. USA 84: 6108–11 (1987)

    PubMed  CAS  Google Scholar 

  53. Dayhoff M. O. (ed.): Atlas of protein sequence and structure, Vol. 5 and Suppl. 1–3. Nat. Biomed. Res. Foundation, Washington 1972–78

    Google Scholar 

  54. Detrich III H. W, Johnson K. A. and MarcheseRagona S. P.: Polymerization of Antarctic fish tubulins at low temperatures: Energetic aspects. Biochemistry 28: 10085–93 (1989)

    PubMed  CAS  Google Scholar 

  55. D’Haese J. D. and Carlhoff D.: Localization and histochemical characterization of myosin isoforms in earthworm body wall muscle. J. comp. Physiol. B 157: 171–179 (1987)

    Google Scholar 

  56. Dibb N. J. and Newman A. J.: Evidence that introns arose at proto-splice sites. Embo J. 8: 2015–21 (1989)

    PubMed  CAS  Google Scholar 

  57. Djian P. and Green H.: Involucrin gene of tarsioids and other primates. Alternatives in the evolution of the segment of repeats. Proc. Nat. Acad. Sci. USA 88: 5321–25 (1991)

    PubMed  CAS  Google Scholar 

  58. Dodemont H., Riemer D. and Weber K.: Structure of an invertebrate gene encoding cytoplasmic intermediate filament (IF) proteins. Implications for the origin and the diversification of IF proteins. Embo J. 9: 4083–94 (1990)

    PubMed  CAS  Google Scholar 

  59. Doring V. and Stick R.: Gene structuere of nuclear lamin-LIII of Xenopus laevis. A model for the evolution of IF proteins from a lamin-like ancestor. Embo J. 9: 4073–81 (1990)

    PubMed  CAS  Google Scholar 

  60. Doyle K. E. et al.: Drosophila melanogaster contains a single calmodulin gene. Further structure and expression studies. J. mol. Biol. 213: 599–605 (1990)

    PubMed  CAS  Google Scholar 

  61. den Dunnen J. T. et al.: Concerted and divergent evolution within the rat gamma-crystallin gene family. J. mol. Biol. 189: 37–46 (1986)

    Google Scholar 

  62. Durica D. S.: DNA sequence analysis and structural relationships among the cytoskeletal actin genes of the sea urchin. J. mol. Evol. 28: 72–86 (1989)

    Google Scholar 

  63. Dustin P.: Microtubules, 2. ed. Springer, Berlin 1984

    Google Scholar 

  64. Edamatsu M. et al.: The primary structure of Tetrahymena profilin. Biochem. biophys. Res. Commun. 175: 543–550 (1991)

    CAS  Google Scholar 

  65. Emerson C. P. jr. and Bernstein S. I.: Molecular genetics of myosin. Annual Rev. Biochem. 56: 695–726 (1987)

    CAS  Google Scholar 

  66. Endow S. A. and Hatsumi M.: A multimember kinesin gene family in Drosophila. Proc. Nat. Acad. Sci. USA 88: 4424–27 (1991)

    PubMed  CAS  Google Scholar 

  67. Ervasti J. M., Kahl S. D. and Campbell K. P.: Purification of dystrophin from skeletal muscle. J. Biol. Chem. 266: 9161–65 (1991)

    PubMed  CAS  Google Scholar 

  68. Files J. G., Can S. and Hirsch D.: Actin gene family of Caenorhabditis elegans. J. mol. Biol. 164: 355–375 (1983)

    PubMed  CAS  Google Scholar 

  69. Fliegel L. and Michalak M.: Fast-twitch and slow-twitch skeletal muscles express the same isoform of calreticulin. Biochem. biophys. Res. Commun. 177: 979–984 (1991)

    CAS  Google Scholar 

  70. Fliegner K. H., Ching G. Y. and Liem R. K. H.: The predicted amino acid sequence of an a-internexin is that of a novel neuronal intermediate filament protein. Embo J. 9: 749–755 (1990)

    PubMed  CAS  Google Scholar 

  71. Fodor W. L.: Human ventricular/slow twitch myosin alkali light chain gene characterization, sequence, and chromosomal location. J. Biol. Chem. 264: 2143–49 (1989)

    PubMed  CAS  Google Scholar 

  72. Forryschaudies S. and Hughes S. H.: The chicken tropomyosin-I gene generates 9 messenger RNAs by alternative splicing. J. Biol. Chem. 266: 13821–27 (1991)

    CAS  Google Scholar 

  73. Franz J. K. and Franke W. W.: Cloning of cDNA and amino acid sequence of a cytokeratin expressed in oocytes of Xenopus laevis. Proc. Nat. Acad. Sci. USA 83: 6475–79 (1986)

    PubMed  CAS  Google Scholar 

  74. Fraser R. D. B.: Focus on intermediate filaments. Trends biochem. Sci. 12: 43–45 (1987)

    Google Scholar 

  75. Fujii Y. et al.: Purification and characterization of rhocrystallin from Japanese common bull frog lens. J. Biol. Chem. 265: 9914–23 (1990)

    PubMed  CAS  Google Scholar 

  76. Fullmer C. S. and Wasserman R. H.: Chicken intestinal 28-kilodalton calbindin-D: complete amino acid sequence and structural considerations. Proc. Nat. Acad. Sci. USA 84: 4772–76 (1987)

    PubMed  CAS  Google Scholar 

  77. Garland D. et al.: Zeta-crystallin is a major protein in the lens of Camelus dromedarius. Arch. Biochem. Biophys. 285: 134–136 (1991)

    PubMed  CAS  Google Scholar 

  78. Gatti J. L. et al.: Outer arm dynein from trout spermatozoa. Purification, polypeptide composition, and enzymatic properties. J. Biol. Chem. 264: 11450–57 (1989)

    PubMed  CAS  Google Scholar 

  79. Geeves M. A.: The dynamics of actin and myosin association and the crossbridge model of muscle contraction (Review Article). Biochem. J. 274 (1): 1–14 (1991)

    PubMed  CAS  Google Scholar 

  80. Gerday C., Gilles R. and Bolis L. (eds.): Calcium and calcium binding proteins. Springer, Berlin 1988

    Google Scholar 

  81. Gerday C., Collin S. and Gerardin-Otthiers N.: The amino acid sequence of the parvalbumin from the very fast swimbladder muscle of the toadfish (Opsanus tau). Comp. Biochem. Physiol. Pt. B 93: 49–55 (1989)

    CAS  Google Scholar 

  82. Gerke V. and Koch W.: The cDNA sequence of chicken annexin II. Nucleic Acids Res. 18: 4246 (1990)

    PubMed  CAS  Google Scholar 

  83. Gibbons I. R.: Dynein ATPases as microtubule motors. J. Biol. Chem. 263: 15837–40 (1988)

    PubMed  CAS  Google Scholar 

  84. Gillespie J. M., Marshall R. C. and Woods E. E.: A comparison of lizard claw keratin proteins with those of avian beak and claw. J. mol. Evol. 18: 121–129 (1982)

    PubMed  CAS  Google Scholar 

  85. Goedert M. et al.: Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats. Differential expression of tau protein mRNAs in human brain. Embo J. 8: 393–399 (1989)

    PubMed  CAS  Google Scholar 

  86. Görlach M. et al.: Characterization of calmodulin from Drosophila heads. Biochim. biophys. Acta 832: 228–232 (1985)

    Google Scholar 

  87. Goldman R. D. and Steinert P. M. (eds.): Cellular and molecular biology of intermediate filaments. Plenum. New York 1990

    Google Scholar 

  88. Goodwin E. B., Szent-Györgyi A. G. and Leinwand L. A.: Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs. J. biol. Chem. 262: 11052–56 (1987)

    PubMed  CAS  Google Scholar 

  89. Grand R. J. A. and Perry S. V.: Preparation of the alkali and P light chains of chicken gizzard myosin. Amino acid sequence of the alkali light chain. Biochem J. 211: 267–272 (1983)

    PubMed  CAS  Google Scholar 

  90. Green K. J. et al.: Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J. Biol. Chem. 265: 2603–12 (1990)

    PubMed  CAS  Google Scholar 

  91. Halsall D. J. and Hammer J. A.: A 2nd isoform of chicken brush border myosin-I contains a 29-residue inserted sequence that binds calmodulin. FEBS Letters 267: 126–130 (1990)

    PubMed  CAS  Google Scholar 

  92. Hanke P. D., Lepinske H. M. and Storti R. V.: Characterization of a Drosophila cDNA clone that encodes a 252-amino acid non-muscle tropomyosin isoform. J. biol. Chem. 262: 17370–73 (1987)

    PubMed  CAS  Google Scholar 

  93. Hardin P. E. et al.: Spec2 genes of Strongylocentrotus purpuratus. Structure and differential expression in embryonic aboral ectoderm cells. J. mol. Biol. 202: 417–431 (1988)

    PubMed  CAS  Google Scholar 

  94. Hardy D. O., Bender P. K. and Kretsinger R. H.: Two calmodulin genes are expressed in Arbacia punctulata. An ancient gene duplication is indicated. J. mol. Biol. 199: 223–227 (1988)

    PubMed  CAS  Google Scholar 

  95. Harper D. S. and Jahn C. L.: Differential use of termination codons in ciliated protozoa. Proc. Nat. Acad. Sci. USA 86: 3252–56 (1989)

    PubMed  CAS  Google Scholar 

  96. Head J. F.: Amino acid sequence of a low molecular weight, high affinity calcium-binding protein from the optic lobe of the squid Loligo pealei. J. Biol. Chem. 264: 7202–09 (1989)

    PubMed  CAS  Google Scholar 

  97. Hejtmancik J. F. et al.: cDNA and deduced protein sequence for the ßB1-crystallin polypeptide of the chicken lens. Conservation of the PAPA sequence. J. biol. Chem. 261: 982–987 (1986)

    PubMed  CAS  Google Scholar 

  98. Hendricks W. et al.: The lens protein aA-crystallin of the blind mole rat, Spalax ehrenbergi: Evolutionary change and functional constraints. Proc. Nat. Acad. Sci. USA 84: 5320–24 (1987)

    Google Scholar 

  99. Hendriks W. et al.: Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical. A single-copy gene product with two distinct functions. Proc. Nat. Acad. Sci. USA 85: 7114–18 (1988)

    PubMed  CAS  Google Scholar 

  100. Herring B. P., Stull J. T. and Gallagher P. J.: Domain characterization of rabbit skeletal muscle myosin light chain kinase. J. Biol. Chem. 265: 1724–30 (1990)

    PubMed  CAS  Google Scholar 

  101. Hightower R. C. and Meagher R. B.: The molecular evolution of actin. Genetics 114: 333–343 (1986)

    Google Scholar 

  102. Higuchi H. and Goldman Y. E.: Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibers. Nature 352: 352–354 (1991)

    PubMed  CAS  Google Scholar 

  103. Hinkelaust S., Hinkel P. and Beinbrech G.: Four cross-bridge strands and high paramyosin content in the myosin filaments of honey bee flight muscles. Experientia 46: 872–874 (1990)

    CAS  Google Scholar 

  104. Hirono M. et al.: Tetrahymena actin. Cloning and sequencing of the Tetrahymena actin gene and identification of its gene product. J. mol. Biol. 194: 181–192 (1987)

    PubMed  CAS  Google Scholar 

  105. Hisanaga S. I., Ikai A. and Hirokawa N.: Molecular architecture of the neurofilament. I. Subunit arrangement of neurofilament L protein in the intermediate-sized filament. J. mol. Biol. 211: 857–869 (1990)

    CAS  Google Scholar 

  106. Hock R. S., Davis G. and Speicher D. W.: Purification of human smooth muscle filamin and characterization of structural domains and functional sites. Biochemistry 29: 9441–51 (1990)

    PubMed  CAS  Google Scholar 

  107. Hofmann S., Duesterhoeft S. and Pette D.: Six myosin heavy chain isoforms are expressed during chick breast muscle development. FEBS Letters 238: 245–248 (1988)

    PubMed  CAS  Google Scholar 

  108. Hogg D. et al.: Characterization of the human ßcrystallin gene HußA3/A1 reveals ancestral relationships among the ß“-crystallin superfamily. J. biol. Chem. 261: 12420–27 (1986)

    PubMed  CAS  Google Scholar 

  109. Hohl D. et al.: Characterization of human loricin. Structure and function of a new class of epidermal cell envelope proteins. J. Biol. Chem. 266: 6626–36 (1991)

    PubMed  CAS  Google Scholar 

  110. Holberton D., Baker D. A. and Marshall J.: Segmented a-helical coiled-coil structure of the protein giardin from the Giardia cytoskeleton. J. mol. Biol. 204: 789–795 (1988)

    PubMed  CAS  Google Scholar 

  111. Horowitz J. A. and Hammer J. A.: A new Acanthamoeba myosin heavy chain Cloning of the gene and immunological identification of the polypeptide. J. Biol. Chem. 265: 20646–52 (1990)

    PubMed  CAS  Google Scholar 

  112. Hunziker W.: The 28-kDa vitamin D-dependent calcium-binding protein has six-domain structure. Proc. Nat. Acad. Sci. USA 83: 7578–82 (1986)

    PubMed  CAS  Google Scholar 

  113. Imboden M. A. et al.: Transcription of the intergenic regions of tubulin gene cluster of Trypanosoma brucei: evidence for a polycistronic transcription unit in a eukaryote. Nucleic Acids Res. 15: 7357–68 (1987)

    PubMed  CAS  Google Scholar 

  114. Ishimoda-Tagaki T. and Kobayashi M.: Molecular heterogeneity and tissue specificity of tropomyosin obtained from various bivalves. Comp. Biochem. Physiol. 88B: 443–452 (1987)

    Google Scholar 

  115. Jauregui-Adell J. et al: Amino acid sequence of an a-parvalbumin, pI 4.88, from frog skeletal muscle. Eur. J. Biochem. 123: 337–345 (1982)

    PubMed  CAS  Google Scholar 

  116. Jauregui-Adell J., Wnuk W. and Cox C. A.: Complete amino acid sequence of the sarcoplasmic calcium-binding protein (SCP-I) from crayfish (Astacus leptodactylus). FEBS Letters 243: 209–212 (1989)

    PubMed  CAS  Google Scholar 

  117. Jaworsji C. J. and Piatigorsky J.: A pseudo-exon in the functional human aA-crystallin gene. Nature 337: 752–754 (1989)

    Google Scholar 

  118. Johnston P. A. et al.: Two novel annexins from Drosophila melanogaster. Cloning, characterization, and differential expression in development. J. Biol. Chem. 265: 11382–88 (1990)

    PubMed  CAS  Google Scholar 

  119. de Jong W. W. et al.: a-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: Molecular evolution and reptilian phylogeny. Mol. Biol. Evol. 2: 484–493 (1985)

    PubMed  Google Scholar 

  120. de Jong W. W. et al.: Evolution of the eye lens crystal-lins: The stress connection. Trends biochem. Sci. 14: 365–368 (1989)

    Google Scholar 

  121. Julien J. P. et al.: Sequence and structure of the mouse gene coding the largest neurofilament subunit. Gene 68: 307–314 (1988)

    PubMed  CAS  Google Scholar 

  122. Kagawa H. et al.: Paramyosin gene (unc-15) of Caenorhabditis elegans. Molecular cloning, nucleotide sequence and models for thick filament structure. J. mol. Biol. 207: 311–333 (1989)

    PubMed  CAS  Google Scholar 

  123. Kapprell H. P., Cowin P. and Franke W. W.: Biochemical characterization of the soluble form of the junctional plaque protein, plakoglobin, from different cells. Eur. J. Biochem. 166: 505–517 (1987)

    PubMed  CAS  Google Scholar 

  124. Katsuragawa Y. et al.: Two distinct nonmuscle myosinheavy-chain mRNAs are differentially expressed in various chicken tissues. Identification of a novel gene family of vertebrate non-sarcomeric myosin heavy chains. Eur. J. Biochem. 184: 611–616 (1989)

    PubMed  CAS  Google Scholar 

  125. Kaufmann S. et al.: Talin binds to actin and promotes filament nucleation. FEBS Letters 284: 187–191 (1991)

    PubMed  CAS  Google Scholar 

  126. Kaufmann S. H.: Additional members of the rat liver lamin polypeptide family. Structural and immunological characterization. J. Biol. Chem. 264: 13946–55 (1989)

    PubMed  CAS  Google Scholar 

  127. Keen J. H.: Clathrin and associated assembly and disassembly proteins. Annual Rev. Biochem. 59: 415–438 (1990)

    CAS  Google Scholar 

  128. Ketchum A. S. et al.: Complete sequence of the Drosophila nonmuscle myosin heavy-chain transcript. Proc. Nat. Acad. Sci. USA 87: 6316–20 (1990)

    PubMed  CAS  Google Scholar 

  129. Kiehart D. P.: Molecular genetic dissection of myosin. Cell 60: 347–350 (1990)

    PubMed  CAS  Google Scholar 

  130. Kimura K. et al.: Troponin from nematode: purification and characterization of troponin from Ascaris body wall muscle. Comp. Biochem. Physiol. Pt. B 88: 399–407 (1987)

    Google Scholar 

  131. Kirchhausen T. et al.: Clathrin light chains LCA and LCB are similar, polymorphic, and share repeated heptad motifs. Science 236: 320–324 (1987)

    PubMed  CAS  Google Scholar 

  132. Kirchhausen T. et al.: Clathrin heavy chain: Molecular cloning and complete primary structure. Proc. Nat. Acad. Sci. USA 84: 8805–09 (1987)

    PubMed  CAS  Google Scholar 

  133. Kirchhausen T. et al.: AP17 and AP19, the mammalian small chains of the clathrin-associated protein complexes show homology to Yapl7p, their putative homolog in yeast. J. Biol. Chem. 266: 11153–57 (1991)

    PubMed  CAS  Google Scholar 

  134. Klemenz R. et al.: aB-Crystallin is a small heat shock protein. Proc. Nat. Acad. Sci. USA 88: 3652–56 (1991)

    Google Scholar 

  135. Kligman D. and Hilt D. C.: The S100 protein family. Trends biochem. Sci. 13: 437–443 (1988)

    CAS  Google Scholar 

  136. Klinge E. M. et al.: Evolution of keratin genes: Different protein domains evolve by different pathways. J. mol. Evol. 24: 319–329 (1987)

    PubMed  CAS  Google Scholar 

  137. Knapp B. et al.: Nonepidermal members of the keratin multigene family: cDNA sequences and in situ localization of the mRNAs. Nucleic Acids Res. 14: 751–763 (1986)

    PubMed  CAS  Google Scholar 

  138. Kobayashi R., Hidaka H. and Tashima Y.: Purification, characterization, and partial sequence analysis of the 32-kDa calcimedin from chicken gizzard. Arch. Biochem. Biophys. 277: 203–210 (1990)

    PubMed  CAS  Google Scholar 

  139. Kobayashi T. et al.: The primary structure of a new Mr 18.000 calcium vector protein from amphioxus. J. biol. Chem. 262: 2613–23 (1987)

    PubMed  CAS  Google Scholar 

  140. Kobayashi T. et al: Amino acid sequence of crayfish troponin I. J. Biol. Chem. 264: 1551–57 (1989)

    PubMed  CAS  Google Scholar 

  141. Kobayashi T. et al.: Amino acid sequences of the two major isoforms of troponin C from crayfish. J. Biol. Chem. 264: 18247–59 (1989)

    PubMed  CAS  Google Scholar 

  142. Koller M. and Stehler E. E.: Characterization of an intronless human calmodulin-like pseudogene. FEBS Letters 239: 121–128 (1988)

    PubMed  CAS  Google Scholar 

  143. Korsgren C. et al.: Complete amino acid sequence and homologies of human erythrocyte membrane protein band 4.2. Proc. Nat. Acad. Sci. USA 87: 613–617 (1990)

    PubMed  CAS  Google Scholar 

  144. Kosik K. S. et al.: The primary structure and analysis of the squid kinesin heavy chain gene. J. Biol. Chem. 265: 3278–83 (1990)

    PubMed  CAS  Google Scholar 

  145. Kowbel D. J. and Smith M. J.: The genomic nucleotide sequences of two differentially expressed actin-coding genes from the sea star Pisaster ochraceus. Gene 77: 297–308 (1989)

    PubMed  CAS  Google Scholar 

  146. Krause K. H. et al.: Plant cells contain calsequestrin. J. Biol. Chem. 264: 4269–72 (1989)

    PubMed  CAS  Google Scholar 

  147. Krause M. et al.: Wild-type and mutant actin genes in Caenorhabditis elegans. J. mol. Biol. 208: 381–392 (1989)

    PubMed  CAS  Google Scholar 

  148. Krieger J. et al.: Cloning, sequencing and expression of locust tropomyosin. Insect Biochem. 20: 173–184 (1990)

    CAS  Google Scholar 

  149. Kuehn G. D. and Hageman J. H.: Calmodulin-like protein from Bacillus subtilis. Biochem. biophys. Res. Commun. 134: 212–217 (1986)

    Google Scholar 

  150. Kuznetsov S. A. and Gelfland V. I.: 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Letters 212: 145–148 (1987)

    PubMed  CAS  Google Scholar 

  151. Kwiatkowski D. J. et al.: Plasma and cytoplasmic gel-solins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323: 455–458 (1986)

    PubMed  CAS  Google Scholar 

  152. Kwiatkowski D. J. and Bruns G. A. P: Human profilin. Molecular cloning, sequence comparison, and chromosomal analysis. J. biol. Chem. 263: 5910–15 (1988)

    PubMed  CAS  Google Scholar 

  153. Kwon H. et al.: Isolation of the regulatory domain of scallop myosin. Role of the essential light chain in calcium binding. Proc. Nat. Acad. Sci. USA 87: 4771–75 (1990)

    PubMed  CAS  Google Scholar 

  154. Labeit S. et al.: Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Letters 282: 313–316 (1991)

    PubMed  CAS  Google Scholar 

  155. Lambert S. et al.: cDNA sequence for human erythrocyte ankyrin. Proc. Nat. Acad. Sci. USA 87: 1730–34 (1990)

    Google Scholar 

  156. Lambooy P. K. and Korn E. D.: Purification and characterization of actobindin, a new actin monomer-binding protein from Acanthamoeba castellanii. J. biol. Chem. 261: 17150–55 (1986)

    PubMed  CAS  Google Scholar 

  157. Landon E et al.: Multiple mRNAs encode peripherin, a neuronal intermediate filament protein. Embo J. 8: 1719–26 (1989)

    PubMed  CAS  Google Scholar 

  158. de Lanerolle P. and Nishikawa M.: Regulation of embryonic smooth muscle myosin by protein kinase C. J. Biol. Chem. 263: 9071–74 (1988)

    PubMed  Google Scholar 

  159. Leathers V. L. et al.: Calbindin D-28K, a 1-,25dihydroxyvitamin D3-induced calcium-binding protein, binds five or six calcium ions with high affinty. J. Biol. Chem. 265: 9838–41 (1990)

    PubMed  CAS  Google Scholar 

  160. Lee G., Cowan N. and Kirschner M.: The primary structure and heterogeneity of tau protein from mouse brain. Science 239: 285–288 (1988)

    PubMed  CAS  Google Scholar 

  161. Lee M. G. S. et al.: A putative flagellar Ca-binding protein of the flagellum of trypanosomatid protozoan parasites. Nucleic Acids Res. 18: 4252 (1990)

    PubMed  CAS  Google Scholar 

  162. Lees J. E et al.: The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it. Embo J. 7: 1947–55 (1988)

    PubMed  CAS  Google Scholar 

  163. Lehman W., Sheldon A. and Madonia W.: Diversity in smooth muscle thin filament composition. Biochim. biophys. Acta 914: 35–39 (1987)

    CAS  Google Scholar 

  164. Lenz S. et al.: The alkali light chains of human smooth and non-muscle myosins are endoded by a single gene. Tissue-specific expression by alternative splicing pathways. J. Biol. Chem. 264: 9009–15 (1989)

    PubMed  CAS  Google Scholar 

  165. Levy E. et al.: Structure and evolutionary origin of the gene encoding mouse NF-M, the middlemolecular-mass neurofilament protein. Eur. J. Biochem. 166: 71–77 (1987)

    PubMed  CAS  Google Scholar 

  166. Libri D. et al.: A nonmuscle tropomyosin is encoded by the smooth/skeletal 13-tropomyosin gene and its RNA is transcribed from an internal promoter. J. Biol. Chem. 265: 3471–73 (1990)

    PubMed  CAS  Google Scholar 

  167. Liew C. C. et al.: Complete sequence and organization of the human cardiac 13-myosin heavy chain gene. Nucleic Acids Res. 18: 3647–51 (1990)

    PubMed  CAS  Google Scholar 

  168. Lindenthal S. and Schubert D.: Monomeric erythrocyte band-3 protein transports anions. Proc. Nat. Acad. Sci. USA 88: 6540–44 (1991)

    PubMed  CAS  Google Scholar 

  169. Little M. and Seehaus T: Comparative analysis of tubulin sequences. Comp. Biochem. Physiol. Pt. B 90: 655–670 (1988)

    CAS  Google Scholar 

  170. Lucin S. V. et al.: Frog lens 13A1-crystallin: the nucleotide sequence of the cloned cDNA and computer graphics modelling of the three-dimensional structure. Biochim. biophys. Acta 916: 163–171 (1987)

    Google Scholar 

  171. Lynch T. J. et al.: Purification and characterization of a third isoform of myosin I from Acanthamoeba castellanii. J. Biol. Chem. 264: 19333–39 (1989)

    PubMed  CAS  Google Scholar 

  172. Maingon R. et al.: The tubulin genes of Trypanosoma cruzi. Eur. J. Biochem. 171: 285–291 (1988)

    PubMed  CAS  Google Scholar 

  173. Maita G., Maita T. and Umegane T.: The primary structure of L-1 light chain of chicken fast skeletal muscle myosin and its genetic implication. FEBS Letters 126: 111–113 (1981)

    PubMed  Google Scholar 

  174. Maita T., Chen J. I. and Matsuda G.: Amino-acid sequence of the 20,000-molecular-weight light chain of chicken gizzard-muscle myosin. Eur. J. Biochem. 117: 417–424 (1981)

    PubMed  CAS  Google Scholar 

  175. Maita T. et al.: The primary structure of the myosin head. Proc. Nat. Acad. Sci. USA 84: 416–420 (1987)

    PubMed  CAS  Google Scholar 

  176. Manseau L. J., Ganetzky B. and Craig E. A.: Molecular and genetic characterization of the Drosophila melanogaster 87E actin gene region. Genetics 119: 407–420 (1988)

    PubMed  CAS  Google Scholar 

  177. Martinez I. et al.: Comparsison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic charr Salvelinus alpinus (L.). Sequential expression of different myosin heavy chains during development of the fast white skeletal muscle. Eur. J. Biochem. 195: 743–753 (1991)

    PubMed  CAS  Google Scholar 

  178. Matsuda G. et al.: Amino acid sequences of the cardiac L-2A, L-2B and gizzard 17,000-Mr light chains of chicken muscle myosin. FEBS Letters 135: 232–236 (1981)

    PubMed  CAS  Google Scholar 

  179. McIntosh J. R. and Porter M. E.: Enzymes for microtubule-dependent motility. J. Biol. Chem. 264: 6001–04 (1989)

    PubMed  CAS  Google Scholar 

  180. McKeon F D., Kirschner M. W. and Caput D.: Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319: 463–468 (1986)

    PubMed  CAS  Google Scholar 

  181. McNally E. M. et al.: Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. J. mol. Biol. 210: 665–671 (1989)

    PubMed  CAS  Google Scholar 

  182. Michel F. and Rudloff V.: Isolation and characterization of the rainbow trout erythrocyte band-3 protein. Eur. J. Biochem. 181: 181–187 (1989)

    PubMed  CAS  Google Scholar 

  183. Millake D. B. et al.: The cDNA sequence of a human placental a-actinin. Nucleic Acids Res. 17: 6725 (1989)

    PubMed  CAS  Google Scholar 

  184. Milner R. E. et al.: Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J. Biol. Chem. 266: 7155–65 (1991)

    PubMed  CAS  Google Scholar 

  185. Mimura T., Yamanobe T. and Sugi H.: Isolation and characterization of calmodulin from a molluscan smooth muscle. Comp. Biochem. Physiol. Pt. B 81: 559–563 (1985)

    CAS  Google Scholar 

  186. Miwa T. and Kamada S.: The nucleotide sequence of a human smooth muscle (enteric type) gamma-actin cDNA. Nucleic Acids Res. 18: 4263 (1990)

    PubMed  CAS  Google Scholar 

  187. Miyazaki J. I., Sekiguchi K. and Hirabayashi T.: Tissue specificity of tropomyosin from a horseshoe crab, Tachypleus tridentatus. Comp. Biochem. Physiol. Pt. B 85: 679–685 (1986)

    Google Scholar 

  188. Mohun T. et al.: A third striated muscle actin gene is expressed during early development in the amphibian Xenopus laevis. J. mol. Biol. 202: 67–76 (1988)

    PubMed  CAS  Google Scholar 

  189. Molina M. I. et al.: The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J. biol. Chem. 262: 6478–88 (1987)

    PubMed  CAS  Google Scholar 

  190. Moncrief N. D., Kretsinger R. H. and Goodman M.: Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. mol. Evol. 30: 522–562 (1990)

    CAS  Google Scholar 

  191. Moon R. T. and McMahon A. P.: Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs emcompassing the coding region of human nonerythroid a-spectrin. J. Biol. Chem. 265: 4427–33 (1990)

    PubMed  CAS  Google Scholar 

  192. Moormann R. J. M. et al.: Strict co-linearity of genetic and protein folding domains in an intragenically duplicated rat lens y-crystallin gene. J. mol. Biol. 171: 353–368 (1983)

    PubMed  CAS  Google Scholar 

  193. Morishima I. and Bodnaryk R. P.: Amino acid composition of insect calmodulins lacking trimethyllysine. Comp. Biochem. Physiol. Pt. B 80: 419–423 (1985)

    Google Scholar 

  194. Moriyama K. et al.: Destrin, a mammalian actindepolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA. J. Biol. Chem. 265: 5768–73 (1990)

    PubMed  CAS  Google Scholar 

  195. Morris G. L. et al.: Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca-Mg)-ATPase. J. Biol. Chem. 266: 11270–75 (1991)

    PubMed  CAS  Google Scholar 

  196. Mounier N., Gaillard J. and Prudhomme J. C.: Nucleotide sequence of the coding region of two actin genes in Bombyx mori. Nucleic Acids Res. 15: 2781 (1987)

    PubMed  CAS  Google Scholar 

  197. Mulders J. W. M. et al.: lambda-Crystallin, a major rabbit lens protein, is related to hydroxyacylcoenzyme A dehydrogenase. J. Biol. Chem. 263: 15462–66 (1988)

    PubMed  CAS  Google Scholar 

  198. Murayama J. I., Utsumi H. and Hamada A: Amino acid sequence of monkey erythrocyte glycophorin MK. Its amino acid sequence has a striking homology with that of human glycophorin A. Biochim. biophys. Acta 999: 273–280 (1989)

    CAS  Google Scholar 

  199. Murphy D. B. et al.: The sequence and expression of the divergent 3-tubulin in chicken erythrocytes. J. biol. Chem. 262: 14305–12 (1987)

    PubMed  CAS  Google Scholar 

  200. Myers M. W. et al.: The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. Embo J. 6: 1617–26 (1987)

    PubMed  CAS  Google Scholar 

  201. Myldes D. L.: Heterogeneity of myofibrillar proteins in lobster fast and slow muscles–Variants of troponin, paramyosin, and myosin light chains comprise 4 distinct protein assemblages. J. exp. Zool. 234: 23–32 (1985)

    Google Scholar 

  202. Nakajima-Iijima S. et al.: Molecular structure of the human cytoplasmic 13-actin gene: interspecies homology of sequence in the introns. Proc. Nat. Acad. Sci. USA 82: 6133–37 (1985)

    PubMed  CAS  Google Scholar 

  203. Nikovits jr. W., Kuncio G. and Ordahl C. P.: The chicken fast skeletal muscle troponin I gene: exon organization and sequence. Nucleic Acids Res. 14: 3377–90 (1986)

    PubMed  CAS  Google Scholar 

  204. Nojima H.: Structural organization of multiple rat calmodulin genes. J. mol. Biol. 208: 269–282 (1989)

    PubMed  CAS  Google Scholar 

  205. Obar R. A. et al.: Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTPbinding proteins. Nature 347: 256–261 (1990)

    PubMed  CAS  Google Scholar 

  206. Ohshima S. et al.: Generation of multiple troponin T isoforms is a common feature of the muscles in various chordate animals. Comp. Biochem. Physiol. Pt. B 90: 779–784 (1988)

    CAS  Google Scholar 

  207. Ojima T. and Nishita K.: Troponin from akazara scallop striated muscles. J. biol. Chem. 261: 16749–54 (1986)

    PubMed  CAS  Google Scholar 

  208. Okaimatsuo Y. et al.: A novel myosin heavy chain isoform in the vascular smooth muscle. Biochem. biophys. Res. Commun. 176: 1365–70 (1991)

    CAS  Google Scholar 

  209. Opperman L. and Ross E. P.: The adult fruit bat (Rousettus aegyptiacus) expresses only calbindinD9K (vitamin-D-dependent calcium-binding protein) in its kidney. Comp. Biochem. Physiol. Pt. B 97: 295–299 (1990)

    Google Scholar 

  210. Padan R. et al.: Isolation an characterization of the Drosophila nuclear envelope otefin cDNA. J. Biol. Chem. 265: 1808–13 (1990)

    Google Scholar 

  211. Palmisano W. A. and Henzl M. T.: Partial nucleotide sequence of the parvalbumin from chicken thymus designated „avian thymus hormone“. Biochem. biophys. Res. Commun. 167: 1286–93 (1990)

    CAS  Google Scholar 

  212. Pankov R. G. et al.: Vertebrate liver cytokeratins: a comparative study. Biochem. cell. Biol. 65: 547–557 (1987)

    CAS  Google Scholar 

  213. Parmentier M., Lawson D. E. M. and Vassart G.: Human 27-kDa calbindin complementary DNA sequence–Evolutionary and functional implications. Eur. J. Biochem. 170: 207–215 (1987)

    PubMed  CAS  Google Scholar 

  214. Parry D. A. D., Conway J. E and Steiner P. M.: Structural studies on lamin. Similarities and differences between lamin and intermediate-filament proteins. Biochem. J. 238: 305–308 (1986)

    PubMed  CAS  Google Scholar 

  215. Pearlstone J. R., Carpenter M. R. and Smillie L. B.: Amino acid sequence of rabbit cardiac troponin T. J. biol. Chem. 261: 16795–810 (1986)

    PubMed  CAS  Google Scholar 

  216. Pegues J. C. and Friedberg E: Multiple messenger RNAs encoding human calmodulin. Biochem. biophys. Res. Commun. 172: 1145–49 (1990)

    CAS  Google Scholar 

  217. Perret C., Lomri N. and Thomasset M.: Evolution of the EF-hand calcium-binding protein family. Evidence for exon shuffling and intron insertion. J. mol. Evol. 27: 351–364 (1988)

    PubMed  CAS  Google Scholar 

  218. Peter B. et al.: Mouse cytoskeletal gamma-actin: Analysis and implications of the structure of cloned cDNA and processed pseudogenes. J. mol. Biol. 203: 665–675 (1988)

    PubMed  CAS  Google Scholar 

  219. Peter M. et al.: Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J. mol. Biol. 208: 393–404 (1989)

    PubMed  CAS  Google Scholar 

  220. Pette D.: Metabolic heterogeneity of muscle fibers. J. exp. Biol. 115: 179–189 (1985)

    PubMed  CAS  Google Scholar 

  221. Phillips M. A. et al.: Primary structure of keratinocyte transglutaminase. Proc. Nat. Acad. Sci. USA 87: 9333–37 (1990)

    PubMed  CAS  Google Scholar 

  222. Phillips S. B. et al.: The pancomulins: a group of basic low molecular weight proteins in mammalian epidermis and epithelium that may function as cornified envelope precursors. Comp. Biochem. Physiol. Pt. B 95: 781–788 (1990)

    CAS  Google Scholar 

  223. Pochet R., Lawson D. E. M. and Heizmann C W. (eds.): Calcium binding proteins in normal and transformed cells. Plenum, New York 1990

    Google Scholar 

  224. Pollard T. D. and Cooper J. A.: Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annual Rev. Biochem. 55: 987–1035 (1986)

    CAS  Google Scholar 

  225. Ponnambalam S et al.: Conservation and diversity in families of coated vesicle adaptins. J. Biol. Chem. 265: 4814–20 (1990)

    PubMed  CAS  Google Scholar 

  226. Powell B. C. et al.: Clustered arrangement of keratin intermediate filament genes. Proc. Nat. Acad. Sci. USA 83: 5048–52 (1986)

    PubMed  CAS  Google Scholar 

  227. Pratt L. F. and Cleveland D. W.: A survey of the a-tubulin gene family in chicken: unexpected sequence heterogeneity in the polypeptides encoded by five expressed genes. Embo J. 7: 931–940 (1988)

    PubMed  CAS  Google Scholar 

  228. Presland R. B., Whitbread L. A. and Rogers G. E.: Avian keratin genes. II. Chromosomal arrangement and close linkage of three gene families. J. mol. Biol. 209: 561–576 (1989)

    PubMed  CAS  Google Scholar 

  229. Price G. J. et al.: Primary sequence and domain structure of chicken vinculin. Biochem. J. 259: 453–461 (1989)

    PubMed  CAS  Google Scholar 

  230. Ramaekers E. et al.: Classification of rat lens crystallins and identification of proteins encoded by rat lens mRNA. Eur. J. Biochem. 128: 503–508 (1982)

    PubMed  CAS  Google Scholar 

  231. Rearden A. et al.: Evolution of the glycophorin gene family in the hominoid primates. Biochem. Genet. 28: 209–222 (1990)

    PubMed  CAS  Google Scholar 

  232. Rees D. J. G. et al.: Sequence and domain structure of talin. Nature 347: 685–688 (1990)

    PubMed  CAS  Google Scholar 

  233. Reeves S. A. et al.: Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Nat. Acad. Sci. USA 86: 5178–82 (1989)

    PubMed  CAS  Google Scholar 

  234. van Rens G. L. M. et al: Structure of the bovine eye lens gamma-s-crystallin gene (formerly (3s). Gene 78: 225–233 (1989)

    PubMed  Google Scholar 

  235. Rodgers M. E. et al.: Thermal stability of myosin rod from various species. Biochemistry 26: 8703–08 (1987)

    PubMed  CAS  Google Scholar 

  236. Rogers G. E. et al. (eds.): The biology of wool and hair. Chapman & Hall, New York 1989

    Google Scholar 

  237. Rothnagel J. A. and Steinert P. M.: The structure of the gene for mouse filaggrin and a comparison of the repeating units. J. Biol. Chem. 265: 1862–65 (1990)

    PubMed  CAS  Google Scholar 

  238. Rüegg J. C.: Calcium in muscle activation. A comparative approach, corr. 2nd printing. Springer, Berlin 1988

    Google Scholar 

  239. Ruiz-Opazo N. and Nadal-Ginard B.: a-Tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J. biol. Chem. 262: 4755–65 (1987)

    Google Scholar 

  240. Sahr K. E. et al.: The complete DNA and polypeptide sequences of human erythroid a-spectrin. J. Biol. Chem. 265: 4434–43 (1990)

    PubMed  CAS  Google Scholar 

  241. Sasaki T., Tanokura M. and Asaoka K.: The complete amino acid sequence of bullfrog (Rana catesbeiana) pavalbumin Pi4.97. FEBS Letters 268: 249–251 (1990)

    PubMed  CAS  Google Scholar 

  242. Schachat E. H., Bronson D. D. and McDonald O. B.: Heterogenity of contractile proteins. A continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J. biol. Chem. 260: 1108–13 (1985)

    PubMed  CAS  Google Scholar 

  243. Schaefer W. H. et al: Amino acid sequence of a novel calmodulin from Paramecium tetraurelia that contains dimethyllysine in the first domain J biol. Chem. 262: 1025–29 (1987)

    PubMed  CAS  Google Scholar 

  244. Schliwa M.: Cytoskeleton. An introductory survey. Springer, Wien 1986

    Google Scholar 

  245. Sen Gupta B., Friedberg E. and Detera-Wadleigh S. D.: Molecular analysis of human and rat calmodulin complementary DNA clones. Evidence for additional active genes in these species. J. biol. Chem. 262: 16663–70 (1987)

    Google Scholar 

  246. Shpetner H. S. and Vallee R. B.: Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421–432 (1989)

    PubMed  CAS  Google Scholar 

  247. Siezen R. J. et al.: Human lens gamma-crystallins Isolation, identification and characterization of the expressed gene products. Proc. Nat. Acad. Sci. USA 84: 6088–92 (1987)

    PubMed  CAS  Google Scholar 

  248. Simmen R. C. M. et al.: The structural organization of the chicken calmodulin gene. J. biol. Chem. 260: 907–912 (1985)

    PubMed  CAS  Google Scholar 

  249. Smillie L. B., Golosinska K. and Reinach F. C.: Sequence of complete cDNA encoding four variants of chicken skeletal muscle troponin T. J. Biol. Chem. 263: 18816–20 (1988)

    PubMed  CAS  Google Scholar 

  250. Smith C. W. J., Pritchard K. and Marston S. B.: The mechanism of calcium regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J. biol. Chem. 262: 116–122 (1987)

    PubMed  CAS  Google Scholar 

  251. Smith V. L. et al.: Structure and sequence of the Drosophila melanogaster calmodulin gene. J. mol. Biol. 196: 471–485 (1987)

    PubMed  CAS  Google Scholar 

  252. Sobue K. and Sellers J. R.: Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems (Minireview). J. Biol. Chem. 266: 12115–18 (1991)

    PubMed  CAS  Google Scholar 

  253. Soellner P., Quinlan R. A. and Franke W. W.: Identification of a distinct soluble subunit of an intermediate filament protein: Tetrameric vimentin from living cells. Proc. Nat. Acad. Sci. USA 82: 7929–33 (1985)

    PubMed  CAS  Google Scholar 

  254. Sparrow L. G. et al.: The amino acid sequence of component 7c, a type II intermediate-filament protein from wool. Biochem. J. 261: 1015–22 (1989)

    PubMed  CAS  Google Scholar 

  255. Speicher D. W. and Marchesi V. T.: Erythrocyte spectrin is comprised of many homologous helical segments. Nature 311: 177–179 (1984)

    PubMed  CAS  Google Scholar 

  256. Spithill T. W. and Samaras N.: The molecular karyotype of Leishmania major and mapping of a- and 13tubulin gene families to multiple unlinked chromosome loci. Nucleic Acids Res. 13: 4155–69 (1985)

    PubMed  CAS  Google Scholar 

  257. Squire J. M. (ed.): Molecular mechanisms in muscle contraction. MacMillan, New York 1990

    Google Scholar 

  258. Srihari T. et al.: Purification and characterization of myosins from human and rabbit skeletal muscles by using specific monoclonal antibodies. Comp. Biochem. Physiol. Pt. B 85: 523–529 (1986)

    CAS  Google Scholar 

  259. Stearns T., Evans L. and Kirschner M.: GammaTubulin is a highly conserved component of the centrosome. Cell 65: 825–836 (1991)

    PubMed  CAS  Google Scholar 

  260. Stedman H H et al.: The human embryonic myosin heavy chein. Complete primary structure reveals evolutionary relationships with other developmental isoforms. J. Biol. Chem. 265: 3568–76 (1990)

    PubMed  CAS  Google Scholar 

  261. Steinert P. M., Steven A. C. and Roop D. R.: The molecular biology of intermediate filaments. Cell 42: 411–419 (1985)

    PubMed  CAS  Google Scholar 

  262. Steinert P. M.: The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. J. Biol. Chem. 265: 8766–74 (1990)

    PubMed  CAS  Google Scholar 

  263. Stevens E. C.: Calmodulin, an introduction. Can. J. Biochem. Cell Biol. 61: 906–910 (1983)

    PubMed  CAS  Google Scholar 

  264. Stieger J., Wyler T. and Seebeck T.: Partial purification and characterization of microtubular protein from Trypanosoma brucei. J. biol. Chem. 259: 4596–4602 (1984)

    PubMed  CAS  Google Scholar 

  265. Stossel T. P.: From signal to pseudopod. How cells control cytoplasmic actin assembly (Minireview). J. Biol. Chem. 264: 18261–64 (1989)

    PubMed  CAS  Google Scholar 

  266. Suedhof T. C.: The structure of the human synapsin I gene and protein. J. Biol. Chem. 265: 7849–52 (1990)

    Google Scholar 

  267. Sugi H. and Pollack G. (eds.): Molecular mechanism of muscular contraction. Plenum, New York 1988

    Google Scholar 

  268. Sullivan K. F. et al.: Sequence and expression of the chicken ß3 tubulin gene. A vertebrate testis (3-tubulin isotype. J. biol. Chem. 261: 13317–22 (1986)

    PubMed  CAS  Google Scholar 

  269. Swanson M. E., Sturner S. F. and Schwartz J. H.: Structure and expression of the Aplysia californica calmodulin gene. J. mol. Biol. 216: 545–553 (1990)

    PubMed  CAS  Google Scholar 

  270. Swaroop A., Swaroop M. and Garen A.: Sequence analysis of the complete cDNA and encoded polypeptide for the glued gene of Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 84: 6501–05 (1987)

    PubMed  CAS  Google Scholar 

  271. Takagi T. et al.: The amino acid sequence of the calmodulin obtained from sea anemone (Metridium senile) muscle. Biochem. biophys. Res. Commun. 96: 377–381 (1980)

    CAS  Google Scholar 

  272. Takagi T., Kobayashi T. and Konishi K.: Amino-acid sequence of sarcoplasmic calcium-binding protein from scallop (Patinopecten yessoensis) adductor striated muscle. Biochim. biophys. Acta 787: 252–257 (1984)

    CAS  Google Scholar 

  273. Tagaki T, Kudoh S and Konishi K.: The amino acid sequence of ascidian (Halocynthia roretzi) myosin light chains Biochim. biophys. Acta 874: 318–325 (1986)

    Google Scholar 

  274. Takagi T. and Cox J. A.: Primary structure of the target of calcium vector protein of amphioxus. J. Biol. Chem. 265: 19721–27 (1990)

    PubMed  CAS  Google Scholar 

  275. Takagi T. and Cox J. A.: Amino acid sequences of four isoforms of amphioxus sarcoplasmic calcium-binding proteins. Eur. J. Biochem. 192: 387–399 (1990)

    PubMed  CAS  Google Scholar 

  276. Takagi T. et al.: Primary structure of profilins from 2 species of echinoidea and Physarum polycephalum. Eur. J. Biochem. 192: 777–781 (1990)

    PubMed  CAS  Google Scholar 

  277. Takahashi K. and Nadalginard B.: Molecular cloning and sequence analysis of smooth muscle calponin. J. Biol. Chem. 266: 13284–88 (1991)

    PubMed  CAS  Google Scholar 

  278. Takahashi S., Takano-Ohmuro H. and Maruyama K.: Regulaton of Drosophila myosin ATPase activity by phosphorylation of myosin light chains. II. Flightless mfd-fly. Comp. Biochem. Physiol. Pt. B 95: 183–185 (1990)

    CAS  Google Scholar 

  279. Takemasa T. et al.: The third calmodulin family protein in Tetrahymena. Cloning of the cDNA for Tetrahymena calcium-binding protein of 23 kDa (TCBP23). J. Biol. Chem. 265: 2514–17 (1990)

    PubMed  CAS  Google Scholar 

  280. Takemoto L. J., Hansen J. S. and Horwitz J.: Inter-species conservation of the main intrinsic polypeptide (MIP) of the lens membrane. Comp. Biochem. Physiol. Pt. B 68: 101–106 (1981)

    Google Scholar 

  281. Tang T. K. et al.: Selective expression of an erythroidspecific isoform of protein 4.1. Proc. Nat. Acad. Sci. USA 85: 3713–17 (1988)

    PubMed  CAS  Google Scholar 

  282. Teumer J. and Green H.: Divergent evolution of part of the involucrin gene in the homoids. Unique intra-genic duplications in the gorilla and human. Proc. Nat. Acad. Sci. USA 86: 1283–86 (1989)

    PubMed  CAS  Google Scholar 

  283. Theurkauf W. E. et al.: Tissue-specific and constitutive a-tubulin genes of Drosophila melanogaster code for structurally distinct proteins. Proc. Nat. Acad. Sci. USA 83: 8477–81 (1986)

    PubMed  CAS  Google Scholar 

  284. Tomarev S. I. and Zinovieva D.: Squid major lens polypeptides are homologous to glutathione Stransferase subunits. Nature 336: 86–88 (1988)

    PubMed  CAS  Google Scholar 

  285. Toyofuku T. and Zak R.: Characterization of cDNA and genomic sequences encoding a chicken phospholamban. J. Biol. Chem. 266: 5375–83 (1991)

    PubMed  CAS  Google Scholar 

  286. Toyoshima Y. Y., Kron S. J. and Spudich J. A.: The myosin step size. Measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proc. Nat. Acad. Sci. USA 87: 7130–34 (1990)

    PubMed  CAS  Google Scholar 

  287. Treveso S. et al.: Frog brain expresses a 60 kDa calcium-binding protein similar to mammalian calreticulin. Biochem. biophys. Res. Commun. 175: 444–450 (1991)

    CAS  Google Scholar 

  288. Vandekerckhove J. and Weber K.: Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J. mol. Biol. 179: 391–413 (1984)

    PubMed  CAS  Google Scholar 

  289. Vandekerckhove J., Lal A. A. and Korn E. D.: Amino acid sequence of Acanthamoeba actin. J. mol. Biol. 172: 141–147 (1984)

    PubMed  CAS  Google Scholar 

  290. Vandekerckhove J., Bugaisky G. and Buckingham M.: Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J. biol. Chem. 261: 1938–43 (1986)

    Google Scholar 

  291. Vignal A. et al.: A novel gene member of the human glycophorin A and B gene family: Molecular cloning and expression. Eur. J. Biochem. 191: 619–625 (1990)

    PubMed  CAS  Google Scholar 

  292. Vilasante A. et al.: Six mouse a-tubulin mRNAs encode five distinct isotypes: Testis-specific expression of two sister genes. Mol cell. Biol. 6: 2409–19 (1986)

    Google Scholar 

  293. Volpe P. et al.: „Calciosome“, a cytoplasmic organelle: the inositol 1,4,5-triphosphate-sensitive Calcium-store of nonmuscle cells? Proc. Nat. Acad. Sci. USA 85: 1091–95 (1988)

    Google Scholar 

  294. Volpe P. and Simon B. J.: The bulk of calcium released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin. FEBS Letters 278: 274–278 (1991)

    PubMed  CAS  Google Scholar 

  295. Voorter C. E. M. et al.: Age-dependent deamidation of chicken aA-crystallin. FEBS Letters 221: 249–252 (1987)

    PubMed  CAS  Google Scholar 

  296. Wang S. M., Sun M. C. and Jeng C. J.: Location of the C-terminus of titin at the Z-line region in the sarcomere. Biochem. biophys. Res. Commun. 176: 189–193 (1991)

    CAS  Google Scholar 

  297. Ward S. et al.: Genomic organizations of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans. J. mol. Biol. 199: 1–13 (1988)

    PubMed  CAS  Google Scholar 

  298. Wasenius V. M. et al.: a-Actinin and spectrin have common structural domains. FEBS Letters 221: 73–76 (1987)

    PubMed  CAS  Google Scholar 

  299. Watabe S. and Hartshorne D. J.: Paramyosin and the catch mechanism. Comp. Biochem. Physiol. Pt. B 96: 639–646 (1990)

    CAS  Google Scholar 

  300. Weber K., Plessmann U. and Ulrich W.: Cytoplasmic intermediate filament proteins of invertebrates are closer to nuclear lamins than are vertebrate intermediate filament proteins; sequence characterization of two muscle proteins of a nematode. Embo J. 8: 3221–27 (1989)

    PubMed  CAS  Google Scholar 

  301. Weeds A. G. et al.: Preparation and characteriziation of pig plasma and platelet gelsolins. Eur. J. Biochem. 161: 69–76 (1986)

    PubMed  CAS  Google Scholar 

  302. Weller P. A. et al.: Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc. Nat. Acad. Sci. USA 87: 5667–71 (1990)

    PubMed  CAS  Google Scholar 

  303. Wesseling J. G. et al.: Nucleotide sequence and expression of a ß-tubulin-encoding gene from Plasmodium falciparum, a malarial parasite of man. Gene 83: 301–309 (1989)

    PubMed  CAS  Google Scholar 

  304. Whitbread L. A., Gregg K. and Rogers G. E.: The structure and expression of a gene encoding chick claw keratin. Gene 101: 223–229 (1991)

    PubMed  CAS  Google Scholar 

  305. Wiche G.: High-Mt microtubule-associated proteins: properties and functions. Biochem. J. 259: 1–12 (1989)

    PubMed  CAS  Google Scholar 

  306. Wilson P. W. et al.: Structure of chick chromosomal genes for calbindin and calretinin. J. mol. Biol. 200: 615–625 (1988)

    PubMed  CAS  Google Scholar 

  307. Winder S. J. and Walsh M. P.: Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J. Biol. Chem. 265: 10148–55 (1990)

    PubMed  CAS  Google Scholar 

  308. Winkelmann J. C. et al.: Full-length sequence of the cDNA for human erythroid I3-spectrin. J. Biol. Chem. 265: 11827–32 (1990)

    PubMed  CAS  Google Scholar 

  309. Winrow M. A. and Sodja A.: Initial characterization of several actin genes in the parasitic nematode, Ascaris suum. Biochem. biophys. Res. Commun. 178: 578–585 (1991)

    CAS  Google Scholar 

  310. Wistow G. J. and Piatigorsky J.: Gene conversion and splice-site slippage in the argininosuccinate lyases delta-crystallins of the duck lens: Members of an enzyme superfamily. Gene 96: 263–270 (1990)

    PubMed  CAS  Google Scholar 

  311. Wistow G., Anderson A. and Piatigorsky J.: Evidence for neutral and selective processes in the recruitment of enzyme-crystallins in avian lenses. Proc. Nat. Acad. Sci. USA 87: 6277–80 (1990)

    PubMed  CAS  Google Scholar 

  312. Wistow G. and Kim H.: Lens protein expression in mammals. Taxon-specificity and the recruitment of crystallins. J. mol. Evol. 32: 262–269 (1991)

    PubMed  CAS  Google Scholar 

  313. Wohlfarth-Bottermann K. E. (ed.): Nature and function of cytoskeletal proteins in motility and transport. G. Fischer, Stuttgart 1987

    Google Scholar 

  314. Xiang M. et al.: Tandem duplication and divergence of a sea urchin protein belonging to the troponin C superfamily. J. Biol. Chem. 263: 17173–80 (1988)

    PubMed  CAS  Google Scholar 

  315. Yaffe D. et al.: Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res. 13: 3723–37 (1985)

    PubMed  CAS  Google Scholar 

  316. Yamanaka M. K. et al.: Structure and expression of the Drosophila calmodulin gene. Nucleic Acids Res. 15: 3335–48 (1987)

    PubMed  CAS  Google Scholar 

  317. Yazaki P J et al.: Calsequestrin, an intracellular calcium-binding protein of skeletal muscle sarcoplasmic reticulum, is homologous to aspartactin, a putative laminin-binding protein of the extracellular matrix. Biochem. biophys. Res. Commun. 166: 898–903 (1990)

    CAS  Google Scholar 

  318. Yazawa M. et al.: The amino acid sequence of the Tetrahymena calmodulin which specifically interacts with guanylate cyclase. Biochem. biophys. Res. Commun. 99: 1051–57 (1981)

    CAS  Google Scholar 

  319. Zarain-Herzberg A., Fliegel L. and MacLennan D. H.: Structure of the rabbit fast-twitch skeletal muscle calsequestrin gene. J. Biol. Chem. 263: 4807–12 (1988)

    PubMed  CAS  Google Scholar 

  320. Zehner Z. E. et al.: The chicken vimentin gene. Nucleotide sequence, regulatory elements, and comparison of the hamster gene. J. biol. Chem. 262: 8112–20 (1987)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urich, K. (1994). Proteins of Muscle and the Cytoskeleton. In: Comparative Animal Biochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06303-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06303-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08181-1

  • Online ISBN: 978-3-662-06303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics